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Abstract

This paper introduces a new methodology for crvptanalysis of block ciphers.
The principle is based on a new measure of linearity and effectively applicable
to Data Encryption Standard (DES). We give an explicit description of the
best linear approximate expression and its approximate probability for DES
and develop our analysis into the first successful known-plaintext attack faster
than an exhaustive key search. As a result, DES is breakable with 2° random
known-plaintexts and the corresponding ciphertexts. Moreover, this method
enables us to take the initial step toward a ciphertexts-only attack of block
ciphers.
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1 Introduction

Data Encryption Standard (DES) [6], the first digital cipher whose structure was
made public officially, is widely used as an international standard of cryptosystems
for civilian applications, and generally accepted as an excellent model of a block
cipher. At the same time, discussions on security of DES have been also active since
the first appearance. The adequacy of the 56-bit key length, for example, has been
the subject of controversy, and the secrecy of design criteria of S-boxes has provoked
a great deal of public interest. Cryptanalysis of DES, especially study of S-boxes, has
been a main research topic on block ciphers accordingly.

One of successful approaches to analysis of S-boxes is an observation of how chang-
ing input bits affects output bits. The first paper of cryptanalysis of DES [4] reported
many remarkable characteristics of S-boxes including the fact that changing one input
bit results in changing at least two output bits. Desmedt, Quisquater and Davio [3]
generalized these criteria to obtain several new properties about relationship between
various input changes and the corresponding output changes. To extend these local
properties of S-boxes to the entire cipher structure, however, one had to wait for
Differential Cryptanalysis by Biham and Shamir [1].




Differential Cryptanalysis paid attention to the probability that equation SBOX (z@®
Az) = SBOX(z) & Ay holds for randomly given z, where Az and Ay denote fixed
input and output differences, respectively. They thereby extended the local proba-
bilistic feature of S-boxes to the entire cipher structure and gave an explicit description
of statistical relations between plaintext differences and ciphertext differences. More-
over, they developed this principle into a chosen-plaintext attack, and finally showed
that DES is breakable with 247 chosen-plaintexts and the corresponding ciphertexts
[2], which was the first successful attack faster than an exhaustive key search.

On the other hand, another noteworthy approach to analysis of S-boxes is an ob-_
servation of linearity. Hellman et al. [4] and Shamir [8] pointed out strong correlation
that holds between certain input bits and output bits of some S-boxes, which indi-
cated that they are partially close to linear functions. Rueppel [7] studied linearity of
S-boxes from a viewpoint of Walsh transformation of boolean functions, and-showed
that in some aspects S-boxes are remarkably close to linear functions. It has been
unknown, however, whether such linearity of S-boxes is effective in cryptanalysis of
DES.

This paper introduces a new measure of linearity of S-boxes. We concentrate our
attention on the probability that equation Biese 2[i] = Bjesy SBOX(2)[j] holds for
randomly given z, where éx and dy denote fixed subsets of input bits and output
bits, respectively, and z[] is defined as the i-th bit of z. We thereby extend the
local linearity of S-boxes to global linearity of the entire cipher structure, and reach
non-trivial statistical linear relations between plaintext bits and ciphertext bits. The
first aim of this paper is to give an explicit description of the best linear approximate
expression and its approximate probability for DES.

We then carry out a known-plaintext attack of DES by regarding the linear ap-
proximate expression as a probabilistic linear equation whose unknown variables are
secret key bits. As a result, we show that DES is breakable with 2*° random known-
plaintexts and the corresponding ciphertexts, which is the first successful known-
plaintext attack faster than an exhaustive key search. Our attack procedure requires
no memory to preserve given plaintexts or ciphertexts.

Another important aspect of this approach is that we can derive the secret key
using information on only several bit locations of plaintexts and ciphertexts, and
moreover the information may be probabilistic. In other words, even if no plaintext
bit is given explicitly, the attack can be successful using statistical information about
the plaintexts. This observation finally leads to a ciphertexts-only attack of block
ciphers. We can even show a situation in which DES is breakable by a ciphertexts-
only attack faster than an exhaustive key search.

For convenience of software implementations, this paper introduces a new num-
bering rule to indicate bit positions, which is defined in chapter 2. All tables of DES
are thereby rewritten and illustrated in annex A. Chapter 3 describes general princi-
ples of Linear Cryptanalysis in the form widely applicable to block ciphers. Chapter
4 studies linear approximation of S-boxes and chapter 5 extends the local properties
of S-boxes to the entire cipher structure. Several useful approximate tables obtained




here are summarized in annexes B and C. Chapter 6 applies our knowledge to a

known-plaintext attack of DES and provides various experimental results, where all
computer programs were implemented and executed by C and assembly language on
HP9735 computer (PA-RISC 99MHz). As for a ciphertexts-only attack, which is an-
other important consequence of Linear Cryptanalysis, we will describe the detail in
the subsequent paper [5].

2 INotations and Preliminaries

-

Figure 1 and Figure 2 illustrate DES cipher and its F-function, respectively. Since

the scope of this paper is a known-plaintext attack using random plaintexts, it 1s

not necessary to consider the initial permutation /P and the final permutation Ip—1,

which are one-to-one maps. We hence refer to 64-bit data after the I P as the plaintext
and 64-bit data before the TP~ as the ciphertext. We also call 56-bit data after the

P(C-1 the secret key, since the essentially secret information consists of 56 bits.

We here introduce a new numbering rule to indicate bit positions; we define the
right most bit of each symbol as the zero-th bit, which is the lowest bit. Consequently,
the left most bit or the highest bit of a plaintext is referred to as the 63rd, and the
left most bit of a subkey is represented as the 47th. This disagrees with conventional
numbering rule of DES, but is convenient for software implementations. To avoid
confusion, we do not change the numbering of S-boxes. Complete tables of DES

rewritten by this rule are listed in annex A.

Throughout this paper, the following notations are used unless otherwise in-

dicated, where the suffix r that represents the round will be omitted in round-
independent descriptions.

[)
-
Py
Cy
Pr
L
X,
K
K.

F (X, K,)

S (3)
Alr]

Alij. ...

k]

The 64-bit data after the [ P; the plaintext.
The 64-bit data before the I P™'; the ciphertext.
The upper 32-bit data of P.

The upper 32-bit data of C.

The lower 32-bit data of P.

The lower 32-bit data of C.

The r-th round 32-bit subdata.

The 56-bit data after the PC-1; the secret key.
The r-th round 48-bit subkey.

The r-th round F-function.

The a-th S-box.

The 7-th bit of symbol A.

Al & AlJ] = ... & A[K]




3 Introduction to Linear Cryptanalysis

This chapter is intended to describe general principles of Linear Cryptanalysis in
the form widely applicable to various cryptosystems, and introduce an application to
cryptanalytic attack of DES. The first approach to Linear Cryptanalysis is to find
the following “effective” linear approximate expression which holds with probability

p # 1/2 for randomly given plaintext P, the corresponding ciphertext C' and fixed
secret key A :

P[?;l,ig, ooy Za] fae) C[jlaj').a ..,jb] = I{[k’], kz, vy kc]a (1)‘\

where 21,19, .., 24, J1, J2, -+, Jb and ki, k2, .., k. denote fixed bit locations.

Since both sides of equation (1) essentially represent one-bit information, the mag-
nitude of |p—1/2| expresses the effectiveness. Once we succeed in reaching an effective
linear approximate expression, it is possible to derive one key bit K[ky, k2, .., k.| from
given known-plaintexts and the corresponding ciphertexts by the following simple
algorithm based on maximum likelihood method:

Algorithm 1

Stepl Let T be the number of plaintexts such that the left side of equation (1) is
equal to zero.

