
Threshold Cryptography Based on

Asmuth-Bloom Secret Sharing

Kamer Kaya, Ali Aydın Selçuk

Department of Computer Engineering
Bilkent University

Ankara, 06800, Turkey
{kamer,selcuk}@cs.bilkent.edu.tr

Abstract

In this paper, we investigate how threshold cryptography can be conducted with
the Asmuth-Bloom secret sharing scheme and present three novel function sharing
schemes for RSA, ElGamal and Paillier cryptosystems. To the best of our knowl-
edge, these are the first provably secure threshold cryptosystems realized using the
Asmuth-Bloom secret sharing. The proposed schemes are efficient in terms of per-
formance and compare favorably to earlier proposals.

Key words: Threshold cryptography, function sharing schemes, Asmuth-Bloom
secret sharing, RSA, ElGamal, Paillier

1 Introduction

Threshold cryptography deals with the problem of sharing a highly sensitive
secret among a group of n users so that only when a sufficient number t of
them come together can the secret be reconstructed. Well-known secret sharing
schemes (SSS) in the literature include Shamir [18] based on polynomial in-
terpolation, Blakley [6] based on hyperplane geometry, and Asmuth-Bloom [3]
based on the Chinese Remainder Theorem.

1 This work is supported in part by the Turkish Scientific and Technological Re-
search Agency (TÜBİTAK), under grant number EEEAG-105E065.
2 A preliminary version of this paper was presented in ISCIS’06, 21st International
Symposium on Computer and Information Sciences

Preprint submitted to Information Sciences 17 October 2006



A further requirement of a threshold cryptosystem can be that the subject
function (e.g., a digitial signature) should be computable without the involved
parties disclosing their secret shares. This is known as the function sharing
problem. A function sharing scheme (FSS) requires distributing the function’s
computation according to the underlying SSS such that each part of the com-
putation can be carried out by a different user and then the partial results
can be combined to yield the function’s value without disclosing the individual
secrets. Several protocols for function sharing [7–9,11,19] have been proposed
in the literature. Nearly all existing solutions for function sharing have been
based on the Shamir SSS [18].

In this paper, we show how sharing of cryptographic functions can be securely
achieved using the Asmuth-Bloom secret sharing scheme. We give three novel
FSSs, one for the RSA [17], one for the ElGamal decryption [12] and the other
for the Paillier decryption [16] functions. These public key cryptosystems have
various properties exploited by several applications [1,4,13–15]. The proposed
schemes are provably secure and to the best of our knowledge they are the
first realization of function sharing based on the Asmuth-Bloom SSS.

The organization of the paper is as follows: In Section 2, we give an overview
of threshold cryptography and review the existing secret and function shar-
ing schemes in the literature. We discuss the Asmuth-Bloom SSS in detail
in Section 3 and the modifications on the basic scheme in Section 4. In Sec-
tions 5, 6, 7, we describe the FSSs for RSA, ElGamal and Paillier cryptosys-
tems, respectively, and prove their security features. We conclude the paper
with an assessment of the proposed schemes in Section 8.

2 Background

Constructing threshold schemes for secret and function sharing is the main
research area in threshold cryptography. These problems were extensively an-
alyzed and several solutions were proposed in the literature.

2.1 Secret Sharing Schemes

The problem of secret sharing and the first solutions to it were introduced
independently by Shamir [18] and Blakley [6] in 1979. A (t, n)-secret sharing
scheme is used to distribute a secret d among n people such that any coalition
of size t or more can construct d but smaller coalitions cannot. Furthermore,
an SSS is said to be perfect if coalitions smaller than t cannot obtain any
information on d; i.e., the candidate space for d cannot be reduced even by

2



one candidate by using t− 1 or fewer shares.

The first scheme for sharing a secret was proposed by Shamir [18] based on
polynomial interpolation. To obtain a (t, n) secret sharing, a random poly-
nomial f(x) = at−1x

t−1 + at−2x
t−2 + . . . + a0 is generated over Zp[x] where

p is a prime number and a0 = d is the secret. The share of the ith party is
yi = f(i), 1 ≤ i ≤ n. If t or more parties come together, they can construct
the polynomial by Lagrangian interpolation and obtain the secret, but any
smaller coalitions cannot.

