COLORING QUADTREES

Messaoud Benantar!, Ugur Dogrusoz?
Joseph E. Flaherty?, and Mukkai S. Krishnamoorthy?

! Large Scale Computing Division, IBM Corporation,
MS 105, Neighborhood Road, Kingston, NY 12401
2 Department of Computer Science,
Rensselaer Polytechnic Institute, Troy, NY 12180

Abstract

Consider solving linear elliptic partial differential systems on shared-memory parallel comput-
ers; with mesh generation and adaptive mesh refinement utilizing an underlying quadtree structure
for data management, the terminal nodes of the quadtree can be colored so as to separate con-
tiguous spatial regions that may be processed in parallel without conflict. The quadtree coloring
algorithm given in [2, 4] has a linear time complexity and uses a maximum of six colors. However,
it is restricted to those quadtrees which correspond to quadrilateral meshes with at most one-level
difference across quadrant edges. In this paper, we present a linear eight-color algorithm that
works for any quadtree by first six-coloring it and then removing coloring conflicts introduced by
level differences with a fourth color pair in a consistent manner.

1 Introduction

Triangular, quadrilateral or mixed triangular and quadrilateral meshes may be constructed on an
arbitrarily complex two-dimensional problem domain by initially embedding it in a square universe
and recursively bisecting those edges of squares that intersect the domain’s boundary [1]. This process
leads to a quadtree dissection of the domain with nodes of the tree representing square regions called
quadrants. Quadrants at terminal tree nodes may be further divided or distorted to produce the
triangular, quadrilateral or mixed mesh. An example of a finite quadtree mesh generation for a
domain consisting of a rectangle and a quarter of a circle apperas in Figure 1. Figure 1.a through
Figure 1.c show the formation of level 1 through level 3 quadrants, respectively. The corresponding
quadtree is given in Figure 1.e. Note how each node of the quadtree corresponds to the quadrants
of the mesh and that the higher the level of a quadrant is, the deeper the associated node in the
quadtree is. This procedure extends to three-dimensional domains using an octree decomposition of
the domain [6]. Benantar et al. [3] developed a coloring procedure that separated contiguous (two
quadrants are contiguous or adjacent even if they intersect at only one point; so, all four quadrants
of a square are mutually adjacent) terminal quadrants in order to process quadrants having the same
color in parallel without conflict on shared-memory computers. Algorithms using a maximum of six
and eight colors were described with the six-color procedure providing superior performance due to
the finer data granularity [2, 4]. When used with finite element computations, data associated with
all elements in a quadrant was generated and assembled into the global algebraic system, which was
solved in parallel by colors using a preconditioned conjugate gradient method [3]. However, these
procedures are restricted to quadrilateral meshes with at most one-level difference across quadrant
edges. In this paper, we present a linear-time eight-coloring algorithm that works for any quadtree by

first six-coloring it and then removing coloring conflicts introduced by level differences with a fourth
color pair in a consistent manner. Maintaining a one level difference between adjacent quadrants
is normally used to avoid severe mesh gradation. Its use at the quadrant level, rather than at the
mesh level, may be too conservative. The one-level difference may also be abandoned when using
methods of different order in different spatial regions. This strategy, called p-refinement, is capable
of achieving very high accuracy.

Following definition, lemmas and theorem are taken from [2].

Definition 1 /2] A quasi-binary tree is a directed binary graph' obtained from a finite quadtree by
the following assertive algorithm:

e The root of the finite quadtree corresponds to the root of the quasi-binary tree.
e Fuvery terminal quadrant is associated with a node of the quasi-binary tree, but not conversely.

e Nodes across a common horizontal edge in the quadiree representation of the domain are con-
nected in the quasi-binary tree.

e When a quadrant is divided, its parent in the quasi-binary tree becomes the root of a subtree.

Lemma 1 [2] At most three branches can be adjacent to each other in a quasi-binary tree.

Lemma 2 [2] Three colors are necessary and sufficient to color the branches of a quasi-binary tree
so that no two adjacent branches have the same color.

Theorem 1 [2] Siz colors are sufficient to color the nodes of a quasi-binary tree so that no two
adjacent nodes of the same branch and no two nodes from adjacent branches have the same color.

Proof: For every color of the three colors used to color the branches of a quasi-binary tree so that
no two adjacent branches have the same color Lemma 2, we use a new color to color the simple path
corresponding to the branch so that no two adjacent nodes from the same branch have the same
color. m

An example of the six-color procedure is shown in Figure 2.

In this chapter, we describe a linear-time eight-color algorithm for general quadtrees (i.e. quadri-
lateral meshes with no restriction on level difference).

