
Chapter 2 – Fundamental Data Types

Chapter Goals

▪To declare and initialize variables and constants
▪To understand the properties and limitations of integers and floating-point
numbers
▪To appreciate the importance of comments and good code layout
▪To write arithmetic expressions and assignment statements
▪To create programs that read and process inputs, and display the results
▪To learn how to use the Java String type

Variables

▪Most computer programs hold temporary values in named storage locations
▪Programmers name them for easy access

▪There are many different types (sizes) of storage to hold different things
▪You ‘declare’ a variable by telling the compiler:

▪What type (size) of variable you need
▪What name you will use to refer to it

Syntax 2.1 Variable Declaration

▪When declaring a variable, you often specify an initial value
▪This is also where you tell the compiler the size (type) it will hold

An Example: Soda Deal

▪ Soft drinks are sold in cans and bottles. A store offers a six-pack of
12-ounce cans for the same price as a two-liter bottle. Which should you
buy? (12 fluid ounces equal approximately 0.355 liters.)
▪ List of variables: Type of number:

Number of cans per pack Whole number
Ounces per can Whole number
Ounces per bottle Number with fraction

Variables and Contents

▪Each variable has an identifier (name) and contents
▪You can (optionally) set the contents of a variable when you declare it

 int cansPerPack = 6;
▪Imagine a parking space in a parking garage

▪Identifier: J053
▪Contents: Bob’s Chevy

Example Declarations

Why Different Types?

▪There are three different types of variables that we will use in this chapter:

1) A whole number (no fractional part) int

2) A number with a fraction part double

3) A word (a group of characters) String

▪Specify the type before the name in the declaration

int cansPerPack = 6;

double canVolume = 12.0;

Why Different Variables?

▪Back to the garage analogy, parking spaces may be different sizes for
different types of vehicles

▪Bicycle
▪Motorcycle
▪Full Size
▪Electric Vehicle

Number Literals in Java

▪Sometimes when you just type a number, the compiler has to ‘guess’ what
type it is

amt = 6 * 12.0;
PI = 3.14;
canVol = 0.335;

Floating-Point Numbers

▪Java stores numbers with fractional parts as ‘floating point’ numbers.
▪They are stored in four parts

▪Sign
▪Mantissa
▪Radix
▪Exponent

▪A ‘double’ is a double-precision floating point number: It takes twice the
storage (52 bit mantissa) as the smaller ‘float’ (23 bit mantissa)

Sign Mantissa Radix exponent

-1 5 10 0

Parts of a floating point number -5:

Naming Variables

▪Name should describe the purpose
▪‘canVolume’ is better than ‘cv’

▪Use These Simple Rules
1) Variable names must start with a letter or the underscore (_)
character

▪Continue with letters (upper or lower case), digits or the
underscore

2) You cannot use other symbols (? or %...) and spaces are not
permitted
3) Separate words with ‘camelHump’ notation

▪Use upper case letters to signify word boundaries
4) Don’t use reserved ‘Java’ words (see Appendix C)

Variable Names in Java

The Assignment Statement

▪Use the ‘assignment statement’ (with an '=') to place a new value into
a variable

int cansPerPack = 6; // declare & initialize

cansPerPack = 8; // assignment

▪Beware: The = sign is NOT used for comparison:
▪It copies the value on the right side into the variable on the left
side
▪You will learn about the comparison operator in the next chapter

Assignment Syntax

▪The value on the right of the '=' sign is copied to the variable on the left

Updating a Variable

▪Step by Step:
 totalVolume = totalVolume + 2;

1. Calculate the right hand side of the assignment; Find the value
of totalVolume, and add 2 to it

2. Store the result in the variable named on the left side of the
assignment operator (totalVolume in this case)

Declarations vs. Assignments

▪Variable declarations and an assignment statements are different
 int cansPerPack = 6; Declaration

 ...

 cansPerPack = 8; Assignment statement

▪Declarations define a new variable and can give it an initial value
▪Assignments modify the value of an existing variable

Constants

▪When a variable is defined with the reserved word final, its value can
never be changed

final double BOTTLE_VOLUME = 2;

▪It is good style to use named constants to explain numerical values to
be used in calculations

