
Chapter 3 – Decisions

Chapter Goals

▪To implement decisions using the if statement
▪To compare integers, floating-point numbers, and Strings
▪To write statements using the Boolean data type
▪To develop strategies for testing your programs
▪To for validate user input

The if Statement

▪ A computer program often needs to make decisions based on input, or
circumstances

▪ For example, buildings often ‘skip’ the 13th floor, and elevators should too
▪ The 14th floor is really the 13th floor
▪ So every floor above 12 is really ‘floor – 1’

▪ If floor > 12, Actual floor = floor - 1
▪ The two keywords of the if statement are:

▪ if

▪ else

▪ The if statement allows a program to carry out different actions depending
on the nature of the data to be processed.

Flowchart of the if Statement

▪One of the two branches is executed once
True (if) branch or False (else) branch

Flowchart with only a True Branch

▪An if statement may not need a ‘False’ (else) branch

Syntax 3.1 The if Statement

ElevatorSimulation.java

Self Check 3.1

In some Asian countries, the number 14 is considered unlucky. Some building owners play it
safe and skip both the thirteenth and the fourteenth floor. How would you modify the sample
program to handle such a building?

Answer: Change the if statement to
if (floor > 14)

{

 actualFloor = floor - 2;

}

Self Check 3.2

Consider the following if statement to compute a discounted price:
if (originalPrice > 100)
{
 discountedPrice = originalPrice - 20;
}
else
{
 discountedPrice = originalPrice - 10;
}

What is the discounted price if the original price is 95? 100? 105?

Answer: 85. 90. 85.

Self Check 3.3

Compare this if statement with the one in Self Check 2:
if (originalPrice < 100)

{

 discountedPrice = originalPrice - 10;

}

else

{

 discountedPrice = originalPrice - 20;

}

Do the two statements always compute the same value? If not, when do the values differ?

Answer: The only difference is if originalPrice is 100. The statement
in Self Check 2 sets discountedPrice to 90; this one sets it to 80.

Self Check 3.4

Consider the following statements to compute a discounted price:
discountedPrice = originalPrice;

if (originalPrice > 100)

{

 discountedPrice = originalPrice - 10;

}

What is the discounted price if the original price is 95? 100? 105?

Answer: 95. 100. 95.

Self Check 3.5

The variables fuelAmount and fuelCapacity hold the actual amount of fuel and the size
of the fuel tank of a vehicle. If less than 10 percent is remaining in the tank, a status light
should show a red color; otherwise it shows a green color. Simulate this process by printing
out either "red" or "green".

Answer:
if (fuelAmount < 0.10 * fuelCapacity)

{

 System.out.println("red");

}

else

{

 System.out.println("green");

}

Tips On Using Braces

▪Line up all pairs of braces vertically
▪Lined up Not aligned (saves lines)

▪Always use braces
▪Although single statement clauses do not require them

▪Most programmer’s editors have a tool to align matching braces.

Tips on Indenting Blocks

▪Use Tab to indent a consistent number of spaces

▪This is referred to as ‘block- structured’ code. Indenting consistently makes
code much easier for humans to follow.

Common Error

▪A semicolon after an if statement
▪It is easy to forget and add a semicolon after an if statement

▪The true path is now the space just before the semicolon

▪The ‘body’ (between the curly braces) will always be executed in this
case

if (floor > 13) ;
{
 floor--;
}

The Conditional Operator

▪A ‘shortcut’ you may find in existing code
▪It is not used in this book

▪Includes all parts of an if-else clause, but uses:
▪? To begin the true branch
▪: To end the true branch and start the false branch

actualFloor = floor > 13 ? floor - 1 : floor;

Condition True branch False branch

Comparing Numbers and Strings

▪Every if statement has a condition
▪Usually compares two values with an operator

if (floor > 13)
..

if (floor >= 13)
 ..
if (floor < 13)

..
if (floor <= 13)
 ..
if (floor == 13)

..
Beware!

Syntax 3.2 Comparisons

Operator Precedence

▪The comparison operators have lower precedence than arithmetic operators
▪Calculations are done before the comparison
▪Normally your calculations are on the ‘right side’ of the comparison or
assignment operator

actualFloor = floor + 1;

Calculations

if (floor > height + 1)

Relational Operator Use

Comparing Strings

▪Strings are a bit ‘special’ in Java
▪Do not use the == operator with Strings

▪The following compares the locations of two strings, and not
their contents

▪Instead use the String’s equals method:

if (string1 == string2) ...

if (string1.equals(string2)) ...

