Homework #5
Due November 15, 2012, beginning of the class

1. On Euler’s φ function.
 (a) Show that, for a prime p,
 \[\varphi(p^i) = (p - 1)p^{i-1}. \]
 (b) Show that, for co-prime m_1 and m_2,
 \[\varphi(m_1 m_2) = \varphi(m_1)\varphi(m_2). \]
 (c) Use the results in the previous two parts to obtain $\varphi(n)$ for an arbitrary n. (Hint: Consider the prime factorization of n, and then combine the previous results by the CRT to obtain $\varphi(n)$.)

2. Question 4, the midterm exam of Fall 2011.

3. A protocol to establish a fresh session key using long-term, certified Diffie-Hellman public keys is as follows:
 - The system has a common prime modulus p and a generator g. Each party i has a long-term private key $\alpha_i \in \mathbb{Z}_{p-1}$ and a public key $P_i = g^{\alpha_i} \mod p$.
 - To establish a session key between i and j, party i generates a random $R_i \in \mathbb{Z}_{p-1}$, computes $X_i = \alpha_i + R_i \mod p - 1$, and sends X_i to j. Similarly, j computes a random $R_j \in \mathbb{Z}_{p-1}$, $X_j = \alpha_j + R_j \mod p - 1$, and sends X_j to i.
 - i computes the session key as
 \[K_{i,j} = (g^{X_j}P_j^{-1})^{R_i} \mod p \]
 and j computes
 \[K_{j,i} = (g^{X_i}P_i^{-1})^{R_j} \mod p. \]
 (a) Show that the protocol is correct (i.e., $K_{i,j} = K_{j,i}$).
 (b) Show that a passive attacker Trudy who has broken a session key $K_{A,B}$ between Alice and Bob can compute any future session keys between these two parties.
 (c) Describe a simple addition to the session key computation which will preclude this and any similar attacks on this protocol.