▪Which is clearer?
double totalVolume = bottles * 2;

double totalVolume = bottles *
BOTTLE_VOLUME;

▪A programmer reading the first statement may not understand the
significance of the 2
▪Also, if the constant is used in multiple places and needs to be
changed, only the initialization changes

Constant Declaration

▪It is customary (not required) to use all UPPER_CASE letters for
constants

Java Comments

▪There are three forms of comments:
1: // single line (or rest of line to right)
2: /*
 multi-line – all comment until matching

 */

3: /**
 multi-line Javadoc comments

 */

▪Use comments at the beginning of each program, and to clarify details
of the code
▪Use comments to add explanations for humans who read
▪your code
▪The compiler ignores comments

Java Comment Example

▪Lines 1 - 4 are Javadoc comments for the class Volume1
▪Lines 10 and 17 use single-line comment to clarify the unit of
measurement

Self Check 2.1

Declare a variable suitable for holding the number of bottles in a case.

Answer: One possible answer is
int bottlesPerCase = 8;

You may choose a different variable name or a different initialization value,
but your variable should have type int.

Self Check 2.2

What is wrong with the following variable declaration?
int ounces per liter = 28.35

Answer: There are three errors:
▪You cannot have spaces in variable names.
▪The variable type should be double because it holds a fractional value.
▪There is a semicolon missing at the end of the statement.

Self Check 2.3

Declare and initialize two variables, unitPrice and quantity , to contain the unit price of a
single bottle and the number of bottles purchased. Use reasonable initial values.

Answer:
double unitPrice = 1.95;
int quantity = 2;

Self Check 2.4

Use the variables declared in Self Check 3 to display the total purchase price.

Answer:
System.out.print("Total price: ");
System.out.println(unitPrice * quantity);

Self Check 2.5

Some drinks are sold in four-packs instead of six-packs. How would you change the
Volume1.java program to compute the total volume?

Answer: Change the declaration of cansPerPack to
int cansPerPack = 4;

Self Check 2.6

What is wrong with this comment?
double canVolume = 0.355; /* Liters in a 12-ounce can //

Answer: You need to use a */ delimiter to close a comment that begins
with a /*:

double canVolume = 0.355;
/* Liters in a 12-ounce can */

Self Check 2.7

Suppose the type of the cansPerPack variable in Volume1.java was changed from int
to double. What would be the effect on the program?

Answer: The program would compile, and it would display the same result.
However, a person reading the program might find it confusing that
fractional cans are being considered.

Self Check 2.8

Why can’t the variable totalVolume in the Volume1.java program be declared as
final?

Answer: Its value is modified by the assignment statement.

Self Check 2.9

How would you explain assignment using the parking space analogy?

Answer: Assignment would occur when one car is replaced by another in
the parking space.

▪Undeclared Variables
▪You must declare a variable before you use it: (i.e. above in the code)
 double canVolume = 12 * literPerOunce; // ??
 double literPerOunce = 0.0296;

▪Uninitialized Variables
▪You must initialize (i.e. set) a variable’s contents before you use it
 int bottles;
 int bottleVolume = bottles * 2; // ??

Common Error 2.1

▪Overflow means that storage for a variable cannot hold the result
 int fiftyMillion = 50000000;
 System.out.println(100 * fiftyMillion);

 // Expected: 5000000000

▪Will print out 705032704
▪Why?

▪The result (5 billion) overflowed int capacity
▪Maximum value for an int is +2,147,483,647

▪Use a long instead of an int (or a double)

Common Error 2.2

▪Roundoff Errors
▪Floating point values are not exact

▪This is a limitations of binary values (no fractions):
double price = 4.35;

double quantity = 100;

double total = price * quantity;

 // Should be 100 * 4.35 = 435.00

System.out.println(total); // Prints 434.99999999999999

▪You can deal with roundoff errors by rounding to the nearest integer (see Section
2.2.5) or by displaying a fixed number of digits after the decimal separator (see
Section 2.3.2).

