IPsec
Encryption & Authentication

BİL 448/548
Internet Security Protocols
Ali Aydınlı Selçuk
Cryptographic protection of the IP traffic, transparent to the user

Main components:

- Internet Key Exchange (IKE): IPsec key exchange protocol
- Authentication Header (AH): Authentication of the IP packet (optional)
- Encapsulating Security Payload (ESP): Encryption/authentication of the IP packet (optional)
Uses of IPsec

• Can be used to provide user-, host-, or network-level protection (the granularity)

• Protocol modes:
 – Transport mode: Host applies IPsec to transport layer packet
 – Tunnel mode: Gateway applies IPsec to the IP packet of a host from the network (IP in IP tunnel)

• Typical uses:
 – Remote access to network (host-to-gateway)
 – Virtual private networks (gateway-to-gateway)
IPsec Coverage

Basic TCP/IP packet:

- IP hdr
- TCP hdr
- application hdr & data

IPsec – transport mode:

- IP hdr
- IPsec hdr
- TCP hdr
- application hdr & data

IPsec – tunnel mode:

- ext. IP hdr
- IPsec hdr
- IP hdr
- TCP hdr
- application hdr & data
Some Basics

• Packets are authenticated/encrypted with a session key. Ideally, both parties should contribute to the session key.

• Sequence numbers are needed against packet replay attacks (different from TCP seq.no.).

• Receiver of a packet compares its seq.no. against previous packets in a “sliding window”.

• Session key is reset before seq.no. wraps around.
Security Association & Policy

• **Security Policy Database**
 Specifies what kind of protection should be applied to packets (according to source-destination addresses, port numbers, etc.)

• **“Security Association” (SA)**
 – An IPsec-protected connection
 – Identified by
 – “security parameter index” (SPI)
 – destination IP address
 – protocol identifier (AH or ESP)
 – Specifies the encryption/auth. algorithm, key, etc.
SA Database

Contains the relevant information for each SA:
- AH information (auth. algorithm, key, key lifetime, etc.)
- ESP information (auth./encryption algorithm, key, key lifetime, etc.)
- Sequence number counter
- Anti-replay window (at the destination SA)
- Lifetime of the SA
- Others (protocol mode, path MTU, etc.)
IPsec Packet Processing

Outbound packets:

– The proper SA is chosen from the security policy database
– From the SA database, the SPI and SA parameters are retrieved
– The IPsec protection is performed; packet passed to IP

Inbound packets:

– By the SPI, the SA is found
– IPsec auth./decryption is performed
– Packet passed to upper layer protocol
Encapsulating Security Payload (ESP)

- Encryption: usually a block cipher in CBC mode
- IV is typically included in the payload (not encrypted)
ESP with IPv4

<table>
<thead>
<tr>
<th>BEFORE APPLYING ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4</td>
</tr>
<tr>
<td>orig IP hdr</td>
</tr>
<tr>
<td>(any options)</td>
</tr>
<tr>
<td>TCP</td>
</tr>
<tr>
<td>Data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AFTER APPLYING ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4</td>
</tr>
<tr>
<td>orig IP hdr</td>
</tr>
<tr>
<td>ESP</td>
</tr>
<tr>
<td>Hdr</td>
</tr>
<tr>
<td>TCP</td>
</tr>
<tr>
<td>Data</td>
</tr>
<tr>
<td>Trailer</td>
</tr>
<tr>
<td>Auth</td>
</tr>
</tbody>
</table>

<----- encrypted ----->
<------ authenticated ------->
Authentication Header (AH)

- Auth. alg.: HMAC (with MD5, SHA1, etc.)
 CBC-MAC (3DES, RC5, AES, etc.)
- Authentication covers immutable fields of IP header as well as the payload.
Mutable fields (according to AH):
ToS, flags, frag.offset, TTL, checksum
AH with IPv4

BEFORE APPLYING AH

<table>
<thead>
<tr>
<th>IPv4</th>
<th>orig IP hdr</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(any options)</td>
<td>TCP</td>
<td>Data</td>
<td></td>
</tr>
</tbody>
</table>

AFTER APPLYING AH

<table>
<thead>
<tr>
<th>IPv4</th>
<th>orig IP hdr</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(any options)</td>
<td>AH</td>
<td>TCP</td>
<td>Data</td>
</tr>
</tbody>
</table>

| <-------- authenticated --------> |
| except for mutable fields |
AH Controversies

- Authentication is provided by ESP as well (hence, AH is useless)
- Protecting immutable fields doesn’t add much
- Destination address may be mutable! (due to NAT)
- Not efficient to compute (MAC at the beginning)