Another interesting SSS is the scheme proposed by Blakley [6]. In a t dimen-
sional space, a system of t non-parallel, non-degenerate hyperplanes intersect
at a single point. In Blakley’s scheme, a point in the t dimensional space (or,
its first coordinate) is taken as the secret and each party is given a hyperplane
passing through that point. When t users come together, they can uniquely
identify the secret point, but smaller coalitions cannot.

A fundamentally different SSS is the scheme of Asmuth and Bloom [3], which
shares a secret among the parties using modular arithmetic and reconstructs
it by the Chinese Remainder Theorem. We describe this scheme in detail in
Section 3.

2.2 Function Sharing Schemes

Function sharing schemes were first introduced by Desmedt et al. [8] in 1989.
In a (t, n) function sharing scheme, a key-dependent function is distributed
among n people such that any coalition of size t or more can evaluate the
function but smaller coalitions cannot. When a coalition S is to evaluate the
function, the ith user in S computes his own partial result by using his share
yi and sends it to a platform which combines these partial results. Unlike in
a secret sharing scheme, the platform here need not be trusted since the user
shares are not disclosed to the platform.

FSSs are typically used to distribute the private key operations in a public
key cryptosystem (i.e., the decryption and signature operations) among several
parties. Sharing a private key operation in a threshold fashion requires first
choosing a suitable SSS to share the private key. Then the subject function
must be arranged according to this SSS such that combining the partial results
from any t parties will yield the operation’s result correctly. This is usually a
challanging task and requires some ingenious techniques.

Several solutions for sharing the RSA, ElGamal and Paillier private key oper-
ations have been proposed in the literature [2,7–11,13,19]. Almost all of these
schemes are based on the Shamir SSS, with the only exception of one scheme

3



in [8] based on Blakley. Lagrangian interpolation used in the secret reconstruc-
tion phase of Shamir’s scheme makes it a suitable choice for function sharing,
but it also provides several challenges. One of the most significant challenges
is the computation of inverses in Zφ(N) for sharing the RSA function where
φ(N) should not be known by the users. The first solution to this problem
was proposed by Desmedt and Frankel [7], which solved the problem by mak-
ing the dealer compute all potentially needed inverses at the setup time and
distribute them to users mixed with the shares. A more elegant solution was
found a few years later by De Santis et al. [11]. They carried the arithmetic
into a cyclotomic extension of Z, which enabled computing the inverses with-
out knowing φ(N). Finally, a very practical and ingenious solution was given
by Shoup [19] where he removed the need of taking inverses in Lagrangian
interpolation altogether.

To the best of our knowledge, so far no secure function sharing schemes based
on the Asmuth-Bloom SSS have been proposed in the literature. We show in
this paper that the Asmuth-Bloom scheme in fact can be a more suitable choice
for function sharing than its alternatives, and the fundamental challanges of
function sharing with other SSSs do not exist for the Asmuth-Bloom scheme.

3 Asmuth-Bloom Secret Sharing Scheme

In the Asmuth-Bloom SSS, sharing and reconstruction of the secret are done
as follows:

• Sharing Phase: To share a secret d among a group of n users, the dealer
does the following:

(1) A set of pairwise relatively prime integers m0 < m1 < m2 < . . . < mn,
where m0 > d is a prime, are chosen such that

t∏
i=1

mi > m0

t−1∏
i=1

mn−i+1. (1)

(2) Let M denote
∏t

i=1 mi. The dealer computes

y = d + Am0

where A is a positive integer generated randomly subject to the condition
that 0 ≤ y < M .

(3) The share of the ith user, 1 ≤ i ≤ n, is

yi = y mod mi.

• Construction Phase:

4



Assume S is a coalition of t users to construct the secret. Let MS denote∏
i∈S mi.

(1) Given the system
y ≡ yi (mod mi)

for i ∈ S, solve y in ZMS using the Chinese Remainder Theorem.
(2) Compute the secret as

d = y mod m0.

According to the Chinese Remainder Theorem, y can be determined uniquely
in ZMS . Since y < M ≤ MS the solution is also unique in ZM .