Common Error 2.3

▪Each type has a range of values that it can hold

All of the Java Numeric Types

Whole
Numbers (no

fractions)

Floating point
Numbers

Characters
(no math)

Integer Types

▪ byte: A very small number (-128 to +127)

▪ short: A small number (-32768 to +32767)

▪ int: A large number (-2,147,483,648 to +2,147,483,647)

▪ long: A huge number

▪ Floating Point Types

▪ float: A huge number with decimal places
▪ double: Much more precise, for heavy math

▪ Other Types

▪ boolean: true or false

▪ char: One symbol in single quotes ‘a’

Value Ranges per Type

Integer Types

▪ byte:

▪ short:

▪ int:

▪ long:

▪ Floating Point Types

▪ float:

▪ double:

▪ Other Types

▪ boolean:

▪ char:

Storage per Type (in bytes)

▪Java supports all of the same basic math as a calculator:
▪Addition +
▪Subtraction -
▪Multiplication *
▪Division /

▪You write your expressions a bit differently though
 Algebra Java

▪Precedence is similar to Algebra:
▪PEMDAS

▪Parenthesis, Exponent, Multiply/Divide, Add/Subtract

Arithmetic

Mixing Numeric Types

▪It is safe to convert a value from an integer type to a floating-point type
▪No ‘precision’ is lost

▪But going the other way can be dangerous
▪All fractional information is lost
▪The fractional part is discarded (not rounded)

▪If you mix types integer and floating-point types in an expression, no precision is
lost:

double area, pi = 3.14;

int radius = 3;

area = radius * radius * pi;

Incrementing a Variable

▪Step by Step:
counter = counter + 1;

1. Do the right hand side of the assignment first:
Find the value stored in counter, and add 1 to it

2. Store the result in the variable named on the left side of the assignment
operator (counter in this case)

Shorthand for Incrementing

▪Incrementing (+1) and decrementing (-1) integer types is so common that there are
shorthand version for each

Long Way Shortcut

counter = counter + 1; counter++ ;

counter = counter - 1; counter-- ;

Integer Division and Remainder

▪When both parts of division are integers, the result is an integer.
▪All fractional information is lost (no rounding)
int result = 7 / 4;

▪The value of result will be 1
▪If you are interested in the remainder of dividing two integers, use the % operator
(called modulus):

int remainder = 7 % 4;

▪The value of remainder will be 3
▪Sometimes called modulo divide

Powers and Roots

▪In Java, there are no symbols for power and roots
Becomes:
 b * Math.pow(1 + r / 100, n)

▪Analyzing the expression:

▪The Java library declares many mathematical functions, such as Math.sqrt
(square root) and Math.pow (raising to a power)

Mathematical Methods

Floating-Point to Integer Conversion

▪The Java compiler does not allow direct assignment of a floating-point value to an
integer variable

double balance = total + tax;

int dollars = balance; // Error

▪You can use the ‘cast’ operator: (int) to force the conversion:
double balance = total + tax;

int dollars = (int) balance; // no Error

▪You lose the fractional part of the floating-point value (no rounding occurs)

Cast Syntax

▪Casting is a very powerful tool and should be used carefully
▪To round a floating-point number to the nearest whole number, use the Math.round
method
▪This method returns a long integer, because large floating-point numbers cannot be
stored in an int

long rounded = Math.round(balance);

Arithmetic Expressions

Self Check 2.10

A bank account earns interest once per year. In Java, how do you compute the interest earned
in the first year? Assume variables percent and balance of type double have already been
declared.

Answer: double interest = balance * percent / 100;

Self Check 2.11

In Java, how do you compute the side length of a square whose area is stored in the variable
area?

Answer: double sideLength = Math.sqrt(area);

Self Check 2.12

The volume of a sphere is given by

If the radius is given by a variable radius of type double, write a Java expression for the
volume.

Answer: 4 * Math.PI * Math.pow(radius, 3) / 3 or (4.0 / 3)
* Math.PI * Math.pow(radius, 3), but not (4 / 3) * Math.PI *
Math.pow(radius, 3)

Self Check 2.13

What is the value of 1729 / 10 and 1729 % 10?

Answer: 172 and 9

Self Check 2.14

If n is a positive integer, what is (n / 10) % 10 ?

Answer: It is the second-to-last digit of n. For example, if n is 1729, then n
/ 10 is 172, and (n / 10) % 10 is 2.