Step2 If T'> N/2 (N denotes the number of plaintexts),
then guess K'[k1, ky,..,k;] =0 (when p > 1/2) or 1 (when p < 1/2),
else guess K[ki,k;,..,k.] =1 (when p > 1/2) or 0 (when p < 1/2).

The success rate of Algorithm 1 can be determined by N and p, and clearly increases
when N or |p — 1/2| does. We now refer to the most effective linear approximate
expression (l.e. |p — 1/2| is maximal ) as the best expression and its probability as
the best probability, respectively. Then our main concern is the following:

Problem 1 How to find effective linear approximate expressions.
Problem 2 Au explicit description of the success rate of Algorithm 1 by N and p.
Problem 3 A search for the best expression and a calculation of the best probability.

The first aim of this paper is to solve these problems on DES. For this purpose, we
begin by studying linear approximation of S-boxes in chapter 4. We introduce a new
measure of linearity of S-boxes, where the resultant distribution tables, listed in annex
B, will play an essential role in our story. Chapter 5 extends these local properties
of S-boxes to the entire cipher structure and reaches effective linear approximate
expressions of DES. In this stage, the success rate of Algorithm 1 is also discussed. As

for the search problem, which has been solved by a computer program, we summarize
the results in annex C.




4 Linear Approximation of S-boxes

Our first approach to linear approximation of S-boxes is to investigate correlation
between an input bit and an output bit for random input values. It is easily seen,
for example, that the third input bit of the third S-box agrees with the first output
bit 38 times out of 64 input patterns, which indicates that equation S3(z)[1] = z[3]
holds with probability 38/64 = 0.59 for randomly given z. More generally, it is useful
to treat not only one bit position but also an XORed value of several bit positions.
This leads to a new measure of linearity of S-boxes as follows:

Definition 1 For given S-boz S, (¢ = 1,2,..,8), 1 < a <63 and 1 < B < 15, we
define NS,(a, B) as the number of times out of 64 input patterns of S,, such that an
XORed value of the input bits masked by o agrees with an XORed value of the output
bits masked by 3; that is to say, : o

5 3

NSu(er8) € #{zl0 <z < 64, (Dlals]oals))) = (DS e BN}, (4)

s=0 t=0

where the symbol o denotes a bitwise AND operation.

Example 1 (Shamir [6])
NSs(16,15) = 12. (5)

When NS.(a, 3) is not equal to 32, we may say that there is a correlation between
input bits and output bits of S,, and magnitude of |[NS,(a, 8) — 32| represents the
effectiveness. Equation (5) tells us that the fourth input bit of S5 agrees with an
XORed value of all output bits with probability 12/64 = 0.19. Consequently, taking
account of the E expansion and the P permutation in F-function, we see the following
equation which holds with probability 0.19 for fixed K and randomly given X:

X[15] @ F(X, K)[7,18,24,29] = K[22]. (6)
Equivalently. the following equation holds with probability 1 — 0.19 = 0.81.
X[15] & F(X, KN)[7,18,24,29] = K[22] & 1. (7)

The situation above is illustrated as Figure 3. A similar illustration will be employed
i the rest of this paper. Annex B shows complete distribution tables of S-boxes,
where the vertical and the horizontal axes indicate o and f, respectively, and each
entry denotes N.5,(a, 8) —32. Note that since equation (5) is the most effective linear
approximation of all S-boxes (i.e. [N S, (e, ) — 32| is maximal ), equation (6) or (7)
is the best linear approximation of F-function. The following Lemma is now trivial
from the definition of S-boxes.

Lemma 1
(1)  NS.(a,B) is even.
(2)  Ifa=1,32 or 33, then NS,(a,8) = 32 for all S and 3.




The next aim of this paper is to give a practical method for known-plaintext attack
of n-round DES. To achieve this purpose, we make use of the best expression of (n-
2)-round DES; in other words, we approximate (n-2) F-functions from the second
round to the (n-1)th round, while leaving the first and the final rounds unchanged.
(onsequently, we obtain the following type of linear approximate expression of n-
round DES which contains subkeys K; and K, and holds with the best probability
of (n-2)-round DES:

P[il, ig, s 53 Za] @ C[jl,jg, ..,jb] @:\‘ F](PL, ]\,1)[?11, Uy, ..,Ud] ‘:Tj F‘n(C(]_,7 ]{n>[’l)1,’02, ' Ue,}
= Kki. ks, .. ko). (2)

If one substitutes an incorrect subkey value for K; or K, in equation (2), then the ef-
fectiveness clearly decreases. It is hence possible to derive K, K, and K[k;, ka, .., k)
from given known-plaintexts and the corresponding ciphertexts by the following al-
gorithm based on maximum likelihood method, which generalizes Algorithm 1:

Algorithm 2

Stepl Let K, (8 =1y 2y e} BT K, (j =1,2,...) be possible candidates for K;
and A, respectively. Then for each pair (A; (i), K,l(j)), let 7T;; be the number
of plaintexts such that the left side of equation (2) is equal to zero.

Step2 Let T,z be the maximal value and Tpi, be the minimal value of all T; ;’s.

o If |Thoe—N/2| > |Toin—N/2|, then adopt the key candidate corresponding
t0 Tyuaz and guess K[ki, ky, ... k] = 0 (when p > 1/2) or 1 (when p < 1/2).

o If|Thaz—N/2| < |Tonin—N/2|, then adopt the key candidate corresponding
t0 Tomin and guess K[ky. kg, ... k] =1 (when p > 1/2) or 0 (when p < 1/2).

The success rate and the computational complexity of Algorithm 2 will be discussed
in chapter 6. We have implemented this method with computer software and suc-
ceeded in experimentally breaking DES up to 12 rounds. These results and further
application to the full 16-round DES are also described in the same chapter.

It should be noted that Linear Cryptanalysis is also applicable to a ciphertexts-
only attack. Consider, for example, the case where we approximate (n-1) F-functions
from the first round to the (n-1)th round, while the last round unchanged. We then
obtain the following linear approximate expression of n-round DES which holds with
the best probability of (n-1)-round DES:

P['Lllzla} *‘9 C[J].]]_/]b] & Fn(CL7]{1L)[U17v2: ..,’l)e} = 1\,[]1,1 kz, ,kc] (3)

Now assuming that the probability of P[i;, %3, ..,1.] = 0 is not equal to 1/2, then even
if we eliminate the term P[iy, %y, .., 7, from equation (3), the resultant expression may
be still effective. This suggests that K, and K[k, ks, .., k] can be derived from only
statistical information about the plaintexts. The detailed discussion of this type of
attack will appear in the subsequent paper [5].




5 Linear Approximation of DES Cipher

This chapter provides several examples to show how to extend linear approximations
of F-function obtained in the preceding chapter to the entire cipher structure of DES.
We will see that Piling-up Lemma (Lemma 3) is a key formula which connects local
approximate probability with global approximate probability. We also describe the
best expression and the best probability of DES found by a computer search.