Self Check 3.6

Which of the following conditions are true, provided a is 3 and b is 4?
a. a + 1 <= b
b. a + 1 >= b
c. a + 1 != b

Answer: (a) and (b) are both true, (c) is false.

Self Check 3.7

Give the opposite of the condition
floor > 13

Answer: floor <= 13

Self Check 3.8

What is the error in this statement?
if (scoreA = scoreB)

{

 System.out.println("Tie");

}

Answer: The values should be compared with ==, not =.

Self Check 3.9

Supply a condition in this if statement to test whether the user entered a Y:
System.out.println("Enter Y to quit.");

String input = in.next();

if (. . .)

{

 System.out.println("Goodbye.");

}

Answer: input.equals("Y")

Self Check 3.10

How do you test that a string str is the empty string?

Answer: str.equals("") or str.length() == 0

Common Error

▪Comparison of Floating-Point Numbers
▪Floating-point numbers have limited precision
▪Round-off errors can lead to unexpected results

double r = Math.sqrt(2.0);
if (r * r == 2.0)
{
 System.out.println("Math.sqrt(2.0) squared is 2.0");
}
else
{
 System.out.println("Math.sqrt(2.0) squared is not 2.0

 but " + r * r);
} Output:

Math.sqrt(2.0) squared is not 2.0 but 2.00000000000000044

The Use of EPSILON

▪Use a very small value to compare the difference if floating-point values
are ‘close enough’

▪The magnitude of their difference should be less than some
threshold
▪Mathematically, we would write that x and y are close enough if:

final double EPSILON = 1E-14;
double r = Math.sqrt(2.0);
if (Math.abs(r * r - 2.0) < EPSILON)
{
 System.out.println("Math.sqrt(2.0) squared is approx.

 2.0");
}

Common Error

▪Using == to compare Strings
▪== compares the locations of the Strings

▪Java creates a new String every time a new word inside double-quotes
is used

▪If there is one that matches it exactly, Java re-uses it

String nickname = "Rob";
. . .
if (nickname == "Rob") // Test is true

String name = "Robert";
String nickname = name.substring(0, 3);
. . .
if (nickname == "Rob") // Test is false

Lexicographical Order

▪To compare Strings in ‘dictionary’ order
▪When compared using compareTo, string1 comes:

▪Before string2 if

▪After string2 if

▪Equal to string2 if

▪Notes
▪ All UPPERCASE letters come before lowercase
▪‘space’ comes before all other printable characters
▪Digits (0-9) come before all letters
▪See Appendix A for the Basic Latin Unicode (ASCII) table

string1.compareTo(string2) < 0

string1.compareTo(string2) > 0

string1.compareTo(string2) == 0

Implementing an if Statement

1) Decide on a branching condition

2) Write pseudocode for the true branch

3) Write pseudocode for the false branch

4) Double-check relational operators

Test values below, at, and above the comparison (127, 128, 129)

5) Remove duplication

6) Test both branches

7) Write the code in Java

Implemented Example

▪The university bookstore has a Kilobyte Day sale every October 24, giving an
8 percent discount on all computer accessory purchases if the price is less
than $128, and a 16 percent discount if the price is at least $128.

if (originalPrice < 128)
{
 discountRate = 0.92;
}
else
{
 discountRate = 0.84;
}
discountedPrice = discountRate * originalPrice;

Multiple Alternatives

▪What if you have more than two branches?
▪Count the branches for the following earthquake effect example:

▪8.0 (or greater)
▪>= 7.0 but < 8.0
▪>= 6.0 but < 7.0
▪>= 4.5 but < 6.00
▪Less than 4.5

▪When using multiple if statements, test general conditions after more
specific conditions.

Flowchart of Multiway Branching

> 8.0? Most Structures Fall

True

False

>=
7.0?

Many Buildings Destroyed
True

False

>=
6.0?

Many buildings considerably
damaged, some collapse

True

False

>=
4.5?