Common Error 2.4

▪Unintended Integer Division
System.out.print("Please enter your last three test
scores: ");

int s1 = in.nextInt();

int s2 = in.nextInt()

int s3 = in.nextInt();

double average = (s1 + s2 + s3) / 3; // Error

▪Why?

▪All of the calculation on the right happens first
▪Since all are ints, the compiler uses integer division

▪Then the result (an int) is assigned to the double
▪There is no fractional part of the int result, so zero (.0) is assigned to
the fractional part of the double

Common Error 2.5

▪Unbalanced Parenthesis
▪Which is correct?
(-(b * b - 4 * a * c) / (2 * a) // 3 (, 2)

-(b * b - (4 * a * c)) / (2 * a) // 3 (, 3)

▪The count of (and) must match
▪Unfortunately, it is hard for humans to keep track

▪Here’s a handy trick
▪Count (as +1, and) as -1: Goal: 0
 -(b * b - (4 * a * c))) / 2 * a)

 1 2 1 0 -1 -2

Input and Output

▪Reading Input
▪ You might need to ask for input (aka prompt for input) and then save what was
entered

▪We will be reading input from the keyboard
▪For now, don’t worry about the details

▪ This is a three step process in Java
1. Import the Scanner class from its ‘package’

 java.util import java.util.Scanner;

2. Setup an object of the Scanner class
 Scanner in = new Scanner(System.in);

3. Use methods of the new Scanner object to get input
 int bottles = in.nextInt();

 double price = in.nextDouble();

Syntax 2.3: Input Statement

▪The Scanner class allows you to read keyboard input from the user
▪It is part of the Java API util package

▪Java classes are grouped into packages. Use the import statement to use
classes from packages

Formatted Output

▪Outputting floating point values can look strange:
Price per liter: 1.21997

▪To control the output appearance of numeric variables, use formatted output
tools such as:

System.out.printf(“%.2f”, price);
 Price per liter: 1.22

System.out.printf(“%10.2f”, price);
 Price per liter: 1.22

▪ The %10.2f is called a format specifier

2 spaces
10 spaces

Format Types

▪Formatting is handy to align columns of output

▪You can also include text inside the quotes:
 System.out.printf(“Price per liter: %10.2f”, price);

Formatted Output Examples

▪Left Justify a String:
 System.out.printf(“%-10s”, “Total:”);

▪Right justify a number with two decimal places
 System.out.printf(“%10.2f”, price);

▪And you can print multiple values
 System.out.printf(“%-10s%10.2f”, “Total:”, price);

Volume2.java

Self Check 2.15

Write statements to prompt for and read the user’s age using a Scanner variable
named in.

Answer:
System.out.print("How old are you? ");

int age = in.nextInt();

Self Check 2.16

What is wrong with the following statement sequence?
System.out.print("Please enter the unit price: ");

double unitPrice = in.nextDouble();

int quantity = in.nextInt();

Answer: There is no prompt that alerts the program user to enter
the quantity.

Self Check 2.17

What is problematic about the following statement sequence?
System.out.print("Please enter the unit price: ");

double unitPrice = in.nextInt();

Answer: The second statement calls nextInt, not nextDouble.
If the user were to enter a price such as 1.95, the program would
be terminated with an “input mismatch exception”.

Self Check 2.18

What is problematic about the following statement sequence?
System.out.print("Please enter the number of cans");

int cans = in.nextInt();

Answer: There is no colon and space at the end of the prompt. A
dialog would look like this:

Please enter the number of cans6

Self Check 2.19

What is the output of the following statement sequence?
int volume = 10;

System.out.printf("The volume is %5d", volume);

Answer:
The total volume is 10

There are four spaces between is and 10. One space originates from
the format string (the space between s and %), and three spaces are
added before 10 to achieve a field width of 5.

Self Check 2.20

Using the printf method, print the values of the integer variables bottles and cans so that the
output looks like this:

Bottles: 8

Cans: 24

The numbers to the right should line up. (You may assume that the numbers have at most 8
digits.)