The Asmuth-Bloom SSS is a perfect sharing scheme: Assume a coalition S ′ of
size t−1 has gathered and let y′ be the unique solution for y in ZMS′

. According
to (1), M/MS′ > m0, hence y′ + jMS′ is smaller than M for j < m0. Since
gcd(m0, MS′) = 1, all (y′ + jMS′) mod m0 are distinct for 0 ≤ j < m0, and
there are m0 of them. That is, d can be any integer from Zm0 , and the coalition
S ′ obtains no information on d.

4 Function Sharing Based on the Asmuth-Bloom Scheme

There are several changes we have made on the basic Asmuth-Bloom scheme to
make it more suitable for function sharing schemes. In this section we describe
these modifications.

In the original Asmuth-Bloom SSS, the authors proposed a recursive process
to solve the system y ≡ yi (mod mi). Instead, we use a direct solution which is
more suitable for function sharing. Suppose S is a coalition of t users gathered
to construct the secret d.

(1) Let MS\{i} denote
∏

j∈S,j 6=i mj and M ′
S,i be the multiplicative inverse of

MS\{i} in Zmi
, i.e.,

MS\{i}M
′
S,i ≡ 1 (mod mi).

First, the ith user computes

ui = yiM
′
S,iMS\{i} mod MS .

(2) y is computed as
y =

∑
i∈S

ui mod MS . (2)

(3) The secret d is computed as

d = y mod m0.

5



In the Asmuth-Bloom SSS, m0 need not be a prime, and the scheme works
correctly for a composite m0 as long as m0 is relatively prime to mi, 1 ≤ i ≤ n.
Also note that m0 need not be known during the secret construction process
until the 3rd step above. In the FSSs described below, mi, 1 ≤ i ≤ n, are
known by all users, but m0 is kept secret by the dealer unless otherwise is
stated.

We also modified (1) as

t∏
i=1

mi > m0
2

t−1∏
i=1

mn−i+1. (3)

in order to use it securely in the proposed FSSs.

5 Sharing of the RSA Function

RSA [17] is the first and most commonly used public key cryptosystem for
signing and encrypting messages and still it is used in numerous applications
requiring public key cryptography. The RSA signature and decryption func-
tions are identical and sharing one of them enables sharing the other. Here, we
discuss how to share the RSA signature function. The same techniques apply
to the decryption function as well.

• Setup: Let N = pq be the product of two large prime numbers. Choose a
random e ∈ Z∗

φ(N) and find its inverse d, i.e., ed ≡ 1 (mod φ(N)). (N, e)
and d are the public and private keys, respectively.

• Signing : Given a hashed message w ∈ ZN , the signature s is computed as

s = wd mod N. (4)

• Verification: Given a signature s ∈ ZN , the verification is done by checking

w
?
= se mod N. (5)

The following is a procedure describes how the RSA signature function can
be shared with the Asmuth-Bloom SSS:

(1) In threshold RSA setup, choose the RSA primes p = 2p′+1 and q = 2q′+1
where p′ and q′ are also large random primes. N = pq is computed and
the public key e and private key d are chosen from Z∗

φ(N) where ed ≡ 1
(mod φ(N)). Use Asmuth-Bloom SSS for sharing d with m0 = φ(N) =
4p′q′.

(2) Let w be the hashed message to be signed and suppose the range of the
hash function is Z∗

N . Assume a coalition S of size t wants to obtain the

6



signature s = wd mod N . The ith user in the coalition knows mj for all
j ∈ S and yi = y mod mi as its secret share.

(3) Each user i ∈ S computes

ui = yiM
′
S,iMS\{i} mod MS , (6)

si = wui mod N. (7)

(4) The incomplete signature s is obtained by combining the si values

s =
∏
i∈S

si mod N. (8)

(5) Let κ = w−MS mod N be the corrector. The partial signature can be
corrected by trying

(sκj)e = se(κe)j ?≡ w (mod N) (9)

for 0 ≤ j < t. Then the signature s is computed by

s = sκδ mod N

where δ denotes the value of j that satisfies (9).

We call the signature s generated in (8) incomplete since we need to obtain
y =

∑
i∈S ui mod MS as the exponent of w. Once this is achieved, we have

wy ≡ wd (mod N) as y = d + Am0 for some A and we chose m0 = φ(N).

