IPsec – IKE
Internet Key Exchange Protocol

BİL 448/548
Internet Security Protocols
Ali Aydîn Selçuk
IPsec

• Cryptographic protection of the IP traffic, transparent to the user

• Main components:
 – Internet Key Exchange (IKE): IPsec key exchange protocol
 – Authentication Header (AH): Authentication of the IP packet (optional)
 – Encapsulating Security Payload (ESP): Encryption/authentication of the IP packet (optional)
Session Key Establishment

- Packets are authenticated/encrypted with a session key.
- Session keys are exchanged using the long term keys (public or symmetric keys).
- Compromise of a session key should not compromise other sessions.
- Desired features:
 - Freshness guarantee
 - Perfect forward secrecy
 - DoS protection
Freshness Guarantee

• Key replay attack
 An attacker who has broken a past session key can try to replay the same key exchange protocol messages, establish the same session key, and impersonate the client (or server).

• “Freshness guarantee”
 If both parties contribute something to the established session key, key replay attacks won’t be possible.
Perfect Forward Secrecy

- PFS: Compromise of some secret key (session or long term) doesn’t compromise other keys.
- Non-PFS examples:
 - Kerberos (key exchange with a KDC)
 - SSL session key transport with RSA encryption
- PFS example: DH with RSA signatures
- By-product: “Key escrow” prevention
 Conversations can’t be decrypted by authorities holding copies of long-term private keys.
“Denial of Service” Protection

• DoS attacks: Depleting a server’s resources (memory, CPU, or bandwidth) by overwhelming it with bogus requests (TCP SYN, ICMP, etc.).

• If attacker can make server do PKC op (RSA, DH, etc.) by just initiating a session, DoS is made easy (by CPU depletion).

• Protection:
 – cookies
 – puzzles
DoS Protection – Cookie Solution

- Server responds to session requests with a random number (cookie). Initiator has to respond back with that cookie to continue.
- Attacker would have to either
 - reveal its address
 - or, abort the attack
- Stateless cookies: cookie is $H(IP\; addr, \; secret\; K)$; server doesn’t have to remember it.
DoS Protection – Puzzle Solution

• Server requires initiator to solve a puzzle
E.g., MD5(x) = …, x = ?, for an n-bit x.

• Solving is slow, verification fast.

• Can be made adaptive to increasing load.
 (how?)

• Can be made stateless. (how?)

• Can be used against spam as well
History of IKE

- Early contenders:
 - Photuris: Authenticated DH with cookies
 - SKIP: Authenticated DH with long-term exponents
 - ISAKMP: A protocol specifying only payload formats & exchanges (i.e., an empty protocol)
- Oakley: Modified Photuris; can work with ISAKMP
- IKE: A particular Oakley-ISAKMP combination
- The whole process and the resulting protocols are just too complex.
Photuris

C_A: Alice’s cookie; for connection ID
C_B: Bob’s cookie; against DoS
Photuris – Features

- DoS protection by cookies (note: C_B can be stateless)
- Authentication & integrity protection of the messages by a combined signature at the last rounds
- Identity hiding from passive attackers (How?)
IKE/ISAKMP Phases

Phase 1:
- does authenticated DH, establishes session key & “ISAKMP SA”
- two possible modes: Main & Aggressive
- two keys are derived from the session key:
 SKEYID_e: to encrypt Phase 2 messages
 SKEYID_a: to authenticate Phase 2 messages

Phase 2:
- IPsec SA & session key established; messages encrypted & authenticated with Phase 1 keys
- Additional DH exchange is optional (for PFS)
Phase 1 Exchange

Two possible modes:
- Main mode: 6 rounds; provides identity hiding
- Aggressive mode: 3 rounds

Types of authentication:
- MAC with pre-shared secret key
- digital signatures
- public key encryption
 - original: all public key encryption
 - revised: public + secret key encryption

(Each type has its benefits; but is it worth the complexity?)
Phase 1 – Main Mode (generic)

Alice

crypto offered

crypto selected

\(g^a \mod p \)

\(g^b \mod p \)

(K = g^{ab} \mod p)

K{"Alice", proof I'm Alice}

K{"Bob", proof I'm Bob}

Bob
Phase 1 – Aggressive Mode (generic)

\[g^a \mod p, \text{“Alice”, crypto offered} \]

\[g^b \mod p, \text{crypto selected, proof I’m Bob} \]

proof I’m Alice
Phase 1 Issues & Problems

Crypto parameters:
 Alice presents all algorithm combinations she can support (may be too many combinations)

Authentication:
 – certain fields (why not all?!?) of the protocol messages are hashed & signed/encrypted in the final rounds
 – not included: Bob’s accepted parameters (problematic)

Cookies & Statelessness:
 – Cookie protection: similar to Photuris cookies
 – Bob is no longer stateless (problematic) since “crypto offered” must be remembered from message 1.
Phase 1 Issues (cont’d)

Complexity:

- 8 different protocols are defined (2 modes, each with 4 types of authentication)
- Unnecessarily flexible and complex
Phase 2 Exchange

• Establishes IPsec SA & session key
• Runs over the IKE SA established in Phase 1. (message are encrypted/authenticated with Phase 1 keys)
• Key generation: based on Phase 1 key, SPI, nonces.
• DH exchange: Optional (for PFS).
• IPsec Traffic Selector: Established optionally. Specifies what traffic is acceptable. (e.g., What port numbers are allowed to use this SA.)
Phase 2

- X: pair of cookies generated in Phase 1
- Y: session identifier
- traffic: IPsec traffic selector (optional)
IKEv2 Protocol

Initiated by Perlman & Kaufman, with the aims of

• simplifying IKEv1
• fixing the bugs
• fixing the ambiguities
• while remaining as close to IKEv1 as possible. ("no gratuitous changes")
IKEv2 – Main Features

• Modes of authentication, only by
 – public key signatures
 – pre-shared keys (PSK)
• IKE SA + IPsec SA are established in the same protocol, in 4 messages. (~ Phase 1)
• Additional child SAs, only if needed (~ Phase 2)
• DoS protection optional, via cookies (stateless).
• Crypto negotiation is simplified
 – support for “suites”
 – “any of these enc., with any of these hash...”
IKEv2 – The Exchange Protocol

- Bob can optionally refuse the first message and require return of a cookie.
- Adds extra 2 messages.
IKEv2 – The Exchange Protocol (cont’d)

- DoS protection: Optional; by Bob responding the first message with a (stateless) cookie.
- Originally, designed with 3 rounds. Later 4 rounds is agreed on:
 - Initiator needs a 4th message anyway to know when to start the transmission.
 - Extra msgs for cookie exchange can be incorporated into 4 msgs, if Alice repeats msg.1 info in msg.3
- Preserves identity hiding from passive attackers.
IKEv2 – Child SA Creation

- proposal: crypto suites, SPI, protocol (ESP, AH, IP compression)
- TS: Traffic selector
- Derived keys: Function of IKE keying material, nonces of this exchange, plus optional DH output.
Other IKEv2 Features

Reliability:
– All messages are request/response.
– Initiator is responsible for retransmission if it doesn’t receive a response.

Traffic selector negotiation:
– IKEv1: Responder can just say yes/no.
– IKEv2: Negotiation ability added.

Rekeying:
– Either side can rekey at any time.
– Rekeyed IKE-SA inherits all the child-SAs.