5.1 3-round DES -

The first example is 3-round DES (Figure 4). By applying equation (6) to the first
round, we have the following equation which holds with probability 12/64:

X,[7,18,24,29] & PylT, 18,24,29] & PL[15] = K4 [22]. - (8)
The same 1s true of the final round:
X,[7,18,24,29] ¢ CylT, 18,24,29] & CL[15] = K3[22]. (9)

(‘onsequently. we obtain the following linear approximate expression of 3-round DES
without any intermediate value by canceling the common term X:

Pu[7,18,24,29] @ Cx[T7,18,24,29] & PL[15] @ CL[15] = K:1[22] & Ka[22].  (10)

Equation (10) holds if and only if both of equations (8) and (9) hold, or neither of
them hold; hence the probability is (12/64)% + (1 —12/64)* = 0.70 for random known-
plaintext P and the corresponding ciphertext C'. Since equation (6) is the best linear
approximation of F-function, equation (10) is the best expression of 3-round DES.
We can now apply Algorithm 1 to equation (10) and derive K;[22] @ K3[22]. The
success rate of Algorithm 1 is shown by the following lemma, whose proof is easily
given by approximating binary distribution with normal distribution:

Lemma 2 Let N be the number of given random plaintexts and p be the probability
that equation (1) holds. Assuming that |p— 1/2| is sufficiently small, the success rate

of Algorithm 1 s
o5 1 2.
—-z¢/2 7.
€ dr. 11

_/_2,/1\'@-1/21 /27 ( )

Corollary 1 With the same assumption as Lemma 2, the success rate of Algorithm
I depends on v/ N|p — 1/2| only.

Table 1 shows a numerical calculation of expression (11).

N Mp—1/272 [ 3lp=1/217% | Ip—1/2]77
Success Rate 84.1% 92.1% 97.7%
Table 1. The success rate of Algorithm 1.




5.2 5-round DES

The next example is 5-round DES (Figure 5). In this case, we apply equation (6) to

the second round, and the following equation, derived from NS;(27,4) = 22, to the
first round:

X[27,28,30,31] & F(X, K)[15] = K[42, 43,45, 46]. (12)

Then we have the following equation which holds with probability (12/64)(22/64) +
(1 —12/64)(1 —22/64) = 0.598:

X[7,18,24,29] & Py[15] & PL[7,18,24,27,28,29, 30, 31]
= K1[42,43,45,46] & K,[22). (13)

The same is true of the fourth and the final rounds:

X3[7,18,24,29) & Cy[15] & CL[7,18, 24,27, 28,29, 30, 31]
= K,[22) & K;[42,43,45,46]. (14)

Consequently, we see the following linear approximate expression of 5-round DES
without any intermediate value by canceling the common term Xs:

Py(15) & PL[T, 1@,24 8,29,30,31] & Cy[15] @ CL[7,18,24,27,28,29,30,31]
= K,[42,43,45,46] & ] K4[22] & K5[42,43, 45, 46). (15)

The probability that equation (15) holds is 0.598%+(1—0.598)% = 0.519. According to
Lemma 2, if [0.519 — 1/2|7? = 2750 random known-plaintexts and the corresponding
ciphertexts are available, one can guess the right side of the equation (15) with the
success rate 97.7%. We will later see that this equation is the best expression of
5-round DES.

In the rest of this paper, we will establish various linear approximate expressions
of the entire cipher structure by piling up linearized F-functions round by round. The
following lemma gives a handy method to calculate global approximate probability of
the entire cipher using local approximate probability of S-boxes or F-functions. The
proof is easily given by induction on n:

Lemma 3 (Piling-up Lemma) Let X; (1 <1 < n) be independent random vari-
ables whose values are 0 with probability p; or 1 with probability 1 — p;. Then the
probability that X1 & X2 & ... 5 X, =0 1is

1/2 42" f_[(pi ~1/2). (16)

=1
Example 2 The probability that equation (15) holds can be also calculated as

1/2 + 2%(12/64 — 1/2)*(22/64 — 1/2)* = 0.519. (17)




5.3 Extension to arbitrary round DES

To establish linear approximate expressions of arbitrary round DES, we start with
the following 5-round approximation (Figure 6):

X1[7,18,24,29] & X5[7,18,24] = K,[22] & Ks[44] & K,[22], (18)

which can be obtained by applying (6) to the second round, and the following two
equations, derived from N.S7(4,4) = 30 and NS5(16,14) = 42, to the third and the
fourth rounds, respectively:

X[29] @ F(X,K)[15] = K[44], (19)
X[15] & F(X, K)[7,18,24] = K[22]. (20)

According to Piling-up Lemma, equation (18) holds with probability 1/2—+~2‘2 20/64

(—2/64)(10/64) = 0.506. Although this probability is worse than that of the preceding
5-round approximation, equation (18) contains X; and X5 only, and hence we can
use this relation repeatedly to reach linear approximate expressions of arbitrary round

OO

DES. We now show an example of 16-round DES (Figure 7), where we approximate
each round as follows:

The first round: equation (21),
The 3rd, 4th and 5th rounds: equation (18).,
The Tth, 8th and 9th rounds: equation (18),
The 11th, 12th and 13th rounds: equation (18),
The 15th round: equation (6).

The 16th round: equation (12).

Equation (21) is derived from N S5(34,14) = 16 as follows:
X[7,18,24) & F(X, K)[12,16] = K[19,23]. (21)

As a result, we obtain the following linear approximate expression of 16-round DES
without any intermediate value:

Pul7.18,24] & P,[12,16] & Cx[15] ® CL[7,18,24,27,28,29,30, 31]
= Ki[19,23] & Ka[22] & Ka4d] & Ks[22] & K:[22] & Kaldd] © Ko[22] &
](11[22} (e, AlZ[ ] >, 1&13[22] D A’15[ ] .[\ [42 43 45 46] (22)

According to Piling-up Lemma again, equation (22) holds with probability 1/2 +
211(=20/64)%(—10/64)(—2/64)%(10/64)3(—16/64) = 1/2 — 1.49 x 27%* for random
known-plaintexts and the corresponding ciphertexts. Lemma 2 tells us that the right
side of equation (22) can be derived with the success rate 97.7% when (1.49x2724)7% =
1.80 x 26 known-plaintexts are available.




5.4 The best expression and the best probability of DES

We can prove that the linear approximate expressions illustrated in Figures 4, 5 and 7
give the best expressions of each round-reduced DES. Annex C summarizes a complete
table of the best expression and the best probability of DES up to 20 rounds, where
each entry describes, from left to right, the number of round, the best expression, the
best probability, and the linear approximation of F-function used in each round. The
sign ‘-” shows that no approximation is needed in the round. It should be noted that
there are two best expressions in some cases, which are indicated by sign ‘x’ in the
table, because DES has “round symmetry”: in other words, the other best expression~
is easily obtained by exchanging P and C and also exchanging K; and K,41-;. The
results in annex C have been obtained by a computer search, where the program
consists of 350 lines with C language and has completed the search within a minute.
We remark that all entries in annex C are established by approximating at most one
S-box 1n each round as a result, but for the complete search, we have to take into
cousideration the case where two or more S-boxes are approximated in a single round.

According to annex C, 16-round DES has two best equations, each of which holds
with probability 1/2 — 1.49 x 272, We can hence derive two subkey bits with the
success rate (97.7)% = 95% using |1.49 x 272%|72 = 1.80 x 2%¢ random known-plaintexts
and the corresponding ciphertexts. In the next chapter, we will present more effective
method to obtain more key bits at a time.

