IPsec – IKE Internet Key Exchange Protocol

BİL 448/548
Internet Security Protocols
Ali Aydın Selçuk

IPsec

- Cryptographic protection of the IP traffic, transparent to the user
- Main components:
 - Internet Key Exchange (IKE): IPsec key exchange protocol
 - Authentication Header (AH): Authentication of the IP packet (optional)
 - Encapsulating Security Payload (ESP):
 Encryption/authentication of the IP packet (optional)

Session Key Establishment

- Packets are authenticated/encrypted with a session key.
- Session keys are exchanged using the long term keys (public or symmetric keys).
- Compromise of a session key should not compromise other sessions.
- Desired features:
 - Freshness guarantee
 - Perfect forward secrecy
 - DoS protection

Freshness Guarantee

Key replay attack

An attacker who has broken a past session key can try to replay the same key exchange protocol messages, establish the same session key, and impersonate the client (or server).

"Freshness guarantee"

If both parties contribute something to the established session key, key replay attacks won't be possible.

Perfect Forward Secrecy

- PFS: Compromise of some secret key (session or long term) doesn't compromise other keys.
- Non-PFS examples:
 - Kerberos (key exchange with a KDC)
 - SSL session key transport with RSA encryption
- PFS example: DH with RSA signatures
- By-product: "Key escrow" prevention
 Conversations can't be decrypted by authorities holding copies of long-term private keys.

"Denial of Service" Protection

- DoS attacks: Depleting a server's resources (memory, CPU, or bandwidth) by overwhelming it with bogus requests (TCP SYN, ICMP, etc.).
- If attacker can make server do PKC op (RSA, DH, etc.) by just initiating a session, DoS is made easy (by CPU depletion).
- Protection:
 - cookies
 - puzzles

DoS Protection – Cookie Solution

- Server responds to session requests with a random number (cookie).
 Initiator has to respond back with that cookie to continue
- Attacker would have to either
 - reveal its address
 - or, abort the attack
- Stateless cookies: cookie is H(IP addr, secret K); server doesn't have to remember it.

DoS Protection – Puzzle Solution

- Server requires initiator to solve a puzzle
 E.g., MD5(x) = ..., x = ?, for an n-bit x.
- Solving is slow, verification fast.
- Can be made adaptive to increasing load. (how?)
- Can be made stateless. (how?)
- Can be used against spam as well

History of IKE

- Early contenders:
 - Photuris: Authenticated DH with cookies
 - SKIP: Authenticated DH with long-term exponents
 - ISAKMP: A protocol specifying only payload formats & exchanges (i.e., an empty protocol)
- Oakley: Modified Photuris; can work with ISAKMP
- IKE: A particular Oakley-ISAKMP combination
- The whole process and the resulting protocols are just too complex.

Photuris

C_A: Alice's cookie; for connection ID

C_B: Bob's cookie; against DoS

Photuris – Features

- DoS protection by cookies (note: C_B can be stateless)
- Authentication & integrity protection of the messages by a combined signature at the last rounds
- Identity hiding from passive attackers (How?)

IKE/ISAKMP Phases

Phase 1:

- does authenticated DH, establishes session key & "ISAKMP SA"
- two possible modes: Main & Aggressive
- two keys are derived from the session key:
 SKEYID_e: to encrypt Phase 2 messages
 SKEYID_a: to authenticate Phase 2 messages

Phase 2:

- IPsec SA & session key established; messages encrypted & authenticated with Phase 1 keys
- Additional DH exchange is optional (for PFS)

Phase 1 Exchange

Two possible modes:

- Main mode: 6 rounds; provides identity hiding
- Aggressive mode: 3 rounds

Types of authentication:

- MAC with pre-shared secret key
- digital signatures
- public key encryption
 - original: all public key encryption
 - revised: public + secret key encryption

(Each type has its benefits; but is it worth the complexity?)

Phase 1 – Main Mode (generic)

Phase 1 – Aggressive Mode (generic)

Phase 1 Issues & Problems

Crypto parameters:

Alice presents all algorithm combinations she can support (may be too many combinations)

Authentication:

- certain fields (why not all?!) of the protocol messages are hashed & signed/encrypted in the final rounds
- not included: Bob's accepted parameters (problematic)

Cookies & Statelessness:

- Cookie protection: similar to Photuris cookies
- Bob is no longer stateless (problematic) since "crypto offered" must be remembered from message 1.

Phase 1 Issues (cont'd)

Complexity:

- 8 different protocols are defined (2 modes, each with 4 types of authentication)
- Unnecessarily flexible and complex

Phase 2 Exchange

- Establishes IPsec SA & session key
- Runs over the IKE SA established in Phase 1. (message are encrypted/authenticated with Phase 1 keys)
- Key generation: based on Phase 1 key, SPI, nonces.
- DH exchange: Optional (for PFS).
- IPsec Traffic Selector: Established optionally.
 Specifies what traffic is acceptable. (e.g., What port numbers are allowed to use this SA.)

Phase 2

- X: pair of cookies generated in Phase 1
- Y: session identifier
- traffic: IPsec traffic selector (optional)

IKEv2 Protocol

Initiated by Perlman & Kaufman, with the aims of

- simplifying IKEv1
- fixing the bugs
- fixing the ambiguities
- while remaining as close to IKEv1 as possible. ("no gratuitous changes")

IKEv2 – Main Features

- Modes of authentication, only by
 - public key signatures
 - pre-shared keys (PSK)
- IKE SA + IPsec SA are established in the same protocol, in 4 messages. (~ Phase 1)
- Additional child SAs, only if needed (~ Phase 2)
- DoS protection optional, via cookies (stateless).
- Crypto negotiation is simplified
 - support for "suites"
 - "any of these enc., with any of these hash..."

IKEv2 – The Exchange Protocol

- Bob can optionally refuse the first message and require return of a cookie.
- Adds extra 2 messages.

IKEv2 – The Exchange Protocol (cont'd)

- DoS protection: Optional; by Bob responding the first message with a (stateless) cookie.
- Originally, designed with 3 rounds. Later 4 rounds is agreed on:
 - Initiator needs a 4th message anyway to know when to start the transmission.
 - Extra msgs for cookie exchange can be incorporated into 4 msgs, if Alice repeats msg.1 info in msg.3
- Preserves identity hiding from passive attackers.

IKEv2 - Child SA Creation

- proposal: crypto suites, SPI, protocol (ESP, AH, IP compression)
- TS: Traffic selector
- Derived keys: Function of IKE keying material, nonces of this exchange, plus optional DH output.

Other IKEv2 Features

Reliability:

- All messages are request/response.
- Initiator is responsible for retransmission if it doesn't receive a response.

Traffic selector negotiation:

- IKEv1: Responder can just say yes/no.
- IKEv2: Negotiation ability added.

Rekeying:

- Either side can rekey at any time.
- Rekeyed IKE-SA inherits all the child-SAs.