CS 380S

0x1A Great Papers in Computer Security

Vitaly Shmatikov

http://www.cs.utexas.edu/~shmat/courses/cs380s/

Anonymity

- Anonymity = the person is not identifiable within a set of subjects
 - You cannot be anonymous by yourself!
 Big difference between anonymity and confidentiality
 - Hide your activities among others' similar activities
- Unlinkability of action and identity
 - For example, sender and his email are no more related after adversary's observations than they were before
- Unobservability (hard to achieve)
 - Adversary can't even tell whether someone is using a particular system and/or protocol

slide 3

Privacy on Public Networks

- Internet is designed as a public network
 - Wi-Fi access points, network routers see all traffic that passes through them
- Routing information is public
 - IP packet headers identify source and destination
 - Even a passive observer can easily figure out who is talking to whom
- Encryption does not hide identities
 - Encryption hides payload, but not routing information
 - Even IP-level encryption (tunnel-mode IPsec/ESP) reveals IP addresses of IPsec gateways

slide 2

Attacks on Anonymity

Passive traffic analysis

- Infer from network traffic who is talking to whom
- Active traffic analysis
 - Inject packets or put a timing signature on packet flow
- Compromise of network nodes
 - Attacker may compromise some routers
 - It is not obvious which nodes have been compromised – Attacker may be passively logging traffic
 - Better not to trust any individual router
 - Can assume that some fraction of routers is good, but don't know which

slide 4

R. Dingledine, N. Mathewson, P. Syverson

Tor: The Second-Generation Onion Router

(USENIX Security 2004)

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Using Tor

- Many applications can share one circuit
 - Multiple TCP streams over one anonymous connection
- Tor router doesn't need root privileges
 - Encourages people to set up their own routers
 - More participants = better anonymity for everyone

Directory servers

- Maintain lists of active relay nodes, their locations, current public keys, etc.
- Control how new nodes join the network
 - "Sybil attack": attacker creates a large number of relays

slide 19

 \bullet Directory servers' keys ship with Tor code

<text><list-item><list-item>

Hidden Services

- Goal: deploy a server on the Internet that anyone can connect to without knowing where it is or who runs it
- Accessible from anywhere
- Resistant to censorship, denial of service, physical attack
 - Network address of the server is hidden, thus can't find the physical server

slide 20

slide 1