We close this chapter with showing an interesting property of F-function which can
appear when we approximate two S-boxes in a single round. Consider the following
two linear approximations of F-function:

X[3,4) % F(X, K)[0.10,20,25] = K[6,7], (23)
X[3.4] ¢ F(X,K)[5.11,27] = K[4,5]. (24)

These equations are derived from N.S-(3,15) = 40 and NSs(48,13) = 20, respec-
tively, and hence we have the following equation which holds with probability 1/2 +
2(8/64)(—12/64) = 0.453 by canceling the common term X:

F(X,K)[0,5,10,11,20,25.27] = K[4,5,6,7), (25)

The left side of equation (25) does not contain any input information on F-function.
In other words, assuming that input data X is random, we can derive one key bit
K[4,5,6,7] from only output information without any input information. According
to Lemma 2, the success rate of this derivation is 97.7%, if one has (0.5 — 0.453)7% =
460 output texts. There are essentially eight relations of this type, of which equation
(25) attains the best probability. We can establish linear approximate expressions
of arbitrary round DES by piling up equation (25) in every other round (Figure 8),
though the resultant global probability is worse than that of annex C. It is also
possible to show a known-plaintext attack of 16-round DES faster than an exhaustive

key search using this expression, and we summarize the detail in annex D.




6 Known-Plaintext Attack of DES Cipher

We are now ready to apply our knowledge to known-plaintext attack of DES cipher.
This chapter makes a detailed description of a practical method to derive the whole
of the secret key bits from random known-plaintexts and the corresponding cipher-
texts. We show various results of computer experiments to break reduced DES up to
twelve rounds, where an implementation of Algorithm 2 will play an essential role in
our attack. Another purpose of this chapter is to establish global theory of Linear
Cryptanalysis; we prove a key lemma (Lemma 4), which enables us to predict the_
attack success rate of larger round DES using experimental results of smaller round
DES. As a result, we will finally reach a known-plaintext attack of the full 16-round
DES faster than an exhaustive key search.

6.1 8-round DES

The first example is 8-round DES. As mentioned in Chapter 3, we begin by describing
8-round DES using the 6-round best expression; that is to say, we approximate six F-
functions from the second round to the seventh round, while leaving the first and the
final rounds unchanged (Figure 9). Consequently, we obtain the following expression
of 8-round DES which holds with the 6-round best probability 1/2 + 1.95 x 2719 for
random known-plaintexts and the corresponding ciphertexts (see annex C for detail):

Py[7.18,24] @ Fy(PL, K1)[7,18,24] & Cy[15] @ CL[7,18,24,29] @ Fs(C1, Ks)[15]
= K3[22) & K, 44] & K;[22] & K-[22). (26)

Our purpose is to solve equation (26) using Algorithm 2 and derive some of the subkey
bits. Let us now consider how many text bits and subkey bits are required to calculate
the left side of equation (26). A careful observation tells us that the following 25 bits
essentially affect the left side:

e (Known) text information (13 bits): Pr[11] ~ PL[16], CL[0], Cr[27] ~ Cr[31],
Pu[7,18,24] o Cy[15] & CL[7, 18,24, 29,

e (Unknown) subkey information (12 bits): K;[18] ~ K;[23], Ks[42] ~ Ks[47].

It should be noticed that the term Py[7,18,24] & Cy[15] % Cr[7, 18, 24, 29] represents
one-bit information. We refer to these known 13 bits and unknown 12 bits as the
effective text bits and the effective key bits of equation (26), respectively. Under this
terminology, we can generally say that Algorithm 2 is a method to derive the effective
key bits and the right side of equation (2) from information on the effective text bits.
Note again that we do not need any text information outside the effective text bits.

There are several possible ways to realize Algorithm 2. We here present a practical
implementation which does not require any memory to preserve given plaintexts or
ciphertexts. In the following story, we first count text frequency on the effective text

bits and then count key frequency on the effective key bits.




Algorithm 2-A

[Data Counting Phase]

Step 1 Prepare 2'° counters U; (0 < ¢ < 2'®) and initialize them by zeros, where ¢
 corresponds to each value on the 13 effective text bits of equation (26).

Step 2 For each plaintext P and the corresponding ciphertext C', compute the value
‘2> of Step 1 and count up the counter U; by one.

[Key Counting Phase] =

Step 3 Prepare 2!? counters T; (0 < j < 2'?) and initialize them by zeros, where j
corresponds to each value on the 12 effective key bits of equation (26).

Step 4 For each ;" of Step 3, let T; be the sum of U;’s such that the left side of
(26), whose value can be uniquely determined by 7 and j, is equal to zero.

Step 5 Let T, be the maximal value and T, be the minimal value of all 7}’s.

o If|Thaz — N/2| > |Toin — N/2|, then adopt the subkey value ‘77 corre-
sponding to Tpaz and guess that the right side of equation (26) is 0.

o If |Tee — N/2| < |Toinn — N/2|. then adopt the subkey value ‘5’ corre-
sponding to T, and guess that the right side of equation (26) is 1.

In general, the computational complexity of this method is O(N) + O(21**%), where
t and k denote the number of the effective text bits and the number of the effective
key bits, respectively. The size of counters to be required is 2° + 2 = L5 % 259,

We have implemented Algorithm 2-A with computer software, which is described
by C and assembly languages. Our program solves equation (26) while generating
random plaintexts and enciphering them. The experimental results on the success

rate and the computing time are as follows, where each entry shows an average value

of 1000 trials:

N 218 219 220
Success Rate 49.4% 93.2% 100%
Running Time 2.4sec 3.0sec 4 2sec

Table 2. The results of our experiments to solve equation (26).

This makes 13 subkey bits. To derive more subkey bits, we make use of “round
symmetry” of DES; that is to say, we obtain another expression of 8-round DES
which holds with the same probability as equation (26) by exchanging P and C and
also exchanging K; with Ag_;.

= Ko[22] & K;[44] & K4[22] 9 K,[22]. (:

J

(8]
-1

)




e Effective text bits (17 bits): P[11] ~ PL[16], CL[15] ~ C[24],
Py[7,18,24,29) ® Cy[12,16] @ Cy[7, 18, 24,

o Effective key bits (18 bits): K;[18] ~ K;[23], Kg[24] ~ K3[35].

Although it is possible to derive 19 subkey bits with 2'7 + 2® = 1.5 x 2!® counters
by the same method as Algorithm 2-A, the complexity of Step 4 would be too large.
We hence provide an alternative approach as follows, which solves equations (26) and

(29) at a time and reduces the computational complexity:

Algorithm 2-B h

[Data Counting Phase 1]

Step 1 Prepare 2'° counters U; (0 < 7 < 2'%) and 2'7 counters V; (0 < j < 27),
and initialize them by zeros, where ¢ and j correspond to each value on the 13
effective text bits of equation (26) and the 17 effective key bits of equation (29),
respectively.

Step 2 For each plaintext P and the corresponding ciphertext C, compute ‘2’ and
‘)’ of Step 1, and count up the counters U; and V; by one.

[Key Counting Phase 1]

Step 3 Solve equation (26) using [;’s. We then have the 12 effective key bits and
one subkey bit of the right side of equation (26).

57

In this stage, we are able to calculate the exact value of Fy(Pp, K;). It is hence
possible to regard the effective text bits and the effective key bits of equation
(29) essentially as follows:

o Effective text bits (11 bits): Cp[15] ~ CL[24],
Fy(Pr, K)[7,18,24,29) & PulT, 18,24, 29]
&Cy[12,16) & CL[T./ 18, 24],

o Effective key bits (12 bits): K3[24] ~ Ks[35].

This enables us to “pack” V;’s into the following new counters W:

[Data Counting Phase 2]

Step 4 Prepare 2'' counters Wy (0 < k < 2'') and initialize them by zeros, where k
corresponds to each value on the 11 effective text bits above.

Step 5 For each *;7 (0 < 7 < 2'7), compute ‘k’ of Step 4, whose value is uniquely
determined by 7, and add V; to W.

[Key Counting Phase 2]

Step 6 Solve equation (29) using W,’s. We then have the 12 effective key bits above
and the right side of equation (29).