Damage to poorly constructed
buildings

True

False

No destruction of buildings

if (richter >= 8.0) // Handle the ‘special case’ first
{
 System.out.println("Most structures fall");
}
else if (richter >= 7.0)
{
 System.out.println("Many buildings destroyed");
}
else if (richter >= 6.0)
{
 System.out.println("Many buildings damaged, some
collapse");
}
else if (richter >= 4.5)
{
 System.out.println("Damage to poorly constructed
buildings");
}
else // so that the ‘general case’ can be handled last
{
 System.out.println("No destruction of buildings");

if, else if Multiway Branching

if (richter >= 8.0)
{
 System.out.println("Most structures fall");
}
if (richter >= 7.0)
{
 System.out.println("Many buildings destroyed");
}
if (richter >= 6.0)
{
 System.out.println("Many buildings damaged, some collapse");
}
if (richter >= 4.5)
{
 System.out.println("Damage to poorly constructed buildings");
}

What Is Wrong with this Code?

Self Check 3.11

In a game program, the scores of players A and B are stored in variables scoreA and scoreB.
Assuming that the player with the larger score wins, write an if/else if /else sequence that
prints out "A won", "B won", or "Game tied ".

Answer:
if (scoreA > scoreB)

{

 System.out.println("A won");

}

else if (scoreA < scoreB)

{

 System.out.println("B won");

}

else

{

 System.out.println("Game tied");

}

Self Check 3.12

Write a conditional statement with three branches that sets s to 1 if x is positive, to –1 if x is
negative, and to 0 if x is zero.

Answer:
if (x > 0) { s = 1; }

else if (x < 0) { s = -1; }

else { s = 0; }

Self Check 3.13

How could you achieve the task of Self Check 12 with only two branches?

Answer: You could first set s to one of the three values:

s = 0;

if (x > 0) { s = 1; }

else if (x < 0) { s = -1; }

Self Check 3.14

Beginners sometimes write statements such as the following:
if (price > 100)

{

 discountedPrice = price - 20;

}

else if (price <= 100)

{

 discountedPrice = price - 10;

}

Explain how this code can be improved.

Answer: The if (price <= 100) can be omitted (leaving just else),
making it clear that the else branch is the sole alternative.

Self Check 3.15

Suppose the user enters -1 into the earthquake program. What is printed?

Answer: No destruction of buildings.

Self Check 3.16

Suppose we want to have the earthquake program check whether the user entered a
negative number. What branch would you add to the if statement, and where?

Answer: Add a branch before the final else:
else if (richter < 0)

{

 System.out.println("Error: Negative input");

}

▪The switch statement chooses a case based on an integer value.
▪break ends each case
▪default catches all other values
▪If the break is missing, the case falls through to the next case’s statements.

Another Way to Multiway Branch

int digit = . . .;
switch (digit)
{
 case 1: digitName = "one"; break;
 case 2: digitName = "two"; break;
 case 3: digitName = "three"; break;
 case 4: digitName = "four"; break;
 case 5: digitName = "five"; break;
 case 6: digitName = "six"; break;
 case 7: digitName = "seven"; break;
 case 8: digitName = "eight"; break;
 case 9: digitName = "nine"; break;
 default: digitName = ""; break;
}

Nested Branches

▪You can nest an if inside either branch of an if statement.
▪Simple example: Ordering drinks

▪Ask the customer for their drink order
▪if customer orders wine

▪Ask customer for ID
▪if customer’s age is 21 or over

▪Serve wine
▪Else

▪Politely explain the law to the customer
▪Else

▪Serve customers a non-alcoholic drink

▪Nested if-else inside true branch of an if statement.
▪Three paths

Flowchart of a Nested if

Ask for order

Wine? Check ID

>= 21? Serve wine

Read law

True

False

True

Done

False
Serve

non-alcoholic
drink

▪Four outcomes (branches)

▪Single
▪<= 32000
▪> 32000

▪Married
▪ <= 64000
▪> 64000

Tax Example: Nested ifs

Flowchart for Tax Example

TaxCalculator.java (1)

TaxCalculator.java (2)

▪The ‘True’ branch (Married)
▪Two branches within this branch

TaxCalculator.java (3)

▪The ‘False’ branch (Not married)

Self Check 3.17

What is the amount of tax that a single taxpayer pays on an income of $32,000?

Answer: 3200.

Self Check 3.18

Would that amount change if the first nested if statement changed from
if (income <= RATE1_SINGLE_LIMIT)
to
if (income < RATE1_SINGLE_LIMIT)

Answer: No. Then the computation is 0.10 × 32000 + 0.25 ×
(32000 – 32000).

Self Check 3.19

Suppose Harry and Sally each make $40,000 per year. Would they save taxes if they
married?

