
CS 202: Fundamental Structures of Computer
Sciences II

Assignment 2
Due: 23:59, April 3 (Thursday), 2014

In this assignment, you will get familiar with an important programming
concept, i.e., algebraic expression tree and different expression notations such
as prefix, postfix, and infix. You will be using the concepts of binary tree data
structure to convert and evaluate expressions.

Algebraic Expressions

An algebraic expression can be represented using three different notations:

• Infix: The most conventional way to write an expression is called infix
notation. The arithmetic operators appear in between two operands.
e.g., 2 + 5 ∗ 3 + 1

• Prefix: In prefix notation, as the name suggests, operators come before
the operands. e.g., + + 2 ∗ 531

• Postfix: In postfix notation, different from infix and prefix notations,
operators come after the operands. e.g., 253 ∗+1+

Note that you learned these notations and algebraic expressions in your
CS 201 course. If you do not feel comfortable with them, please revise your
CS 201 course materials.

Algebraic Expression Trees

One use of the binary trees in computer science is to represent algebraic ex-
pressions. In an algebraic expression tree, each leaf node contains an operand
and a non-leaf node, including the root node, contains an operator that is ap-
plied to the results of its left and right sub-trees. For example, the expression
below

3 ∗ x/(8− 3) + x ∗ (4 + 2)

can be represented as

1

(+)
/ \

(\) (∗)
/ \ / \

(∗) (−) (x) (+)
/ \ / \ / \

(3) (x) (8) (3) (4) (2)

Question

In this assignment, you are supposed to implement an algebraic ex-
pression tree using the binary tree data structure. The data struc-
ture will represent a single arithmetic expression, which will be given into
the constructor as a character array/pointer (C-style string) parameter. In
the constructor, this parameter will be parsed and a binary tree will be con-
structed. Then, a user will be able to perform tasks on the constructed tree,
including expression evaluation, expression conversion, and tree display.

In your implementation, you are supposed to write a separate function
for each of these tasks. The details of these functions (tasks) are given below:

1. AlgExpressionTree(char *expression)

This is the constructor that takes a character array/pointer expression
in the prefix notation and parses this expression in order to construct
its corresponding algebraic tree.

For simplicity, you may assume the following:

• An expression contains variables with single-character names (such
as x, y, and z) and single-digit integers (0, ..., 9). However, in the
expression, there may exist multiple occurrences of the same or
different variable names and multiple occurrences of the same or
different integers.

• An expression contains the basic four operators, which are +,−, ∗, /
• In an expression, no whitespace is allowed in between operators

and operands.

Please note that once you have obtained the algebraic tree for a given
expression, the other tasks, which are explained below, become just a

2

matter of traversing this tree. Thus, please be sure that you imple-
mented this constructor correctly.

2. void displayTree()

This function displays the tree in a graphical format as given in the
example output. The function should write every node at the same level
into the same column. That is the output of the displayTree function
will be the 90 degree rotated version of the original tree display without
lines between keys. For example, a tree that is constructed from an
expression 3 + (5 ∗ 2− 7) which have a prefix notation +3− ∗527 will
originally have a display given below.

(+)
/ \

(3) (−)
/ \

(∗) (7)
/ \

(5) (2)

To make it easier, the output of the ’displayTree’ function should be
as follows:

7

-

2

*

5

+

3

Similarly, the original display and the output of a tree constructed from
an expression (8−4/2)+3∗4 which have a prefix notation +−8/42∗34
is given below as another example.

Display:

(+)
/ \

(−) (∗)
/ \ / \

(8) (/) (3) (4)

3

/ \
(4) (2)

Output:

4

*

3

+

2

/

4

-

8

3. void displayPostfix()

This function displays the postfix notation of the expression represented
by the algebraic tree.

IMPORTANT NOTE: In your program, you should make this con-
version on the algebraic expression tree. If you do it on the correspond-
ing expression string (as you did in your CS 201 class), you will get NO
POINTS for this part.

4. void setVariable(char varName, int varValue)

This function assigns an integer value varValue to the variable whose
name is varName. If the variable with this name does not exist in the
expression, this function will not make any assignment.

Note that this function is NOT permanently assign a value to the given
variable. Thus, the value of any variable can change many times during
the program, calling this function repeatedly. See the example program
and output below for better understanding of how this function works.

5. double evaluate()

This function evaluates the expression represented by its algebraic tree
and returns the result. For each particular variable, it uses the integer
value assigned by the most recent call of the setVariable function
for this particular variable. If the setVariable function has not been

4

called for a variable, it uses the default integer value of 0. Again see
the example program and output below for better understanding of
how this function works.

IMPORTANT NOTE: In your program, you should make these eval-
uations on the algebraic expression trees. If you evaluate them on the
corresponding expression strings (as you did in your CS 201 class),
you will get NO POINTS for this part.