The solution of this equation gives us K7[42] ~ K;[47], Kg[18] ~ K5[23] and one
subkey bit of the right side of equation (27). Note that we can carry out the two
procedures to solve equations (26) and (27) at the same time. In this stage, we have
26 subkey bits, which correspond to the following 23 secret key bits, since three subkey
bits are duplicate according to the key-scheduling structure:

0,1,3,5,8,11,14,15,18, 20,23, 24,28, 31, 37,
38,41,44,46,()0,03,04, 240228266 52.

The remaining 56 — 23 = 33 secret key bits are now easily obtained by an exhaustive.
search. Our computer program, which occupies 400KB memory in running, realizes
the story above to derive the whole of the 56 secret key bits from random known-
plaintexts and the corresponding ciphertexts. The results of our experiments are as
follows, where the second row denotes the computing time to derive the first 23 secret
key bits, and the third row indicates the total running time including an exhaustive
search for the remaining 33 secret key bits:

N 218 219 220
Success Rate 25.4% 86.5% 99.9%
Running Time (1) 4.3sec 5.0sec 6.4sec
Running Time (2) 300min 300min 300min

Table 3. The results of our experiments to break S-round DES.

Next, we show an alternative implementation of Algorithm 2 to break 8-round DES.
The purpose of this approach is to reduce the computing time in return for increase
of the number of plaintexts to be required. We begin with the following linear ap-
proximate expression of 6-round DES:

PL[7.18,24,29] = Cy7,18,24] & C1[12.16]
1[ @1{[44_A4[]  Ko[19,23). (28)

This equation is derived from the form “-ACD-E” (see notations in annex C), and
holds with probability 1/2+2%(—20/64)(—2/64)(10/64)(—16/64) = 1/2—1.56 x 279,
Our search program, described in Chapter 5, has found that equation (28) is the
second best expression of 6-round DES. We hence obtain the following expression of
8-round DES by applying equation (28) form the second round to the seventh round,
while leaving the first and the final rounds unchanged (Figure 10):

Py(7,18,24,29] & Fi(Pp, K1)[7,18,24,29] & Cy[12,16] & CL[7,18,24] @
F3(Cp, Ks)[12,16]

= K3[22] & K, [44] & K;[22) & K-[19,23]. C(29)

Let us now consider how many text bits and subkey bits essentially affect the left side

of equation (29). We easily see that equation (29) has 17 effective text bits and 18
effective key bits as follows:




We now have 26 subkey bits in all. Next, according to round symmetry of DES again,

we obtaln another second best expression of 8-round DES, which enables us to derive
26 more subkey bits:

Cul7,18,24,29) @ Fa(CL, Ks)[7,18,24,29] & Py[12,16] & P1[7,18,24] &
Fi(Pp, K7)[12,16)
= Kg[22] @ K5[44] & K4[22] & K»[19,23]. (30)
Note that we can carry out the two procedures to solve equations (29) and (30) at the

same time. In this stage, we have 52 subkey bits, which correspond to the following”
38 secret key bits, since 14 subkey bits are duplicate according to the key-scheduling

structure:
0,1,3,5, 8,11,14 15,18,20,23, 24, 25,28, 29, 30, 31
32,34,35,36,37,38,39,40,41, 42,43 44.46.47,
48,1 03 53.54, 287213, 26226 26 % 52.

The remaining 56 — 38 = 18 secret key bits are now easily obtained by an exhaustive
search. Our computer program, which occupies IMB memory in running, realizes the
story above to derive the whole of 56 secret key bits from random known-plaintexts
and the corresponding ciphertexts. The results of our experiments are as follows,
where the second row denotes the computing time to derive the first 38 secret key
bits, and the third row indicates the total running time including an exhaustive search

for the remaining 18 secret key bits. Each entry shows an average value of 1000 trials:

N -218 219 220
Success Rate 8.7% 63.0% 96.2%
Running Time (1) 5.1sec 6.4sec 8.6sec
Running Time (2) 6.3sec 7.6sec 9.8sec

Table 4. Another results of our experiments to break 8-round DES.

6.2 12-round DES

Our next example is 12-round DES. The main procedure to break 12-round DES is
the same as the case of 8-round DES. We begin by describing 12-round DES using
10-round best expression; that is to say, we approximate ten F-functions from the
second round to the the eleventh round, while leaving the first and the final rounds
unchanged (Figure 11). Consequently, we obtain the following expression of 12-round
DES which holds with the 10-round best probability 1/2 — 1.53 x 27'® for random
known-plaintexts and the corresponding ciphertexts (see annex C for detail):

Pyl7.18,24,29] & Fy(Py, K1)[7, 18,24,29] & Cy[15] & CL[7,18,24,29] &
Fi2(Cp, 1\’12)[1 )}
= 1{;3 {22} o A’4 {44} e [X’5[22] & [{7 [22] & [{8 {44] + [\’9{22} ] ]X'H[Q?‘] (31)




The effective text bits and the effective key bits of equation (31) are as follows:

o Effective text bits (13 bits): Pp[11] ~ PL[16], Cp[0], CL[27] ~ CL[31],
Py(7,18,24,29] & Cy[15] @ CL[7, 18, 24, 29],

o Effective key bits (12 bits): K1[18] ~ 11[23], K1,[42] ~ K12[47].

We can thus derive the 12 effective key bit: and one subkey bit of the right side of
equation (31) with 212 4212 = 1.5 x 213 cou 1ters. We have implemented Algorithm 2

with computer software, which program yi-lded the following results on the success_
rate and the computing time, where each e 1try shows an average value of 100 trials:

N 230 231 232
Success Rate 17% 55% 97%
Running Time H6min 112min 224min

Table 5. The results of our expe-iments to solve equation (31).

Next, according to round symmetry of DE, we have another expression of 12-round
DES which holds with the same probabilit - as equation (31):

ChlT,18,24,29] & Fia(Cr, Kno)[T,10.24,29] & Py[15] @ PL[7,18,24,29] &
Fl(PL,]{l)DS]
= Kuo[22] & Ko[4d] & Ks22] @ Ko[22] & Kslad] & Ku22] & ka2, (32)

The solution of this equation gives us Ky [12] ~ Kq[47], K12[18] ~ K15[23] and one
subkey bit of the right side of equation (32). Note that we can carry out the two
procedures to solve equations (31) and (32) at the same time. In this stage, we have
26 subkey bits, which correspond to the foll owing 25 secret key bits, since one subkey
bit is duplicate according to the key-schedul; ling structure:

0,3,4,8,11,14,16,18, 22, 24,26, 30, 31, 34, 38, 39,
41,44,46,49,50,52,54, 2 215245, 138176 20

The remaining 56 — 25 = 31 key bits are now easily obtained by an exhaustive search.
Our computer program, which occuplies 400KB memory in running, derives the whole
of the 56 secret key bits from random known-plaintexts and the corresponding cipher-
texts. The result of our experiments are as follows, where the notations are the same

as Tables 3 and 4.