Answer: No. Their individual tax is $5,200 each, and if they
married, they would pay $10,400. Actually, taxpayers in higher tax
brackets (which our program does not model) may pay higher taxes
when they marry, a phenomenon known as the marriage penalty.

Self Check 3.20

How would you modify the TaxCalculator.java program in order to check that the user
entered a correct value for the marital status (i.e., s or m)?

Answer: Change else in line 41 to
else if (maritalStatus.equals("m"))

and add another branch after line 52:
else

{

 System.out.println(

 "Error: marital status should be s or m.");

}

Self Check 3.21

Some people object to higher tax rates for higher incomes, claiming that you might end up
with less money after taxes when you get a raise for working hard. What is the flaw in this
argument?

Answer: The higher tax rate is only applied on the income in the higher
bracket. Suppose you are single and make $31,900. Should you try to
get a $200 raise? Absolutely: you get to keep 90 percent of the first $100
and 75 percent of the next $100.

Hand-Tracing

▪Hand-tracing helps you understand whether a program works correctly
▪Create a table of key variables

▪Use pencil and paper to track their values
▪Works with pseudocode or code

▪Track location with a marker such as a paper clip
▪Use example input values that:

▪You know what the correct outcome should be
▪Will test each branch of your code

Hand-Tracing Tax Example (1)

▪Setup
▪Table of variables
▪Initial values

Hand-Tracing Tax Example (2)

▪Input variables
▪From user
▪Update table

▪Because marital status is not “s” we skip to the else on line 41

Hand-Tracing Tax Example (3)

▪Because income is not <= 64000, we move to the else clause on line 47
▪Update variables on lines 49 and 50
▪Use constants

Hand-Tracing Tax Example (4)

▪Output
▪Calculate
▪As expected?

Common Error

▪The Dangling else Problem
▪When an if statement is nested inside another if statement, the following
can occur:

▪The indentation level suggests that the else is related to the if country
(“USA”)

▪Else clauses always associate to the closest if

double shippingCharge = 5.00; // $5 inside continental U.S.
if (country.equals("USA"))
 if (state.equals("HI"))
 shippingCharge = 10.00; // Hawaii is more expensive
else // Pitfall!
 shippingCharge = 20.00; // As are foreign shipment

Enumerated Types

▪Java provides an easy way to name a finite list of values that a variable can hold
▪It is like declaring a new type, with a list of possible values

▪You can have any number of values, but you must include them all in the
enum declaration
▪You can declare variables of the enumeration type:

▪And you can use the comparison operator with them:

public enum FilingStatus {
 SINGLE, MARRIED,MARRIED_FILING_SEPARATELY }

FilingStatus status = FilingStatus.SINGLE;

if (status == FilingStatus.SINGLE) . . .

Problem Solving: Flowcharts

▪You have seen a few basic flowcharts
▪A flowchart shows the structure of decisions and tasks to solve a problem
▪Basic flowchart elements:

▪Connect them with arrows
▪But never point an arrow
▪ inside another branch!

Conditional Flowcharts

▪Two Outcomes ▪Multiple Outcomes

Shipping Cost Flowchart

Shipping costs are $5 inside the United States, except that to Hawaii and Alaska
they are $10. International shipping costs are also $10.
▪Three Branches:

International
Branch

Hawaii/Alaska
Branch

Lower 48
Branch

Don’t Connect Branches!

Shipping costs are $5 inside the United States, except that to Hawaii and Alaska
they are $10. International shipping costs are also $10.
▪Do not do this!

International
Branch

Hawaii/Alaska
Branch

Lower 48
Branch

Shipping Cost Flowchart

Shipping costs are $5 inside the United States, except that to Hawaii and Alaska
they are $10. International shipping costs are also $10.
▪Completed

Self Check 3.22

Draw a flowchart for a program that reads a value temp and prints “Frozen” if it is less than
zero.

Answer:

Self Check 3.23

What is wrong with the flowchart at right?

Answer: The “True” arrow from the first
decision points into the “True” branch of the
second decision, creating spaghetti code.

Self Check 3.24

How do you fix the flowchart of Self Check 23?

Answer: Here is one solution. In Section 3.7, you will see how you can
combine the conditions for a more elegant solution.

Self Check 3.25

Draw a flowchart for a program that reads a value x. If it is less than zero, print “Error”.
Otherwise, print its square root.

 Answer:

Self Check 3.26

Draw a flowchart for a program that reads a value temp. If it is less than zero, print
“Ice”. If it is greater than 100, print “Steam”. Otherwise, print “Liquid”.

