Overview of IKEv2

Dan Harkins
Charlie Kaufman
Radia Perlman
What we were trying to do

- Consolidate RFCs 2407, 2408, and 2409 in one document
- Not make gratuitous changes
- Simplify
- Fix ambiguities (commit bit, meaning of major/minor version numbers)
- Fix bugs (reflection attacks, lost messages)
- Add flexibility where it seemed necessary (e.g., traffic selectors, critical bit)
- Reduce latency
- Allow stateless cookies
Analysis of IKE

Basic IKEv2

- IKE SA+IPsec SA established in 4 messages
- Exchange based on public signature keys
- Hides both identities from passive attacker
- 1st child-SA (ESP, AH, IPcomp) established during messages 3 and 4 of the IKE SA
- Future child-SAs (new IPsec SA, or rekeying of IKE SA) established in 2 messages
Forward Compatibility

- Version numbers
 - minor v# informational only. Ignored by node with smaller v#
 - major changed if protocol incompatible. Reject message if v# not supported
 - Rejection is unauthenticated
 - Major v# in header is v# of packet
 - Bit in header “I could do higher version”

- Critical flag in payloads (so can add new payloads and decide if it’s appropriate to reject message with those, or skip that payload)

- Critical bit only relevant for unknown payloads. All the ones in the IKEv2 draft are required to be known.
Reliability

- All messages request/response
- Messages have sequence numbers (not, as in IKEv1, random message IDs)
- Initiator is responsible for retransmission if it doesn’t receive a reply
- Multiple requests allowed in transit (e.g. in parallel setting up a bunch of child-SAs)
- Window size stated (not negotiated) in SA payload, can be different in the two directions
Traffic Selectors in v2

- “ID” payload only for IKE SA
- Child-SA uses “traffic selector” payload
- Allows lists of IP address ranges, port ranges
- Responder can narrow choice. Not just reject
- Can choose subset of ranges, or subset within a range, or say “no, must be single address pair”
Cookies

- Rather than defining IKE-SA by \((c_i, c_r)\), treat each side’s cookie like an SPI
- Both appear in the header, so can reply to the other side’s SPI (can’t do that with ESP/AH)
- Only difference on wire from v1 is order of cookies is reversed in the two directions
- v1’s \((c_i, c_r)\):
 - potential collision (unlikely unless malice)
 - Only unlikely because cookies are required to be randomly chosen (but makes stateless choice impossible)
 - “must be unique” (also prevents stateless)
Dead Peers, SA Lifetimes

- Always allowed to forget IKE-SA and all child-SAs at any time (what you’d do if you crash)
- Unauthenticated messages (ICMP, IKE “no such SPI”) raise suspicion about dead peer
- If suspicious (rate-limited) send reliable IKE message. If no reply, then delete SA
- No reason to negotiate lifetime
- If delete, send (reliable IKE) delete notification
- Deleting IKE SA automatically deletes all child-SAs
- Deleting child-SA just deletes that child-SA
Rekeying

- Either side can rekey at any time
- Rekeying of either child-SA or IKE-SA is done by creating new SA, and then deleting the old one
- Rekeyed IKE-SA inherits all the child-SAs
Encryption/Integrity Protection Format

- Complex in IKEv1 and different from anything else, weird IV calculation
- We liked the “encrypt and integrity protect this blob” syntax from the ESP spec better

<table>
<thead>
<tr>
<th>IV</th>
<th>length depends on crypto alg, usually 8 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>encrypted</td>
</tr>
<tr>
<td>padding</td>
<td>encrypted</td>
</tr>
<tr>
<td>pad length</td>
<td>encrypted</td>
</tr>
<tr>
<td>reserved</td>
<td>1 byte, must be zero</td>
</tr>
<tr>
<td>integrity</td>
<td>includes IKE header</td>
</tr>
</tbody>
</table>
Negotiating Security Parameters

• SA payload in IKEv1
 - very complex
 - exponential explosion

• v2:
 - Simpler
 - Allows a proposal with “any of these algorithms for, say, encryption, with any of these algorithms for, say integrity”. Responder chooses one of each type of algorithm when accepting the P
 - I wanted to change the name from “SA” but got outvoted
An IPsec policy thing: say “I want this SA to only carry traffic from these sources to these destinations, using these ports, etc

IKEv1: Responder can just say “no”

IKEv2: We added ability for responder to give subset, or say “single pair”

Also allows sets of ranges of addresses, ports
The Exchange

- Our paper from a year ago recommended
 - have Bob prove ID first
 - and a 3-message exchange for public signature keys
- Decided instead Alice should prove ID first
 - Else trivial to poll to see who is at an address
- Decided 4 msgs better
 - piggybacking child-SA: Alice has better idea of appropriate policy
 - initiator has data to send. If no 4th msg, can’t know when OK to send the data
 - spec easier: reliability burden on initiator
 - can do stateless cookie without extra 2 msgs
The Exchange

Alice

\[g^A \mod p, \text{crypto proposal, } N_i, [\text{certreq}] \]

Bob

\[g^B \mod p, \text{crypto accepted, } N_r, [\text{certreq}] \]

\[K = f(\text{nonces, SPIs, } g^{AB} \mod p) \]

{“Alice”, sig on msgs 1/2, [cert], child}_K

{“Bob”, sig on msgs 1/2, [cert], child}_K

- Bob can optionally refuse 1st message and require return of stateless cookie, extra 2 msgs
- If Alice repeats info in msg 3, can avoid extra 2 msgs
Create Child-SA

Alice

{proposal, nonce, \[g^A \mod p\], TS}

Bob

{proposal, nonce, \[g^B \mod p\], TS}

- proposal = crypto suites, SPI, protocol (ESP, AH, and/or IPcomp)
- TS=description of traffic to be sent
- Derived keys=function of IKE keying material plus nonces in this exchange, plus output of optional Diffie-Hellman
Variants

• Now that spec written, easy to modify
• The exchange is easily changed
• Things to consider
 - Bill Sommerfeld’s “birth certificate”
 - Different keys in the two directions for IKE
 - Specifying encryption/integrity format explicitly
 - Making stateless 4-message exchange
 - Preshared secret keys...weak secrets (SRP)?