N 530 531 532
Success Rate 5% 31% 94%
Running Time (1) 63min 125min 250min
Running Time (2) 169min 225min 337min

Table 6. The results of our experiments to break 12-round DES.
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6.3 16-round DES

The final section of this chapter treats 16-round DES. The main story to break 16-
round DES is the same as the case of 8-round or 12-round DES. As usual, we begin
by describing 16-round DES using the 14-round best expression; we approximate
fourteen F-functions from the second round to the fifteenth round, while leaving the
first round and the final round unchanged (Figure 12). Consequently, we have the
following expression of 16-round DES which holds with the 14-round best probability

1/2 —1.19 x 272! for random known-plaintexts and the corresponding ciphertexts:

-

C T 8 24,29] & FlG(CL [\16)[ ]
| & \’7[‘_2}_—21&8{44]%A [ 2] ¢ K11[22] & Kq12[44] &
(33)

Py[7,18,24] & Fy(Pr, K,
= R3(22] @ K44 ]% 5[22
Alg[)Z} ﬁ[‘ ]X15[2 ]

The effective text bits and the effective key bits of equation (33) are as follows:

o Effective text bits (13 bits): Pr[11] ~ Pr[16], Cr[0], CL

[27] ~ CL[31],
Py(7,18,24] ¢ Cy[15] & CL[T,

18,24, 29],

e Effective key bits (12 bits): K,[18] ~ K[23], Ai6[42] ~ K16[47].

Applying Algorithm 2 to equation (33) with 212 4+ 2% = 1.5 x 2% counters, we obtain
the 12 effective key bits and one subkey bit of the right side of equation (33), but the
computer experiment is no longer practical in respect of the computational complexity.
Then our next purpose is to estimate the number of plaintexts to be required for the
successful attack. The remaining part of this chapter is assigned to give a solution of
this problem.

We now consider Lemma 2 again, whose corollary says that the success rate of
Algorithm 1 depends on the magnitude of v/N|p — 1/2| only. This motivates us to
investigate whether similar statement holds for Algorithm 2. To do this, we have
made computer experiments to compare the efficiency of our attack of 8-round DES
with that of 12-round DES. The following table shows the probability that equations
(26) and (31) are solvable with N = alp — 1/2|7% (a = 2,4,8) plaintexts, where p
denotes the 6-round best probability 1/2—1.95x 279 or the 10-round best probability
/2 —1.53 x 271% according as equation (26) or (31):

N 2lp—1/2|7* 4lp—1/2|72 8[p—1/2]2
) N =1.05 x 217 N =1.05 x 218 N = 1.05 % 219
Equati 26
quation (26) 17.9% 53.7% 94.8%
E £ 37" N=172x2¥ | N =1.72x23 N = 1.72 x 231
quation (31) 3% i s

Table 7. The results of our experiments to solve equations (26) and (31).

[t is hence expected that equation (33) is also solvable with high success probability
when 8]|1.19 x 2721|72 = 1.41 x 2*! known-plaintexts are available. In fact, we can
generalize Lemma 2 in the following form:




-

Lemma 4 Let N be the number of given random plaintexts and p be the probability
that equation (2) holds. Assuming that |p —1/2| is sufficiently small, the success rate
of Algorithm 2 depends on uy, Uy, ..., Uq, V1,Vg, ..., Ve, and vV N|p—1/2| only.

Proof. We may assume p > 1/2 and K|k, k2, .., k] = 0 without loss of generality.
Throughout this proof, we use the terms “the effective text bits” and “the effective key
bits” to refer to the text bits and the key bits which affect Fy(Pr, K1)[u1,ug, ..., ug) &
F.(Cp, K,)[v1,v2, ..., ve]. We then define the number of the effective text bits and the
effective key bits as ¢ and k, respectively. Our goal is to give an explicit description_
of the success rate of Algorithm 2. To realize this, we start with several preparations.

Firstly, we define possible events E; and E; (0 < ¢ < 2!) for a pair of a plaintext
F and the corresponding ciphertext C as follows:

E;: The case where the value on the effective text bits is equal to z
and the left side of equation (2) is equal to zero.

E;: The case where the value on the effective text bits is equal to 1,
and the left side of equation (2) is equal to one. '

We remark thiat E;’s and E;’s are exclusive events, and every pair of P and C belongs
to one of E;’s or E;’s. The probability that E; and E; take place is represented by p;
and 7;, respectively, where we may suppose that p; = p/2% and p, = (1 — p)/2".

Next, we define a set Bas {7 |0 <7< 2° }, and introduce a subset B; of B for
each 7 (0 < j < 2%) as follows:

Bi ¥ {i]0<i<?. F(iy, K)ui,us, .. td) & Folin, Ky)[v1, v, ., ve]
= Fl(il,jl)[ul.u%..,ud} {-E Fn(in,jn)[vl,vz,..,ve] },(34)

where each ‘j7 corresponds to the value on the effective key bits, and 7; and 7, indicate
Fy and F,, components of 7, respectively. The same applies to 7; and j,. Note that if
J agrees with the correct key value j’, then B; = B.

We are now ready to make a description of the success rate of Algorithm 2. When
we apply Algorithm 2 to equation (2) with N known-plaintexts, let a; and @; be the
number of texts which belong to E; and E;, respectively. Then the distribution of a;
and @; 1s multinomial distribution, and the counter value 7 of Step 2 is

TJ' = Z a; + Z Ty (35)
ieB, igB,

In particular, if j = ;' then

T]‘/ = Z a;. (36)

€B
For the success of Algorithm 2, we must have |Tj; — N/2| > |T; — N/2| for all j except

7', and under our assumption this is equivalent to

To>N—T; and Ty > T, (37)




Since

N =5 (a; +a), (38)

€8

we see that equation (37) is also equivalent to

Y (ai—@) >0, and > (a;—a;) > 0. (39)

1€B, €8,

Therefore, the success rate of Algorithm 2 is

N! = = = -
1.1 15 151 = lpoaoplalt "'7p‘2t—1a2t_1p010p1a17"'tp‘zf—lqﬁ_lt ('LO)
R Ag.Q1ey .oy A2t_1:00-A7 -, ... , Aye_q.

where the region R is given by the following form:

R = { (a07a17 "'3(]'2‘—17607617 ---ﬂa‘lc—‘l) [ 0 S \V/J('/:‘i .]/) < 2k7 (‘1'1)
Yo(ai—a)>0, Y (a;—a)>0, Y (ai+a)=N}.
1€B; 1€B, 1€B

We now change variables from a; and @; to r; = “7‘:57’— and T; = E'\_/%?’, respectively,
and then according to Stirling’s formula, we can finally teach equation (42). We
omit the detailed derivation of this transformation, since our approach is based on
the general method used when approximating multinomial distribution by normal

distribution:

20+
e N, 2t 1 2 s
1 1 Z; L;
= exr = + —
// /R' (27)@*-1)/2 Hi=51(~ /p:D;) P 2 ;( Di D; ))

d.’l’od.’l)l...d;lﬁgc_1dfo,dfl..‘dfgt_g, (42)

where the region R’ is represented as follows:

RI = { (.’Eo,xl, .,;Egt_l,fo,fl, ,th_] ) l O < \V/‘](# ]/) < .Zk,
Y (VN(pi = B) + (2 — F:)) > 0,
i€B,
ST (VN(pi = B;) + (2 — 7)) >0, Y(zi+T) =0} (43)
i¢B; i€B

According to our hypothesis, p; and p; are sufficiently close to 2-(t+1). Moreover, we
have p; =B, = (p — 1/2)/2!~1. This completes our assertion. O

This lemma guarantees that the probabilistic behavior of equation (33) is the same as
that of equation (26); in other words, the probability that equation (33) of 16-round
DES is solvable with, for example, 2% random plaintexts is the same as the probabil-
ity that equation (26) of 8-round DES is solvable with 245[1.19 x 2-21|2/|1.95x 2792 =
1.49 x 2! random plaintexts. Our computer experiments of 8-round DES tell us the
expected success rates of 16-round DES as follows:




N

244

245

Success Rate

32.5%

T7.7%

99.4%

Table 8. Expected results of the experiments to solve equation (33).