2 Eight-Coloring Algorithm

When the restriction of at most one-level difference across quadrant edges is removed, there is no
one-to-one correspondence between the nodes of the quasi-binary tree obtained and the quadrants of
the original mesh. In this case, we let the node highest (lowest) in the upper (lower) quasi-binary tree
to uniquely represent the quadrant that it is in and color all the other nodes in that quadrant the
same as this representative node. Please refer to Figure 3.a for an example. This methodology might
lead to cycles of branches colored the same. If the length of such a cycle is even, there is no problem
since alternating two colors along this cycle will not create any conflicts. However, such cycles of odd
length will (see the r-cycle in Figure 3 for an example).

Our strategy for avoiding such cycles involves introduction of a fourth color pair, say y. In order
to do this, we assign all r, g, and b cycles a level number number depending on whose parity the
corresponding cycle is to be broken from left or right. The deeper the cycle is in the nesting of cycles,
the higher this number will be. Figure 4 shows an example of the assignment of level numbers and
how this number is used for deciding whether to break from left or right. Let us identify a node on

!Formed by connecting directed binary trees root to root and leaf to leaf.

(@

(©

(b) {

(d)

>0 @O

Boundary quadrant
Interior quadrant
Exterior quadrant

Finite element

Figure 1: An example of a finite quadtree mesh generation for a domain consisting of a rectangle
and a quarter of a circle. In this case, the quadrants obtained are further decomposed into triangular

regions.

[P N
/®\ g/®\
/ \ / \
/ \ / \
/ \ / \
/ b’ g / \ r
r
/®\ ‘ @ O 1 bl 9 bl
I | | :
'S 196 ! } l r.| g
IR Y, 95 b, 2|1 b, g, b,
o 190 S | | 119
\ /
7 T
\\ // bd) r(\D : : bl rl
M e Yo ba 2 9 by
el 1 % | "
T \ 7 ; T
"® b Ya be 1 by 9, b,
\\ // \ ,
N / | 4
\ / N
\ \
re 9¢
N

@ (b)

Figure 2: (a) An example of six-coloring quadtrees. The dashed lines represent the branches of
the quasi-binary tree formed. r, g, and b are used to represent three separate color pairs. (b) A
six-coloring of the quadrants obtained by simply replacing each color pair in (a) with two different
colors alternating.

o
t
o) " by
[O[O] © PP %
®lo[o]d - B9l
S& old r 91" 2
\O/@ A
@) rl gz
bO
o)

@ (b)

Figure 3: An example for which the six-color algorithm fails because of an r-cycle of odd length
formed. (a) The nodes of the quasi-binary tree shown with filled circles are not taken to represent
the quadrant they are in since they are not the highest (lowest) node in the upper (lower) tree. The
edges on the r-cycle is shown with solid lines. (b) How six-coloring of an r-cycle (alternating r;’s
and 19’s) fails (see the quadrant with the question mark.)

Q O
@ D
D

Figure 4: Assignment of level numbers (shown in parentheses) to r, g, and b cycles and the illustration
of how these cycles are broken from left or right depending on the parity of their levels (recolored
nodes marked with filled circles).

such a cycle as one of three kinds: a top node, a bottom node, or a (left or right) side node. Please
refer to Figure 3.a for examples of these three kinds of nodes labeled as ¢, b, and s, respectively.

Lemma 3 Let T be a quasi-binary tree whose siz-coloring produces an r, g, or b cycle, say C,
consisting of a top node t, a bottom node b, and side nodes si, ..., sx. Suppose the quadrants
associated with these nodes in the quadrilateral mesh corresponding to T are labeled q, qp, and gqs,,
t = 1,...,k, respectively. No quadrant q,, extends beyond the left or the right of q; and q,. That is,
all quadrants q,,, i = 1, ..., k, are vertically sandwiched in the region bounded by the right side of q;
or qp (whichever extends less towards the right in the mesh) and the left side of q; or q» (whichever
extends less towards the left.) Please refer to Figure 5 for an illustration of this.

qt
t

S 1T IS
S
2
s | |6
8| %
b

1 2

Figure 5: The part of the mesh corresponding to the r-cycle in Figure 3. The side nodes si,...,57 are
bounded between the vertical lines {1 and [» that are obtained by horizontal projection of quadrants
q: and g, onto each other.

Proof: Follows from the definition of quasi-binary trees. m

Definition 2 Two r, g, or b cycles are called overlapping if one is laid completely inside another or
they are of the same color and share a path. Otherwise, they are said to be non-overlapping.

Lemma 4 Let s; and sy be two side nodes of non-overlapping cycles C1 and Co in a siz-coloring,
respectively. If the quadrants associated with s1 and s9 are adjacent, then exactly one of s1 and s is
a left-side node and the other is a right-side node (please see an example of this in Figure 6.b.)

Proof: Directly follows from Lemma 3. m

Definition 3 Consider two adjacent side nodes s1 and so recolored with y as discussed earlier. When
going from s1 to so, we are said to have taken either a left turn or a right turn as illustrated in Figure 6.

| eft < right

| eft right

@ (b)

Figure 6: (a) Going from side node s; to another side node, we take either a left or a right turn
depending on the region we move into. (b) An example of a left turn taken when going from left-side
node s; to right-side node ss.