Below is the required public part of the AlgExpressionTree class that
you are going to implement for this assignment. The name of the class MUST
be AlgExpressionTree, and it MUST include the following public member
functions. We will use these functions to test your code. The interface
for the class must be written in a file called AlgExpressionTree.h and its
implementation must be written in a file called AlgExpressionTree.cpp. In
your implementation, you may define additional public and private member
functions and data members of this class. You may also define additional
classes in your solution.

class AlgExpressionTree {

public:

AlgExpressionTree(char *expression); // constructor

~AlgExpressionTree(); // destructor

void displayTree();

void displayPostfix();

void setVariable(char varName, int varValue);

double evaluate();

}

Sample Program and Output:

#include <iostream>

#include "AlgExpressionTree.h"

int main(){

AlgExpressionTree T1("+*3x5");

5

AlgExpressionTree T2("++y9z");

T1.displayTree();

cout << "Result: " << T1.evaluate() << endl;

// evaluates the expression for x = 0 (default value)

T1.setVariable(’x’, 8);

T1.displayTree();

cout << "Result: " << T1.evaluate() << endl;

// evaluates the expression for x = 8,

// but it does not change the tree

T1.setVariable(’x’, 6);

cout << "Result: " << T1.evaluate() << endl;

// evaluates the expression for x = 6,

// but it does not change the tree

T1.setVariable(’y’, 10);

cout << "Result: " << T1.evaluate() << endl;

// the setVariable function does not do anyhing

// since y does not exist in the expression and

// the evaluate function uses the most recent value of x

cout << "Postfix form: ";

T1.displayPostfix();

T2.setVariable(’z’, 10);

cout << "Result: " << T2.evaluate() << endl;

// evaluates the expression for z = 10

// but uses the default value for y, which is 0

T2.setVariable(’y’, 3);

cout << "Result: " << T2.evaluate() << endl;

// evaluates the expression for z = 10 and y = 3

return 0;

}

6

OUTPUT:

+

*5

3x$$

Result: 5

+

*5

3x$$

Result: 29

Result: 23

Result: 23

Postfix form: 3x*5+

Result: 19

Result: 22

Bonus Question (20 points)

The implementation of the displayPostfix function is quite straightforward
since both the prefix and postfix notations do not require parentheses. How-
ever, displaying the infix notation of an expression that is represented by an
algebraic tree is somewhat more complex since you need to use parentheses
for precedence and associativity.

In this bonus part, you are asked to implement the displayInfix func-
tion that finds the infix notation of an expression represented by the alge-
braic tree and displays this notation on the screen. Please revise your CS
201 course materials, if necessary.

7

IMPORTANT NOTES:

Do not start your homework before reading these notes!!!

1. This assignment is due by 23:59 on Thursday, April 3rd, 2014. You
should send your homework to Gökçen Çimen, by email before the
deadline. No hardcopy submission is needed.

2. The standard rules about late homework submissions apply. Please see
the course syllabus for further discussion of the late homework policy
as well as academic integrity.

3. You ARE NOT ALLOWED to modify the given parts (given member
functions) of the AlgExpressionTree class. However, if necessary, you
may define additional data members and member functions. Moreover,
you ARE NOT ALLOWED to use any global variables.

4. Your code must not have any memory leaks. You will lose points if you
have memory leaks in your program even though the outputs of the
operations are correct. Thus, do not forget to implement the destructor.

5. For this assignment, you must use your own implementation of binary
trees. In other words, you cannot use any existing binary tree code from
other sources such as the tree class in the C++ standard template li-
brary (STL). However, you are allowed to use the codes given in our
textbook and/or our lecture slides. However, you ARE NOT ALLOWED
to use any codes from somewhere else (e.g., from the internet, other
text books, other slides ...).

6. You MUST use a pointer-based implementation in your solution.
You will get no points if you implement array-based solutions (using
fixed-sized arrays, dynamically allocated arrays, data structures such
as vector from the standard library, etc.).

7. In this assignment, you must have separate interface and implementa-
tion files (i.e., separate .h and .cpp files) for your class. We will test
your implementation by writing our own driver .cpp file which will in-
clude your header file. For this reason, your class’ name MUST BE
"AlgExpressionTree" and your files’ name MUST BE “AlgExpres-
sionTree.h” and “AlgExpressionTree.cpp”. You should send these two

8

files and any additional files if you wrote additional classes in your
solution as a single archive file (e.g., zip, tar, rar).

8. We also recommend you to write your own driver file to test each of
your functions. However, you MUST NOT submit this test code (we
will use our own test code). In other words, do not submit a file that
contains a function called "main".

9. You are free to write your programs in any environment (you may
use either Linux or Windows). On the other hand, we will test your
programs on "dijkstra.ug.bcc.bilkent.edu.tr" and we will expect
your programs to compile and run on the "dijkstra" machine. If we
could not get your program properly work on the "dijkstra" ma-
chine, you would lose a considerable amount of points. Therefore, we
recommend you to make sure that your program compiles and prop-
erly works on "dijkstra.ug.bcc.bilkent.edu.tr" before submitting
your assignment.

10. The submissions that do not obey these rules will not be graded.

11. To increase the efficiency of the grading process as well as the readabil-
ity of your code, you have to follow the following instructions about
the format and general layout of your program.

• Do not forget to write down your id, name, section, assignment
number or any other information relevant to your program in the
beginning of your main file. Example:

//---

// Title: Algebraic Expression Trees

// Author: Gokcen Cimen

// ID: 2100000000

// Section: 0

// Assignment: 2

// Description: This program is to construct the

// algebraic expression tree from a given expression

// and to perform a set of related tasks

//---

• Since your codes will be checked without your observation, you should
report everything about your implementation. Well comment your

9

classes, functions, declarations etc. Make sure that you explain each
function in the beginning of your function structure. Example:

void void setVariable(char varName, int varValue)

//--

// Summary: Assigns a value to the variable whose

// name is given.

// Precondition: varName is a char and varValue is an

// integer

// Postcondition: The value of the variable is set.

//--

{

// body of the function

}

• Indentation, indentation, indentation...

• Pay attention to these instructions, otherwise you may lose some points
even though your code has no error.

12. This homework will be graded by your TA, Gökçen Çimen, (gok-
cen.cimen at bilkent edu tr). Thus, you may ask your homework related
questions directly to her.

10

