

CS 202 Fundamental Structures of Computer Sciences II

Assignment 3 – Heap, Priority Queue

Due: 23:59, May 5 (Monday), 2014

In this programming assignment, you are asked to find a software solution to the scheduling problem of
Bilkent Bank. The bank’s manager is trying to figure out how many cashiers should work in the customer
service of the bank. For each cashier in the service, the expense of the bank increases; however
according to the standards of the bank, the average waiting time for all customers should not exceed a
given amount of time. So, she needs to optimize this number and asks for your help in this task. The bank
has the data of predict service time of customers. Your program should use these data to calculate
average waiting times and find out the minimum number of cashiers needed to meet the average
waiting time requirement.

The data are stored in a plain text file1. The first line of the file contains the number of customers. The
subsequent lines contain four integers, each separated by one or more whitespace characters (space or
tab). These denote, respectively, the customer id, the registration year of the customer to the bank2,
arrival time for transaction (in minutes from a given point [e.g. 12:00 am]) and service time (in minutes).

For example, from the file content given below, we understand there are 3 customers. The first customer
with id 1 arrives at the bank at minute 1, and his transaction lasts for 5 minutes. He has been a customer
of the bank for 15 years. The second customer with id 14 arrives at the bank at minute 70, and his
transaction lasts 10 minutes. The third customer with id 5 arrives at the bank at minute 82, and his
transaction lasts 70 minutes. The second and third customers have been a customer of the bank for 11
years, which means that their priorities are the same.

Sample input file:
3

1 1999 1 5

14 2003 70 10

5 2003 82 70

In this assignment, you are asked to write a simulation program that reads customer data from an input
file and calculates the minimum number of cashiers required for a given maximum average waiting time.

In your implementation, you may make the following assumptions:

- The data file will always be valid. All data are composed of integers.
- In the data file, the customers are sorted according to their arrival times.
- There may be at most 200 customers in the data file.

The bank assigns priority to its customers in order to provide them some special benefits. One of them is
that they do not have to wait in the queue for transactions. The priority is defined considering the period
of time that a customer has been with the bank. Long-time customers of the bank have higher priority
than others. Your implementation must obey the following requirements:

- The customer with the highest priority should be examined first.
- In case of having two customers with the same highest priority, the patient who has waited

longer should be selected first.

1
 The file is a UNIX-style text file with the end-of-line denoted by a single \n (ASCII 0x0A)

2
 The bank was established in 1968

- If more than one cashier is available at a given time; the customer is assigned to the cashier with
a lower id.

- When a cashier starts giving a service to a customer, the cashier should finish his service with
this customer even though another customer with a higher priority comes to the bank.

- Once a customer is assigned to a cashier, the cashier immediately starts carrying out the
transaction of that customer and is not available during the transaction time given for that
customer. After the transaction of that customer carries out, the cashier becomes available
immediately.

- The waiting time of a customer is the duration (difference) between the arrival time of the
customer and the time he is assigned to a cashier.

In your implementation, you MUST use a heap-based priority queue to store customers who are
waiting for a cashier (i.e., to store customers who have arrived at the bank but their transactions have
not been conducted yet). If you do not use such a heap-based priority queue to store these customers,
then you will get no points from this homework.

The name of the input file and the maximum average waiting time will be provided as command line
arguments to your program. Thus, your program should run using two command line arguments. Thus,
the application interface is simple and given as follows:

username@dijkstra:~>./simulator <filename> <avgwaitingtime>

Assuming that you have an executable called “simulator”, this command calls the executable with two
command line arguments. The first one is the name of the file from which your program reads the
customer data. The second one is the maximum average waiting time; your program should calculate
the minimum number of cashiers required for meeting this avgwaitingtime. You may assume that
the maximum average waiting time is given as an integer.

Hint

Use the heap data structure to hold customers that are waiting for a cashier and to find the customer
with the highest priority. Update the heap whenever a new customer arrives or a customer’s
transaction is conducted. In order to find the optimum number of cashiers needed, repeat the
simulation for increasing number of cashiers and return the minimum number of cashiers that will
achieve the maximum average waiting time constraint. Display the simulation for which you find the
optimum number of cashiers.