Note that the equality in (9) must hold for some j ≤ t− 1 since the ui values
were already reduced modulo MS . So, combining t of them in (8) will give
d + am0 + δMS in the exponent for some δ ≤ t− 1. Thus in (8), we obtained

s = wd+δMS mod N ≡ swδMS mod N ≡ sκ−δ mod N

and for j = δ, equation (9) will hold. Also note that the mappings we mod N
and wd mod N are bijections in ZN , hence there will be a unique value of
s = sκj which satisfies (9).

5.1 Security Analysis

Here we will prove that the proposed threshold RSA scheme is secure, i.e.
existentially non-forgeable against an adaptive chosen message attack, pro-
vided that the RSA problem is intractable. Throughout the paper, we assume
a static adversary model where the adversary controls exactly t− 1 users and
chooses them at the beginning of the attack. In this model, the adversary ob-
tains all secret information of the corrupted users and the public parameters
of the cryptosystem. She can control the actions of the corrupted users, ask for

7



signatures of the messages chosen by herself but she cannot corrupt another
user in the course of an attack, i.e., the adversary is static in that sense.

Theorem 5.1 If an adversary who controls t − 1 users can forge signatures
in the threshold RSA scheme, she can also forge signatures in the standard
RSA scheme.

Proof We will show that if the standard RSA scheme is secure the threshold
RSA scheme is also secure. To do this, we will simulate the threshold protocol
with no information on the secret where the output of the simulator is indis-
tinguishable from the adversary’s point of view. After that, we will show that,
the secrecy of the private key d is not disrupted by the values obtained by the
adversary. Thus, if the threshold RSA scheme is not secure, i.e., an adversary
who controls t− 1 users can forge signatures in the threshold scheme, one can
use this simulator to forge a signature in the standard RSA scheme.

Let S ′ denote the set of users controlled by the adversary. To simulate the
adversary’s view, a random y value is chosen from ZM , M =

∏t
i=1 mi. Then,

the shares of the corrupted users are computed by yj = y mod mj for j ∈ S ′.
Note that, in the threshold RSA signature scheme, y can be any integer in ZM

so the distribution of these compromised shares is indistinguishable from the
distribution of the shares in the real case.

Since we have a (t, n)-threshold scheme, given a valid RSA signature (s, w),
the partial signature si for a user i /∈ S ′ can be obtained by

si = sκ−δS
∏
j∈S′

(wuj)−1 mod N (10)

where S = S ′ ∪{i}, κ = w−MS mod N and δS is equal to either
⌊∑

j∈S′ uj

MS

⌋
+ 1

or
⌊∑

j∈S′ uj

MS

⌋
. To determine the value of δS , the simulator acts according to

the y value randomly chosen at the beginning of the simulation. The value of
δS is important because it carries some information on y. Let U =

∑
j∈S′ uj

and US = U mod MS . One can find whether y is greater than US or not by
looking δS :

δS =

 bU/MSc+ 1, if y < US

bU/MSc, if y ≥ US

(11)

The simulator also chooses the value of δS according to (11).

Now, we will prove that the δS values computed by the simulator does not
disrupt the secrecy of the private key d from the adversary’s point of view.
First of all, there are (n − t + 1) possible δS computed by using US since all
the operations in the exponent depend only on the coalition S. Now, consider
an interval [a, b) ⊂ [0, M) where a ≤ y < b. It is obvious that if none of

8



these US values lies in that interval, choosing another integer y from [a, b)
such that yj = y mod mj for all j ∈ S ′ does not change the δS values. Using
this observation, we can prove that no information about the private key is
obtained by the adversary.

Consider the interval I = [y, y + m0MS′). There are m0 = φ(N) candidates
for y in I which satisfy yj = y mod mj for all j ∈ S ′. These m0 candidates
have all different remainders modulo m0 since gcd(MS′ , m0) = 1. So, exactly
one of the remainders is equal to the private key d. If US /∈ I for all S, given
an si, the shared value y can be equal to any of these m0 candidates hence
the secret space for the private key remains same. Fortunately, this happens
with all but negligible probability. The probability of US /∈ I for a coalition
S is equal to

(
1− m0MS′

MS

)
. According to (3), the probability of US /∈ I for all

possible S is less than
(
1− 1

m0

)n−t+1
, which is almost surely equal to 1 since

m0 � n.