 Answer:

Problem Solving: Test Cases

▪Aim for complete coverage of all decision points:
▪There are two possibilities for the marital status and two tax brackets
for each status, yielding four test cases
▪Test a handful of boundary conditions, such as an income that is at the
boundary between two tax brackets, and a zero income
▪If you are responsible for error checking (which is discussed in Section
3.8), also test an invalid input, such as a negative income

Choosing Test Cases

▪Choose input values that:
▪Test boundary cases and 0 values
▪A boundary case is a value that is tested in the code
▪Test each branch

Self Check 3.27

Using Figure 1 on page 85 as a guide, follow the process described in Section 3.6 to
design a set of test cases for the ElevatorSimulation.java program in Section
3.1.

Answer:

Self Check 3.28

What is a boundary test case for the algorithm in How To 3.1 on page 95?
What is the expected output?

Answer: A boundary test case is a price of $128. A 16 percent discount
should apply because the problem statement states that the larger
discount applies if the price is at least $128. Thus, the expected output is
$107.52.

Self Check 3.29

Using Figure 3 on page 99 as a guide, follow the process described in Section 3.6 to
design a set of test cases for the EarthquakeStrength.java program in Section 3.3.

Answer:

Self Check 3.30

Suppose you are designing a part of a program for a medical robot that has a sensor
returning an x- and y-location (measured in cm). You need to check whether the sensor
location is inside the circle, outside the circle, or on the boundary (specifically, having a
distance of less than 1 mm from the boundary). Assume the circle has center (0, 0) and a
radius of 2 cm. Give a set of test cases.

Answer:

Boolean Variables

▪Boolean Variables
▪A Boolean variable is often called a flag because it can be either up (true) or
down (false)
▪boolean is a Java data type

▪boolean failed = true;
▪Can be either true or false

▪Boolean Operators: && and ||
▪They combine multiple conditions
▪&& is the and operator
▪|| is the or operator

Character Testing Methods

The Character class has a number of handy methods that return a
boolean value:

if (Character.isDigit(ch))
{
 ...
}

Combined Conditions: &&

▪Combining two conditions is often used in range checking
▪Is a value between two other values?

▪Both sides of the and must be true for the result to be true

if (temp > 0 && temp < 100)
{
 System.out.println("Liquid");
}

Combined Conditions: ||

▪If only one of two conditions need to be true
▪Use a compound conditional with an or:

▪If either is true
▪The result is true

if (balance > 100 || credit > 100)
{
 System.out.println(“Accepted");
}

The not Operator: !

▪If you need to invert a boolean variable or comparison, precede it with !

▪If using !, try to use simpler logic:

if (!attending || grade < 60)
{
 System.out.println(“Drop?");
}

if (!attending || grade < 60)
{
 System.out.println(“Drop?");
}

if (attending && (grade >= 60))

and Flowchart

▪This is often called ‘range checking’
▪Used to validate that input is between two values

if (temp > 0 && temp < 100)
{
 System.out.println("Liquid");
}

or Flowchart

▪Another form of ‘range checking’
▪Checks if value is outside a range

if (temp <= 0 || temp >= 100)
{
 System.out.println(“Not Liquid");
}

Boolean Operator Examples

Self Check 3.31

Suppose x and y are two integers. How do you test whether both of them are zero?

Answer: x == 0 && y == 0

Self Check 3.32

How do you test whether at least one of them is zero?

Answer: x == 0 || y == 0

Self Check 3.33

How do you test whether exactly one of them is zero?

Answer: (x == 0 && y != 0) || (y == 0 && x != 0)

Self Check 3.34

What is the value of !!frozen?

Answer: The same as the value of frozen.

Self Check 3.35

What is the advantage of using the type boolean rather than strings "false"/"true" or
integers 0/1?

Answer: You are guaranteed that there are no other values. With
strings or integers, you would need to check that no values such as
"maybe" or –1 enter your calculations.

Common Error

▪Combining Multiple Relational Operators

▪This format is used in math, but not in Java!
▪It requires two comparisons:

▪This is also not allowed in Java:

▪This also requires two comparisons:

if (0 <= temp <= 100) // Syntax error!

if (0 <= temp && temp <= 100)

if (input == 1 || 2) // Syntax error!

if (input == 1 || input == 2)

Common Error

▪Confusing && and || Conditions
▪It is a surprisingly common error to confuse && and || conditions
▪A value lies between 0 and 100 if it is at least 0 and at most 100
▪It lies outside that range if it is less than 0 or greater than 100
▪There is no golden rule; you just have to think carefully

Short-Circuit Evaluation: &&

▪Combined conditions are evaluated from left to right
▪If the left half of an and condition is false, why look further?