According to round symmetry of DES, we have another best expression of 16-round
DES which holds with the same probability as equation (33):

Cy [( 18, )4] Flb((L [‘16)[ 18, 24}%PH[15}@*PL[_,18,24729] @FI(PL[H)H')
= ]X14E' } . [\13{44] Sl [Xl){ .2 ) [\;’10[22] ) [(9[ } D [Xg{z‘_} = [,6{22] 5 [\’5[44}
K22] & K,[22]. (44)

This equation gives us Ky [42] ~ K,[47], Kyg[18] ~ K14[23] and one subkey bit of the
right side of equation (44). In this stage, we have 26 subkey bits, which correspond
to the following 26 secret key bits.

0,1,3,4,8,9,14,15,18, 19,24, 25, 31, ,39,41,42,44 45,
t)\.—;l-BjﬁI/uNO:v%, 2;—37%11% 22 P 26 $ 37

The remaining 56 — 26 = 30 secret key bits are now easily obtained by an exhaustive
search. As a result, the total success rate of our attack is now expected as the following
table, where each entry shows the squared value of that of Table 8, since we have to
solve two independent equations.

N 243 244 245
Success Rate 10.6% 60.4% 98.3%

Table 9. Expected results of the experiments to break 16-round DES.

7 Concluding Remarks

We have introduced a new methodology for cryptanalysis based on linear approxima-
tion of block ciphers. We have completely determined the best linear approximate
expression and its probability for DES, and applied this method to a known- plaintext
attack. As a result, 16-round DES is breakable faster than an exhaustive key search
using 2*° random known-plaintexts and the corresponding ciphertexts. Moreover, our
analysis is applicable to a ciphertexts- only attack.

As for the best etpressmn and the best probability of DES, it is impossible to
have better results, since we have made a complete search without any assumption.
As for the known-plaintext attack, however, we do not know whether Algorithm 2 is
the best method to solve equation (2), because Algorithm 2 derives subkeys without
any information on the structure of S-boxes. It may hence be possible that faster
attacks are found.
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d\NJj] 0 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
0 |39 7 47 15 55 23 63 31 38 6 46 14 54 22 62 30
16 137 5 45 13 53 21 61 29 36 4 44 12 52 20 60 28
32 135 3 43 11 51 19 59 27 34 2 42 10 50 18 58 26
48 |33 1 41 9 49 17 57 25 32 0 40 8 48 16 56 24

Annex A-1: The initial permutation IP.

d\j]0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 o7 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3
16 |61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7
32 156 48 40 32 24 16 8 0 58 50 42 34 2 18 10 2
48 160 52 44 36 28 20 12 4 62 54 46 38 30 22 14 6

Annex A-2: The final permutation /P71,
AW 0 1 2 3 4 5 6 7
147 2 3 4,6 57 8 9 10,12
11,13 14 15 16,18 17,19 20 21 2224
16 123,25 26 27 28,30 29,31 32 33 34,36
24 13537 38 39 40,42 4143 44 45 46,0
Annex A-3: The extension E.

i\Njl0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
O |11 17 5 27 25 10 20 0 13 21 3 28 29 7 18 24
16 131 22 12 6 26 2 16 8 14 30 4 19 1 9 15 23

Annex A-4: The permutation P.

d\JJ0 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15

-0 |- 27 19 11 31 39 47 55 - 26 18 10 30 38 46 54
16 |- 25 17 9 29 37 45 53 - 24 16 8 28 36 44 52
32 1- 23 15 7 3 35 43 51 - 22 14 6 2 34 42 50
48 21 13 5 1 33 41 49 - 20 12 4 0 32 40 48

’ Annex A-5: The permutation PC-1.

In annexes A-1 ~ A-5, each entry shows the output bit position corresponding to the
(7 + 7)-th input bit position.
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Annex A-6: The S-boxes S,.

(Each entry shows S,(¢+ j) in hexadecimal form.)




1 K, Ko 1{3 K4 Ks K¢ K7 Ky Ky Ko K, ]\:1 2 Kis K] 4 .Kl 5 .Kl 6
0123 22 2 18 16 14 12 10 9 7 5 3 1 27 25 24
1 26 25 23 21 19 17 15 13 12 10 8 6 4 2 0 27
2 |19 18 16 14 12 10 8 6 5 3 1 27 25 23 21 20
315 4 2 0 26 24 22 20 19 17 15 13 11 9 7 6
4 113 1210 8 6 4 2 0 27 25 23 21 19 17T 15 14
519 8 6 B 2 0 26 24 23 21 19 17 15 13 11 10
6 | 2 1 27 25 23 21 19 17 16 14 12 10 8 6 4 3
T 21 20 18 16 14 12 10 8 7 5 3 1 27 25 23 22
8 |27 26 24 22 20 18 16 14 13 11 9 7 5 3 1 0
9 |16 15 13 11 9 7 5 3 2 0 26 24 22 20 18 17 <
10 | 6 5 3 1 27 25 23 2 20 18 16 14 12 10 8 7
I 11 10 8 6 4 2 0 26 25 23 21 19 17 15 13 12
1217 6 4 2 0 26 24 22 21 19 17 15 13 11 9 8
13122 21 19 17 15 13 11 9 8 6 = 2 0 26 24 23
14110 9 7 5 3 1 27 25 24 22 20 18 16 14- 12 11
1514 3 1 27 25 23 21 19 18 16 14 12 10 8 6 5
16 ) 15 14 12 10 8 6 4 2 | 27 25 23 21 19 17 16
171 25 24 22 20 18 16 14 12 11 9 T ) 3 1 27 26
1810 27 25 23 21 19 17 15 14 12 10 8 6 4 2 1
19 1 8 7 5 3 1 27 25 23 22 20 18 16 14 12 10 9
20 | 18 17 15 13 119 7 ) 4 2 0 26 24 22 20 19
21124 23 21 19 17 15 13 11 10 8 6 4 2 0 26 25
2213 2 0 26 24 22 20 18 17 15 13 11 9 7 5 4
23| 14 13- 11 9 7 5 3 1 0 26 24 22 20 18 16 15
24 153 52 50 48 46 44 42 40 39 37 35 33 31 29 55 54
25142 41 39 37 35 33 31 29 28 54 52 50 48 46 44 43
26135 34 32 30 28 54 52 50 49 47 45 43 41 39 37T 36
27|28 55 53 51 49 47 45 43 42 40 38 36 34 32 30 29
28 | 48 47 45 43 41 39 37 35 34 32 30 28 54 52 50 49
29139 38 36 34 32 30 28 54 53 51 49 47 45 43 41 40
30 | 47 46 44 42 40 38 36 34 33 31 29 55 53 Bl 49 48
31129 28 54 52 50 48 46 44 43 41 39 37 35 33 31 30
32 1 51 50 48 46 44 42 40 38 37 35 33 31 29 55 53 52
33143 42 40 38 36 34 32 30 29 55 53 51 49 47 45 44
34036 35 33 31 29 55 53 51 50 48 46 44 42 40 38 37
35132 31 29 55 53 51 49 47 46 44 42 40 38 36 34 33
36 | 45 44 42 40 38 36 34 32 31 29 55 53 51 49 47 46
37 | 34 33 31 29 55 b3 51 49 48 46 44 42 40 38 36 35
38 149 48 46 44 42 40 38 36 35 33 31 29 55 53 51 50
39 140 39 37 35 33 31 29 h5 Hh4 52 50 48 46 44 42 4]
40 | 55 54 52 B0 48 46 44 42 4] 39 37 3 33 31 29 28
41 1 52 51 49 47 45 43 4] 39 38 36 34 32 30 28 54 53
42 1 50 49 47 45 43 41 39 37 36 34 32 30 28 54 52 51
43 |1 54 53 51 49 47 45 43 4] 40 38 36 34 32 30 28 55
44 | 31 30 28 54 52 50 48 46 45 43 41 39 37T 35 33 32
45 | 44 43 41 - 39 37T 35 33 31 30 28 54 52 50 48 46 45
46 | 38 37 35 33 31 29 55 53 52 50 48 46 44 42 40 39
T 41 40 38 36 34 32 30 28 55 53 51 49 4T 45 43 42

Annex A-T: The key-scheduling part. (Each entry shows the secret key bit position

corresponding to the subkey bit position K[i].)
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Annex B-2: The table of NSy(«e, 3) — 32.
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Annex B-4: The table of N.Sy(a, 8) — 32.
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The table of N.Ss(e, 3) — 32.