According to the above arguments, the output of the simulator is indistin-
guishable from the adversary’s point of view, and hence the simulator can be
used to break the standard RSA scheme if the threshold RSA scheme is not
secure. 2

6 Sharing of the ElGamal Decryption Function

ElGamal is another popular public key cryptosystem proposed in 1984 by
T. ElGamal [12]. It is a semantically secure and inherently probabilistic en-
cryption scheme which also supports homomorphic encryption. The descrip-
tion of the cryptosystem is as follows:

• Setup: Let p be a large prime and g be a generator of Zp. Choose a random
α ∈ {1, . . . , p−1} and compute β = gα mod p. (β, g, p) and α are the public
and private keys, respectively.

• Encryption: Given a message w ∈ Zp, the ciphertext c is computed as

c = (c1 = gr mod p, c2 = βrw mod p) (12)

where r is a random integer from Zp.
• Decryption: Given a ciphertext c, the message w is computed as

w = (c1
α)−1c2 mod p. (13)

Both RSA and ElGamal encryption scheme has a homomorphic property de-
sirable for some applications:

E(w1)E(w2) = E(w1w2) (14)

9



for messages w1 and w2 where E stands for the encryption function. Since the
standard RSA encryption is not a probabilistic scheme, it is not semantically
secure. One can use random padding to obtain a probabilistic scheme as in [5].
However, this removes the homomorphic property. ElGamal does not suffer
from such a problem since it is already semantically secure. This property
makes ElGamal eligible to be used in threshold authenticated key exchange
protocols [1].

The following is a procedure describes how the ElGamal decryption function
can be shared with the Asmuth-Bloom SSS:

(1) In threshold ElGamal setup, choose p = 2q +1 where q is a large random
prime and let g be a generator of Z∗

p. Choose a random α ∈ {1, . . . , p−1}
and compute β = gα mod p. Let α and (β, g, p) be the private and the
public key, respectively. Use Asmuth-Bloom SSS for sharing the private
key α with m0 = 2q.

(2) Let (c1, c2) be the ciphertext to be decrypted where c1 = gk mod p for
some k ∈ {1, . . . , p − 1} and c2 = βkw where w is the message. The
coalition S of t users wants to obtain the message w = sc2 mod p for the
decryptor s = (cα

1 )−1 mod p. The ith user in the coalition knows mj for
all j ∈ S and yi = y mod mi as its secret share.

(3) Each user i ∈ S computes

ui = yiM
′
S,iMS\{i} mod MS , (15)

si = c1
−ui mod p, (16)

βi = gui mod p. (17)

(4) The incomplete decryptor s is obtained by combining the si values

s =
∏
i∈S

si mod p. (18)

(5) The βi values will be used to find the exponent which will be used to
correct the incomplete decryptor. Compute the incomplete public key β
as

β =
∏
i∈S

βi mod p. (19)

Let κs = c1
MS mod p and κβ = g−MS mod p be the correctors for s and

β, respectively. The corrector exponent δ can be obtained by trying

βκj
β

?≡ β (mod p) (20)

for 0 ≤ j < t.
(6) Compute the message w as

s = sκs
δ mod p, (21)

w = sc2 mod p. (22)

10



where δ denotes the value for j that satisfies (20).

As in the case of RSA, the decryptor s is incomplete since we need to obtain
y =

∑
i∈S ui mod MS as the exponent of c−1

1 . Once this is achieved, (c−1
1 )y ≡

(c−1
1 )α (mod N) since y = α + Aφ(p) for some A.