Answer: Here is a simple solution:
System.out.printf("Bottles: %8d%n", bottles);

System.out.printf("Cans: %8d%n", cans);

Note the spaces after Cans:. Alternatively, you can use format specifiers for the
strings. You can even combine all output into a single statement:

System.out.printf("%-9s%8d%n%-9s%8d%n", "Bottles: ",
bottles, "Cans:", cans);

Tip 2.2 Java API Documentation

▪Lists the classes and methods of the Java AP
▪On the web at: http://download.oracle.com/javase/6/docs/api

Packages

Classes

Methods

Problem Solving: First By Hand

▪A very important step for developing an algorithm is to first carry out the
computations by hand. Example Problem:

▪A row of black and white tiles needs to be placed along a wall. For
aesthetic reasons, the architect has specified that the first and last
tile shall be black.
▪Your task is to compute the number of tiles needed and the gap at
each end, given the space available and the width of each tile.

Start with Example Values

▪ Givens:
Total width: 100 inches
Tile width: 5 inches

▪Test your values
▪Let’s see…100/5 = 20, perfect! 20 tiles. No gap.
▪But wait… BW…BW “…first and last tile shall be black.”

▪Look more carefully at the problem…
▪Start with one black, then some number of WB pairs

▪Observation: each pair is 2x width of 1 tile
▪In our example, 2 x 5 = 10 inches

Start with Example Values

Total width: 100 inches
Tile width: 5 inches

▪Calculate total width of all tiles
▪One black tile: 5”
▪9 pairs of BWs: 90”
▪Total tile width: 95”

▪Calculate gaps (one on each end)
▪100 – 95 = 5” total gap
▪5” gap / 2 = 2.5” at each end

Now Devise an Algorithm

▪Use your example to see how you calculated values
▪How many pairs?

▪Note: must be a whole number
Integer part of:

(total width – tile width) / 2 x tile width
▪How many tiles?

1 + 2 x the number of pairs
▪Gap at each end

(total width – number of tiles x tile width) / 2

Self Check 2.21

Translate the pseudocode for computing the number of tiles and the gap width into Java.

Answer:
int pairs = (totalWidth - tileWidth) / (2 * tileWidth);

int tiles = 1 + 2 * pairs;

double gap = (totalWidth - tiles * tileWidth) / 2.0;

Be sure that pairs is declared as an int.

Self Check 2.22

Suppose the architect specifies a pattern with black, gray, and white tiles, like this:

Again, the first and last tile should be black. How do you need to modify the algorithm?

Answer: Now there are groups of four tiles (gray/ white/gray/black)
following the initial black tile. Therefore, the algorithm is now

number of groups = integer part of (total width - tile width) / (4 x
tile width)
number of tiles = 1 + 4 x number of groups

 The formula for the gap is not changed.

Self Check 2.23

A robot needs to tile a floor with alternating black and white tiles. Develop an algorithm that yields
the color (0 for black, 1 for white), given the row and column number. Start with specific values for
the row and column, and then generalize.

Answer: Clearly, the answer depends only on whether the row and column
numbers are even or odd, so let’s first take the remainder after dividing by 2.
Then we can enumerate all expected answers:

Row %2 Column %2 Color
0 0 0
0 1 1
1 0 1
1 1 0
In the first three entries of the table, the color is simply the sum of the
remainders. In the fourth entry, the sum would be 2, but we want a zero. We
can achieve that by taking another remainder operation:
color = ((row % 2) + (column % 2)) % 2

Self Check 2.24

For a particular car, repair and maintenance costs in year 1 are estimated at $100; in year
10, at $1,500. Assuming that the repair cost increases by the same amount every year,
develop pseudocode to compute the repair cost in year 3 and then generalize to year n.

Answer: In nine years, the repair costs increased by $1,400. Therefore,
the increase per year is $1,400 / 9 ≈ $156. The repair cost in year 3 would
be $100 + 2 × $156 = $412. The repair cost in year n is $100 + n × $156.
To avoid accumulation of roundoff errors, it is actually a good idea to use
the original expression that yielded $156, that is,

Repair cost in year n = 100 + n x 1400 / 9

Self Check 2.25

The shape of a bottle is approximated by two cylinders of radius r1 and r2 and heights
h1 and h2, joined by a cone section of height h3. Using the formulas for the volume of a
cylinder, V = πr2h, and a cone section,

develop pseudocode to compute the volume of the bottle. Using an actual bottle with
known volume as a sample, make a hand calculation of your pseudocode.