Annex B-5:
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Annex C:

The best expression and the best probability of DES.

3| Pgla]e P54 Cgla) & CL[15] 1/241.56x 273 | a-A
K1[22] & K3[22]
*4 | Pyla]e PL[15] 4 Cgll5] e CLle, 8] 1/2-1.95x27° | A-AB
= K{[22] & K3[22] & K4[v]
51| Pg[l5)e Prla, 8] Cy1d]e CLlq, B) 1/241.22x27% | Ba-AB
= Ki1[] & K2[22) & Ka[22] & Ks[v]
*8 (8] &b Crla] & CL[15) 1/2-1.95%x2"% | -DCA-A
L2 [\6[22}
*T | Pyl PL[12,16]4 Cyla] e CL[15] 1/2+1.95x 2719 | E-DCA-A
K1[19,23]6 Ls @ K-[22] -
*3 (6] & PL[12,16) 4 Cy[15] & CLla, B 1/2 -1.22x 271 | E-DCA-AB
K[19,23] e Ly & K7[22] b Ks[v]
*9 [15] & PL[B, 6] & C H[l ple Crla, B 1/2—-1.91x 2% | BD-DCA-AB
Ki[y) & Ka[22) % La b Ks[22) & Ke[] A
*10 [a] & Cylal e CL[15] 1/2—1.53 x 271% | ~ACD-DCA-A
Lo & Lg & K 0[22)]
11| Pgla]é PL[15] 6 Chla) & CL[15] 1/24+1.91 x 271% | A-ACD-DCA-
K1[22]6 L& L7 ¢ K11[22] A
*12 | Pgla]e P15+ Crlidl s CLla, 8) 1/2-1.19 x 2717 | A-ACD-DCA-
:Alfzz]rALsethpAu[zzm Ki2[7] AB
13 | Pg[l5]4 Prle, Bl Cr(l5]e Crla, 8] 1/2+1.49 x 27! | BA-ACD-DCA
= K, [ ] IS¢ [\2[22] & Las Lgs ]\12[22] v} ]‘iylg['y] -AB
*14 | PL[6]& Cgla] e CL[15] 1/2-1.19 x 2721 | -DCA-ACD-D
= Lo Le ek Lig & A14[22)] CA-4A
*15 g[6] & PL[12,16]4 Cgla] e CL[15] 1/2+1.19x 2722 | E-DCA-ACD-
= K[19.23]¢ Las L+ L11 & K;5[22) DCA-A
*16 (6] b Pp[12,16] Cy[l5] & CLla, B) 1/2—1.49 x 2724 | E-DCA-ACD-
Ki[19,23]& Ly Ly & L1y & Ki5[22] @ Kis[v] DCA-AB
*17 [15] & PL[B. 8] & Cy[15] & CLla, 8] 1/2—1.16 x 272¢ | BD-DCA-ACD
Ki[7] & Ko[22] b Lo Lg & Lioé Ki6[22)9 K17[v] -DCA-AB
*18 | Prla]e Chla) = CL[15) 1/2—1.86x 2728 | -ACD-DCA-A
Ly& Le & Lige Lis % Kis[22] CD-DCA-4A
19 | Pgla]lé PL[15] & Cyle] & CL[15) 1/2+1.16 x 27%% | A-ACD-DCA-
K (22 Laéh L& L1 & Lys & K19[22) ACD-DCA-A
*20 | Pglalé PL[15])4 Cgll5)4 CLla, B) 1/2—1.46 x 2730 | A-ACD-DCA-
= K\[22]& Ly Lr & Ly & Lis & Kio[22] & Koolv] ACD-DCA-AB
Notations:
i A HF(X K)[7,18, 24, 20} K[22] p=3% | ar 7,1824,29
| B: 8,30,31)&:F (X, K)[15] = K[42,43,45,46) p=2 | 5 27,2830,31
} @: S F(X,RN)[15] =K [44] = % v: 42,4345 46
| D: 4 F(X,K)[7,18,24] = K[22] p::%% 6:  7,18,24
! E: 16]¢L F(X, K)[7,18,24] = K[19, 23] p=18| Lii Ki[22]18 Ki1[44] & Kiy2[22]
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Annex D: A known-plaintext attack of 16-round DES using equation (25).

We here present another example of a known-plaintext attack of 16-round DES us-

ing equation (25) faster than an exhaustive key search . Refer to chapter 6 for the
detailed discussions.

According to Figure 8, we have the following expression of 16-round DES which
holds with probability 1/2 + 26(=3/64)" = 1/2 — 1.07 x 2725:

Py[0,5,10,11,20,25,27] & CL[0,5, 10, 11, 20, 25, 27] &
Fi(PL, K4)[0,5,10,11,20,25,27]
= K3[4,5,6,7) @ Ks[4,5,6,7] & K+[4,5,6,7] &
Ko[4,5,6,7] & K11[4,5,6,7] & K13[4,5,6,7] & K15(4,5,6,7). (45)

The effective text bits and the effective key bits of equation (45) are as follows:

o Effective text bits (11 bits): PL[0] ~ PL[8], Pr[31],
Py[0,5,10,11,20,25, 27)0C. [0, 5, 10, 11,20, 25, 27),

o Effective key bits (12 bits): K;[0] ~ K,[11].

We can hence apply Algorithm 2 to equation (45) with 212 + 2! = 1.5 x 2!2 counters
and derive 13 subkey bits consisting of the 12 effective key bits and one subkey bit
of the right side. Moreover, according to round symmetry of DES, we have another
expression of 16-round DES which holds with the same probability as equation (45):

Cy[0,5,10,11,20,25,27] @ P.[0,5,10,11,20,25,27] &
Fio(CL, K16)]0, 5,10, 11, 20, 25, 27]
= K14[4,5,6.7) & K12[4,5,6,7) & K10[4,5,6,7] &
Ks[4,5,6,7) & Ks[4,5,6,7] ® K4[4,5,6,7] & K.[4,5,6,7). (46)

The solution of equation (46) gives us another 13 subkey bits; namely, Ki6[0] ~
Ki6[11] and the right side of equation (46). In this stage, we have 26 subkey bits, which
correspond to 24 secret key bits since 2 subkey bits are duplicate. The remaining
32 secret key bits are now easily derived by an exhaustive search. According to
the discussion similar to chapter 6, we can see that this attack is expected to be
successful when 8|1.07 x 272%|=% = 1.75 x 2°? random known-plaintexts are available.
This concludes that our attack is also faster than an exhaustive key search.
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Figure 3: The best linear approximation of F-function.
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Figure 8: Another linear approximation of 16-round DES.




Figure 9: The known-plaintext attack of 8-round DES (T).
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Figure 10: The known-plaintext attack of 8-round DES (II).




Figure 11: The known-plaintext attack of 12-round DES.
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Figure 12: The known-plaintext attack of 16-round DES.