When the equality in (20) holds we know that β = gα mod p is the correct
public key. This equality must hold for one j value, denoted by δ, in the given
interval because since the ui values in (15) and (17) are first reduced modulo
MS . So, combining t of them will give α + am0 + δMS in the exponent in (19)
for some δ ≤ t− 1. Thus in (19), we obtained

β = gα+am0+δMS mod p ≡ gα+δMS ≡ βgδMS ≡ βκ−δ
β (mod p)

and for j = δ equality must hold. Actually, in (19) and (20), our purpose is
not computing the public key since it is already known. We want to find the
corrector exponent δ to obtain s, which is also equal to one we use to obtain
β. The equality can be verified as seen below:

s ≡ c1
−α ≡ β−r (mod p)

≡
(
g−(α+(δ−δ)MS)

)r
(mod p)

≡ c1
−(α+am0+δMS)

(
c1

MS
)δ
≡ sκs

δ (mod p)

6.1 Security Analysis

Here, we will prove that the threshold ElGamal encryption scheme is seman-
tically secure against under the static adversary model provided that the El-
Gamal encryption scheme is also semantically secure. The threshold semantic
security definition and the attack model are taken from [13].

Theorem 6.1 If the threshold ElGamal encryption scheme is not semanti-
cally secure against a static adversary who controls exactly t − 1 users, the
standard ElGamal scheme is not semantically secure.

Proof The structure of the proof is similar to the one we did for the threshold
RSA signature scheme.

Let S ′ denote the set of users controlled by the adversary. To simulate the
adversary’s view, a random y value is chosen from ZM , M =

∏t
i=1 mi. Then,

the compromised shares are computed by yj = y mod mj for j ∈ S ′. Note
that, in the threshold ElGamal signature scheme, y can be any integer in ZM

so the distribution of the shares of corrupted users is indistinguishable from
the distribution of the shares in the real case.

11



Since we have a (t, n)-threshold scheme, when we determine the yj values for
j ∈ S ′, the shares of other users are also determined. Although they cannot be
computed easily, given a valid message-ciphertext pair (w, (c1, c2)) the partial
decryptor si and βi for a user i /∈ S ′ can be obtained by

si =
(
wc2

−1
)
κs

−δS
∏
j∈S′

c1
uj mod p, (23)

βi = βκβ
−δS

∏
j∈S′

(βuj)−1 mod p. (24)

where S = S ′ ∪ {i}, κs = c1
MS mod p, κβ = g−MS mod p and δS is equal to

either b
∑

j∈S′ uj

MS
c+ 1 or b

∑
j∈S′ uj

MS
c. We use the same ideas to choose the value

of δS as in the previous simulator so we skip the details and the analysis for
the secrecy of the private key in the proof.

Consequently, the output of the simulator is indistinguishable from the adver-
sary’s point of view, and hence we proved that the threshold ElGamal scheme
must be semantically secure if the standard one is. 2

7 Sharing of the Paillier Decryption Function

Different from the previously discussed public key cryptosystems, Paillier’s
probabilistic cryptosystem is a member of another class of cryptosystems,
that use the message in the exponent of the encryption operation [16]. The
description of the cryptosystem is as follows:

• Setup: Let N = pq be the product of two large prime numbers and λ =
lcm(p − 1, q − 1). Choose a random g ∈ ZN2 such that the order of g is a
multiple of N . (N, g) and λ are the public and private keys, respectively.

• Encryption: Given a message w ∈ ZN , the ciphertext c is computed as

c = gwrN mod N2 (25)

where r is a random number from ZN .
• Decryption: Given a ciphertext c ∈ ZN2 , the message w is computed as

w =
L

(
cλ mod N2

)
L (gλ mod N2)

mod N (26)

where L(x) = x−1
N

.

12



Paillier’s encryption scheme is probabilistic and has interesting homomorphic
properties:

E(w1)E(w2) = E(w1 + w2) (27)

E(w)a = E(aw) (28)

for messages, w,w1, w2 and integer a. These homomorphic properties make this
encryption scheme suitable for different applications such as secure voting and
lottery protocols [4,13], DSA sharing protocols [14], and private information
retrieval [15].

The following is a procedure describes how the Pailier decryption function can
be shared with the Asmuth-Bloom SSS. The setup part (1) is inspired by [13]:

(1) In threshold Paillier setup, choose large primes p = 2p′+1 and q = 2q′+1
where p′ and q′ are also large random primes and gcd(N, φ(N)) = 1 for
N = pq. Let g = (1 + N)abN mod N2 for random a and b from Z∗

N .
Compute θ = aβλ mod N for a random β ∈ Z∗

N where λ = lcm(p−1, q−
1) is the Carmichael number for N . Let (N, g, θ) and λ be the public and
private keys, respectively . Use the Asmuth-Bloom SSS to share βλ with
m0 = Nλ.