Answer: The pseudocode follows easily from the equations:
bottom volume = π x r12 x h1
top volume = π x r22 x h2
middle volume = π x (r12 + r1 x r2 + r22) x h3 / 3
total volume = bottom volume + top volume + middle volume

Measuring a typical wine bottle yields r1 = 3.6, r2 = 1.2, h1 = 15,
h2 = 7, h3 = 6 (all in centimeters). Therefore,
bottom volume = 610.73
top volume = 31.67
middle volume = 135.72
total volume = 778.12
The actual volume is 750 ml, which is close enough to our computation to
give confidence that it is correct.

Strings

▪The String Type:
▪Type Variable Literal
▪String name = “Harry”

▪Once you have a String variable, you can use methods such as:
int n = name.length(); // n will be assigned 5

▪A String’s length is the number of characters inside:
▪An empty String (length 0) is shown as “”
▪The maximum length is quite large (an int)

String Concatenation (+)

▪You can ‘add’ one String onto the end of another
String fName = “Harry”

String lName = “Morgan“

String name = fname + lname; // HarryMorgan

▪You wanted a space in between?
String name = fname + “ “ + lname; // Harry Morgan

▪To concatenate a numeric variable to a String:
String a = “Agent“;

int n = 7;

String bond = a + n; // Agent7

▪Concatenate Strings and numerics inside println:
System.out.println("The total is " + total);

String Input

▪You can read a String from the console with:
System.out.print("Please enter your name: ");

String name = in.next();

▪The next method reads one word at a time
▪It looks for ‘white space’ delimiters

▪You can read an entire line from the console with:
System.out.print("Please enter your address: ");

String address = in.nextLine();

▪The nextLine method reads until the user hits ‘Enter’
▪Converting a String variable to a number:

System.out.print("Please enter your age: ");

String input = in.nextLine();

int age = Integer.parseInt(input); // only digits!

String Escape Sequences

▪How would you print a double quote?
▪Preface the " with a \ inside the double quoted String
System.out.print("He said \"Hello\"");

▪OK, then how do you print a backslash?
▪Preface the \ with another \!
System.out.print(""C:\\Temp\\Secret.txt");

▪Special characters inside Strings
▪Output a newline with a ‘\n’
System.out.print("*\n**\n***\n");

*
**

Strings and Characters

▪Strings are sequences of characters
▪Unicode characters to be exact
▪Characters have their own type: char
▪Characters have numeric values

▪See the ASCII code chart in Appendix B
▪For example, the letter ‘H’ has a value of 72 if it were a number

▪Use single quotes around a char
char initial = ‘B’;

▪Use double quotes around a String
String initials = “BRL”;

Copying a char from a String

▪A substring is a portion of a String
▪The substring method returns a portion of a String at a given index for a
number of chars, starting at an index:

 String greeting = "Hello!";

 String sub = greeting.substring(0, 2);

 String sub2 = greeting.substring(3, 5);

0 1 2 3 4 5

H e l l o !
0 1

H e

Copying a Portion of a String

▪Each char inside a String has an index number:

▪The first char is index zero (0)
▪The charAt method returns a char at a given index inside a String:

 String greeting = "Harry";

 char start = greeting.charAt(0);

 char last = greeting.charAt(4);

0 1 2 3 4 5 6 7 8 9

c h a r s h e r e

0 1 2 3 4

H a r r y

String Operations (1)

String Operations (2)

Self Check 2.26

What is the length of the string "Java Program "?

 Answer: The length is 12. The space counts as a character.

Self Check 2.27

Consider this string variable.
String str = "Java Program";

Give a call to the substring method that returns the substring "gram".

Answer: str.substring(8, 12)or str.substring(8)

Self Check 2.28

Use string concatenation to turn the string variable str from Self Check 27
into "Java Programming ".

Answer: str = str + "ming";

Self Check 2.29

What does the following statement sequence print?

String str = "Harry";

int n = str.length();

String mystery = str.substring(0, 1) + str.substring(n - 1, n);

System.out.println(mystery);

Answer: Hy

Self Check 2.30

Give an input statement sequence to read a name of the form “John Q. Public”.

Answer:
String first = in.next();
String middle = in.next();
String last = in.next();