Lemma 5 Let sy, s2, and s3 be side nodes of non-overlapping cycles Cy, Ca, and Cs in a siz-coloring,
respectively. Also suppose the quadrants associated with s1 & so and sy € s3 are pairwise adjacent.
Going from sy to s, and then to s3, we take alternating left and right turns, but never subsequent
left or right turns.

Proof: Follows from Lemma 4 and Definition 3. m

Theorem 2 Breaking (re-coloring a side node with y) v, g, and b cycles, created by siz-coloring,
from left or right consistently, depending on the parity of their levels as explained above might create
y paths but never leads to y cycles.

Proof by contradiction: Suppose such a y-cycle, say C, can be formed during the process of
breaking these r, g, and b cycles as discussed. Let us assume C' is of length k. We will name the r,
g, and b cycles that these k nodes are on, C', Co, ..., C, respectively. Now consider the way these &k
cycles intersect:

e there is at least one cycle, say C;, that intersects C' at more than one node: such an r, g, or b
cycle C; can never be formed since by definition, we break all such cycles only from one side.

e otherwise: in this case, no pair of cycles C;, i = 1,...,k are overlapping. In order to complete
a cycle of side nodes colored with y, we need to take subsequent left or right turns (otherwise,
we can never horizontally get below our starting point) when visiting the side nodes on such a
cycle; but, this is not possible by Lemma 5.

Since neither case is possible, the theorem must be true. m

Figure 7 contains pseudo-code of an algorithm for eight-coloring quasi-binary trees based on
Theorem 2. Obviously, it can be easily modified to eight-color quadtrees.

The procedure sizcoloriree takes time linear in the size of the quasi-binary tree provided since the
slight modification to the algorithm taken from [2] does not change its asymptotic time complexity.
The procedure assignlevelno is also linear in the size of the given quasi-binary tree because the level

algorithm eightcolortree(root: pointer_to_tree; r,g,b,y: color_pair)
// Six-color given quasi-binary tree using the algorithm in [2]. //
// In the meantime, find all r, g, and b cycles of odd length, Ci, ..., Cj,
along with their top and bottom nodes. //
sizcolortree(root, r,g,b)
// Assign level numbers to all cycles C;, i =1,...,k. //
assignlevelno(root)
// Break each cycle Cj, i = 1,..., k, from left or right depending on parity
of their level numbers using fourth color pair y. //
breakcycles(root, y)
end algorithm

Figure 7: An eight-coloring algorithm.

number of a cycle C; is equal to the number of top nodes of other cycles dominating the top node
of C; and this can be found in linear time using depth-first search [5]. Another simple search of the
colored tree, in which any left or right side node can be chosen as the one to be recolored with the
fourth color pair y, can be used to implement breakcycles. Therefore, eightcolortree takes time linear
in the size of the given quasi-binary tree (or the size of the given quadtree) to compute.

3 Concluding Remarks

In this paper, we presented a linear-time eight-color algorithm for coloring general quadtrees which are
used in solution procedures for linear elliptic partial differential equations on shared-memory parallel
computers. Eight colors, or six for that matter, would normally be too many for two-dimensional
problems. Thus, the number of quadrants per process would be too small for high efficiency. These
algorithms may, however, be extensible to three dimensions where such granularity would not be a
problem. Our intuition would suggest that four colors would suffice to color a quadtree; however,
such algorithms would be much more complex and asymptotically slower. There is the possibility of
creating approximate four color procedures, e.g., procedures that do not maintain an exact balance
within colors.

References

[1] P. L. Baehmann, S. L. Wittchen, M. S. Shephard, K. R. Grice, and M. A. Yerry. Robust ge-
ometrically based, automatic two-dimensional mesh generation. Int. J. Num. Meths. Engng.,
24:1043-1078, 1987.

[2] M. Benantar. Parallel and Adaptive Algorithms for Elliptic Partial Differential Systems. PhD
thesis, Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, 1992.

[3] M. Benantar, R. Biswas, J. E. Flaherty, and M.S. Shephard. Parallel computation with adaptive
methods for elliptic and hyperbolic systems. Comput. Meths. Appl. Mech. Engng., 82:73-93, 1990.

[4] M. Benantar, J. E. Flaherty, and M. S. Krishnamoorthy. Coloring Procedures for Finite Element
Computation on Shared-Memory Parallel Computers. AMD-Vol. 157, Adaptive, Multilevel, and
Hierarchical Computational Strategies, A. K. Noor Ed., ASME, New York, 1992.

[5] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms : Theory and Practice.
Prentice-Hall, 1977.

[6] M. S. Shephard and M. K. Georges. Automatic three-dimensional mesh generationby the finite
octree technique. Int. J. Num. Meth. Engng., 32:709-739, 1991.