(2) Let c = gwrN mod N2 be the ciphertext to be decrypted for some random
r ∈ Z∗

N where w is the message from ZN . Assume a coalition S of size

t wants to obtain the message w = L(cβλ mod N2)
θ

mod N . We call s =
cβλ mod N2 as the decryptor. The ith user in the coalition knows mj for
all j ∈ S and yi = y mod mi as its secret share.

(3) Each user i ∈ S computes

ui = yiM
′
S,iMS\{i} mod MS , (29)

si = cui mod N2, (30)

θi = gui mod N2. (31)

(4) The incomplete decryptor s is obtained by combining the si values

s =
∏
i∈S

si mod N2. (32)

(5) The θi values will be used to find the exponent which corrects the incom-
plete decryptor. Compute the incomplete θ as

θ =
∏
i∈S

θi mod N2. (33)

Let κs = c1
MS mod N2 and κθ = g−MS mod N2 be the correctors for s

and θ, respectively. The corrector exponent δ can be obtained by trying

θ
?
= L(θκj

β) mod N2 (34)

13



for 0 ≤ j < t.
(6) Compute the message w as

s = sκs
δ mod N2, (35)

w =
L(s)

θ
mod N. (36)

where δ denotes the value for j that satisfies (34).

The decryptor s is incomplete and to find the corrector exponent we used a
similar approach. When the equality in (34) holds we know that θ = aβλ mod
N2 is the correct value. Also, this equality must hold for one j value, denoted
by δ, in the given interval. Actually, in (33) and (34), our purpose is not
computing θ since it is already known. We want to find the corrector exponent
δ to obtain s, which is also equal to the one we used to obtain θ.

7.1 Security Analysis

Here, we will prove that the threshold Paillier encryption scheme is semanti-
cally secure against under the static adversary model provided that the Paillier
encryption scheme is also semantically secure.

Theorem 7.1 If the threshold Paillier encryption scheme is not semantically
secure against a static adversary who controls exactly t−1 users, the standard
Paillier scheme is not semantically secure.

Proof The structure of the proof is similar to the one that we used for the
previous threshold schemes.

Let S ′ denote the set of users controlled by the adversary. To simulate ad-
versary’s view, a random y value is chosen from ZM , M =

∏t
i=1 mi. Then,

the compromised shares are computed by yj = y mod mj for j ∈ S ′. Note
that, in the threshold Paillier signature scheme, y can be any integer in ZM

so the distribution of the shares of corrupted users is indistinguishable from
the distribution of the shares in the real case.

Since we have a (t, n)-threshold scheme, when we determine the yj values for
j ∈ S ′, the shares of other users are also determined. Although they cannot
be computed easily, given a valid message-ciphertext pair (w, c) the decryptor
share si and θi for a user i /∈ S ′ can be obtained by

si = (1 + wθN)κs
−δS

∏
j∈S′

(c1
uj)−1 mod N2, (37)

θi = (1 + θN)κθ
−δS

∏
j∈S′

(θuj)−1 mod N2. (38)

14



where S = S ′∪{i}, κs = c−MS mod N2, κθ = g−MS mod N2 and δS is equal to

either b
∑

j∈S′ uj

MS
c+ 1 or b

∑
j∈S′ uj

MS
c. We use the same ideas to choose the value

of δS as in the previous simulator so we skip the details and the analysis for
the secrecy of the private key in the proof.

Consequently, the output of the simulator is indistinguishable from the adver-
sary’s point of view, and hence we proved that the threshold Paillier scheme
must be semantically secure if the standard one is. 2

8 Conclusion and Discussion of the Proposed Schemes

In this paper, sharing of the RSA signature, ElGamal and Paillier decryption
functions with the Asmuth-Bloom SSS is investigated. Previous solutions for
sharing these functions were typically based on the Shamir SSS [2,8,7,11,13,19]
and in one occasion, the Blakley SSS was used for ElGamal decryption [8]. To
the best of our knowledge, the schemes described in this paper are the first
provably secure FSSs that use the Asmuth-Bloom SSS.