SAMPLE OUTPUT:

Suppose that you have the following input file consisting of the customer data. Also suppose that the
name of the file is customers.txt.
12

1 1994 1 10

2 1974 1 14

3 2004 1 6

4 2004 1 5

5 1994 4 10

6 1974 7 14

7 1994 9 10

8 1974 11 14

9 2004 13 6

10 2004 14 5

11 1994 15 10

12 1974 17 14

The output for this input file is given as follows for different maximum average waiting times. Please
check your program with this input file as well as the others that you will create. Please note that we will
use other input files when grading your assignments.

username@dijkstra:~>./simulator customers.txt 5

Minimum number of cashiers required: 4

Simulation with 4 cashiers:

Cashier 0 takes customer 2 at minute 1 (wait: 0 mins)

Cashier 1 takes customer 1 at minute 1 (wait: 0 mins)

Cashier 2 takes customer 3 at minute 1 (wait: 0 mins)

Cashier 3 takes customer 4 at minute 1 (wait: 0 mins)

Cashier 3 takes customer 5 at minute 6 (wait: 2 mins)

Cashier 2 takes customer 6 at minute 7 (wait: 0 mins)

Cashier 1 takes customer 8 at minute 11 (wait: 0 mins)

Cashier 0 takes customer 7 at minute 15 (wait: 6 mins)

Cashier 3 takes customer 11 at minute 16 (wait: 1 mins)

Cashier 2 takes customer 12 at minute 21 (wait: 4 mins)

Cashier 0 takes customer 9 at minute 25 (wait: 12 mins)

Cashier 1 takes customer 10 at minute 25 (wait: 11 mins)

Average waiting time: 3 minutes

username@dijkstra:~>./simulator customers.txt 10

Minimum number of cashiers required: 3

Simulation with 3 cashiers:

Cashier 0 takes customer 2 at minute 1 (wait: 0 mins)

Cashier 1 takes customer 1 at minute 1 (wait: 0 mins)

Cashier 2 takes customer 3 at minute 1 (wait: 0 mins)

Cashier 2 takes customer 6 at minute 7 (wait: 0 mins)

Cashier 1 takes customer 8 at minute 11 (wait: 0 mins)

Cashier 0 takes customer 5 at minute 15 (wait: 11 mins)

Cashier 2 takes customer 12 at minute 21 (wait: 4 mins)

Cashier 0 takes customer 7 at minute 25 (wait: 16 mins)

Cashier 1 takes customer 11 at minute 25 (wait: 10 mins)

Cashier 0 takes customer 4 at minute 35 (wait: 34 mins)

Cashier 1 takes customer 9 at minute 35 (wait: 22 mins)

Cashier 2 takes customer 10 at minute 35 (wait: 21 mins)

Average waiting time: 9.83333 minutes

Code Format and Notifications

To increase the efficiency of the grading process as well as the readability of your code, you have to
follow the following instructions about the format and general layout of your program.

 Don’t forget to write down your id, name, section, assignment number or any other information
relevant to your program in the beginning of your main file.

 Don’t forget to write comments at important parts of your code.

 Indentation, indentation, indentation...

 You are free to write your programs in any environment (you may use either Linux or Windows).
On the other hand, we will test your programs on “dijkstra.ug.bcc.bilkent.edu.tr”
and we will expect your programs to compile and run on the dijkstra machine. If we could

not get your program properly work on the dijkstra machine, you would lose a considerable

amount of points. Therefore, we recommend you to make sure that your program compiles and
properly works on “dijkstra.ug.bcc.bilkent.edu.tr” before submitting your
assignment.

 In this assignment, you must submit a single archive file that contains your implementation. The
name of the archive file must be in the following format.

Surname_Name_StudentId_Section_HW3.zip

 You should email your homework to your TA Can Fahrettin Koyuncu (koyuncu at cs bilkent edu
tr) before the deadline.

 This homework will be graded by Can Fahrettin Koyuncu. Thus, you may ask your homework
related questions directly to him.

 For this assignment, you cannot use any existing code from other sources such as the heap class
in the C++ standard template library (STL). However, you are allowed to use the codes given in
our textbook and/or our lecture slides. However, you ARE NOT ALLOWED to use any codes from
somewhere else (e.g., from the internet, other text books, other slides ...).

 Pay attention to these instructions, otherwise you may lose some points even though your code
has no error.