Done!

if (temp > 0 && temp < 100)
{
 System.out.println("Liquid");
}

if (quantity > 0 && price / quantity < 10)

Short-Circuit Evaluation: ||

▪If the left half of the or is true, why look further?
▪Java doesn’t!
▪Don’t do these second:

▪Assignment
▪Output

Done!

if (temp <= 0 || temp >= 100)
{
 System.out.println(“Not Liquid");
}

De Morgan’s Law

▪De Morgan’s law tells you how to negate && and || conditions:
▪!(A && B) is the same as !A || !B
▪!(A || B) is the same as !A && !B

▪Example: Shipping is higher to AK and HI

▪To simplify conditions with negations of and or or expressions, it is
usually a good idea to apply De Morgan’s Law to move the
negations to the innermost level.

if (!(country.equals("USA")
 && !state.equals("AK")
 && !state.equals("HI")))
 shippingCharge = 20.00;

if !country.equals("USA")
 || state.equals("AK")
 || state.equals("HI")

shippingCharge = 20.00;

Input Validation

▪Accepting user input is dangerous
▪Consider the Elevator program:
▪The user may input an invalid character or value
▪Must be an integer

▪Scanner can help!
▪hasNextInt

▪True if integer
▪False if not

▪Then range check value
▪We expect a floor number to be between 1 and 20

▪NOT 0, 13 or > 20

if (in.hasNextInt())
{
 int floor = in.nextInt();
 // Process the input value
}
else
{
 System.out.println("Not integer.");
}

ElevatorSimulation2.java

Input value validity checking

Input value range checking

ElevatorSimulation2.java

Self Check 3.36

In the ElevatorSimulation2 program, what is the output when the input is
a. 100?
b. –1?
c. 20?
d. thirteen?

Answer:
(a) Error: The floor must be between 1 and 20.
(b) Error: The floor must be between 1 and 20.
(c) 19
(d) Error: Not an integer.

Self Check 3.37

Your task is to rewrite lines 19–26 of the ElevatorSimulation2 program so that there
is a single if statement with a complex condition. What is the condition?

if (. . .)
{
 System.out.println("Error: Invalid floor number");
}

Answer: floor == 13 || floor <= 0 || floor > 20

Self Check 3.38

In the Sherlock Holmes story “The Adventure of the Sussex Vampire”, the inimitable detective
uttered these words: “Matilda Briggs was not the name of a young woman, Watson, … It was a
ship which is associated with the giant rat of Sumatra, a story for which the world is not yet
prepared.” Over a hundred years later, researchers found giant rats in Western New Guinea,
another part of Indonesia.
Suppose you are charged with writing a program that processes rat weights. It contains the
statements

System.out.print("Enter weight in kg: ");
double weight = in.nextDouble();

What input checks should you supply?

Self Check 3.38

Answer: Check for in.hasNextDouble() , to make sure a researcher didn’t supply an
input such as oh my. Check for weight <= 0 , because any rat must surely have a
positive weight. We don’t know how giant a rat could be, but the New Guinea rats weighed
no more than 2 kg. A regular house rat (rattus rattus) weighs up to 0.2 kg, so we’ll say that
any weight > 10 kg was surely an input error, perhaps confusing grams and kilograms.
Thus, the checks are

if (in.hasNextDouble())
{
 double weight = in.nextDouble();
 if (weight <= 0)
 {
 System.out.println(
 "Error: Weight must be positive.");
 }
 else if (weight > 10)
 {
 System.out.println("Error: Weight > 10 kg.");
 }
 else
 {
 Process valid weight.
 }
}
else
}
 System.out.print("Error: Not a number");
}

Self Check 3.39

Run the following test program and supply inputs 2 and three at the prompts. What
happens? Why?

import java.util.Scanner
public class Test
{
 public static void main(String[] args)
 {
 Scanner in = new Scanner(System.in);
 System.out.print("Enter an integer: ");
 int m = in.nextInt();
 System.out.print("Enter another integer: ");
 int n = in.nextInt();
 System.out.println(m + " " + n);
 }
}

Answer: The second input fails, and the program terminates without
printing anything.