Computational complexity of the proposed schemes is comparable to the ones
of earlier proposals. In a straightforward implementation of the threshold RSA
scheme, each user needs to do t + 1 multiplications, one inversion, and one
exponentiation for computing a partial result, which is comparable to the
earlier schemes and in fact better than most of them [7,11,19]. Combining the
partial results takes t− 1 multiplications, plus a correction phase which takes
two exponentiations and upto t + 1 multiplications.

Computing the partial results in ElGamal and Paillier schemes needs one more
exponentiation than computing them in the RSA scheme. For combining the
partial results and the correction phase we need 3t − 2 multiplications, two
exponentiations and one inversion in the worst case. For threshold Paillier
scheme, this last phase may also require t evaluations of the L function.

Acknowledgments

We would like to thank İsmail Güloğlu for informative discussions and his
comments on this paper. We also give our thanks to Zahir Tezcan for his
comments on ElGamal threshold scheme, to Baha Güçlü Dündar and Said
Kalkan for their comments on Paillier threshold scheme.

15



References

[1] M. Abdalla, O. Chevassut, P.-A. Fouque and D. Pointcheval . A simple threshold
authenticated key exchange from short secrets. Proc. of ASIACRYPT 2005,
LNCS 3778, pages 566–584, 2005.

[2] A. Lysyanskaya and C. Peikert. Adaptive security in the threshold setting: From
cryptosystems to signature schemes. Proc. of ASIACRYPT 2001, LNCS 2248,
pages 331–350, 2001.

[3] C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE Trans.
Information Theory, 29(2): pages 208–210, 1983.

[4] O. Baudron, P.-A. Fouque, D. Pointcheval, G. Poupard, and J. Stern. Practical
multi-candidate election system. Proc. of PODC 2001, 20th ACM Symposium
on Principles of Distributed Computing, pages 274–283, 2001.

[5] M. Bellare and P. Rogaway. Optimal asymmetric encryption. Proc. of
EUROCRYPT 1994, LNCS 950, pages 92–111, 1994.

[6] G. Blakley. Safeguarding cryptographic keys. In Proc. of AFIPS National
Computer Conference, 1979.

[7] Y. Desmedt. Some recent research aspects of threshold cryptography. In
Information Security, First International Workshop ISW ’97, LNCS 1196, pages
158–173 , 1997.

[8] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Proc. of Crypto’89,
LNCS 435, pages 307–315. Springer-Verlag, 1990.

[9] Y. Desmedt and Y. Frankel. Homomorphic zero-knowledge threshold schemes
over any finite abelian group. SIAM Journal on Discrete Mathematics, 7(4):
pages 667–679, 1994.

[10] R. Gennaro, S.Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS
signatures. Inf. Comput., 164(1): pages 54–84, 2001.

[11] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function
securely? In Proc. of STOC94, pages 522–533, 1994.

[12] T. ElGamal A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Information Theory, 31(4): pages 469–472, 1985.

[13] P. A. Fouque, G. Poupard and J. Stern. Sharing decryption in the context of
voting or lotteries. Proc. of FC 2000, 4th International Conference on Financial
Cryptography, LNCS 1962, pages 90–104, 2001.

[14] P. MacKenzie and M. K. Reiter. Two-party generation of DSA signatures.
International Journal of Information Security, 2(34): pages 218-239, 2004.

[15] R. Ostrovsky and W Skeith. Private searching on streaming data. Proc. of
CRYPTO 2005, LNCS 3621, pages 223–240, 2005.

16



[16] P. Paillier. Public key cryptosystems based on composite degree residuosity
classes Proc. of EUROCRYPT 1999, LNCS 1592, pages 223–238, 1999.

[17] R. Rivest, A. Shamir and L. Adleman. A method for obtaining digital signatures
and public key cryptosystems. Comm. ACM, 21(2): pages 120-126, 1978.

[18] A. Shamir. How to share a secret? Comm. ACM, 22(11): pages 612–613, 1979.

[19] V. Shoup. Practical threshold signatures. Proc. of EUROCRYPT 2000, LNCS
1807, pages 207–220, 2000.

17


