
Chapter 4 – Loops

Chapter Goals

▪To implement while, for, and do loops
▪To hand-trace the execution of a program
▪To become familiar with common loop algorithms
▪To understand nested loops
▪To implement programs that read and process data sets
▪To use a computer for simulations

The while Loop

▪Examples of loop applications
▪Calculating compound interest
▪Simulations, event driven programs…

▪Compound interest algorithm (Chapter 1)

Steps

Planning the while Loop

•A loop executes instructions repeatedly while a condition is true

while (balance < TARGET)
{
 year++;
 double interest = balance * RATE/100;
 balance = balance + interest;
}

Syntax 4.1 while Statement

Execution of the Loop

DoubleInvestment.java

Declare and initialize a variable outside
of the loop to count years

Increment the years variable each
time through

while Loop Examples (1)

while Loop Examples (2)

Self Check 4.1

How many years does it take for the investment to triple? Modify the program and run it.

Answer: 23 years.

Self Check 4.2

If the interest rate is 10 percent per year, how many years does it take for the
investment to double? Modify the program and run it.

Answer: 8 years.

Self Check 4.3

Modify the program so that the balance after each year is printed. How did you do that?

Answer: Add a statement
System.out.println(balance);

as the last statement in the while loop.

Self Check 4.4

Suppose we change the program so that the condition of the while loop is
while (balance <= TARGET)

What is the effect on the program? Why?

Answer: The program prints the same output. This is because the balance
after 14 years is slightly below $20,000, and after 15 years, it is slightly
above $20,000.

Self Check 4.5

What does the following loop print?
int n = 1;
while (n < 100)
{
 n = 2 * n;
 System.out.print(n + " ");
}

Answer: 2 4 8 16 32 64 128
Note that the value 128 is printed even though it is larger than 100.

Common Error

▪Don’t think “Are we there yet?”
▪The loop body will only execute if the test condition is True
▪“Are we there yet?” should continue if False
▪If bal should grow until it reaches TARGET

▪Which version will execute the loop body?

while (bal < TARGET)
{
 year++;
 interest = bal * RATE;
 bal = bal + interest;
}

while (bal >= TARGET)
{
 year++;
 interest = bal * RATE;
 bal = bal + interest;
}

Common Error

▪Infinite Loops
▪The loop body will execute until the test condition becomes False
▪What if you forget to update the test variable?

▪bal is the test variable (TARGET doesn’t change)
▪You will loop forever! (or until you stop the program)

while (bal < TARGET)
{
 year++;
 interest = bal * RATE;
}

Common Error

▪Off-by-One Errors
▪A ‘counter’ variable is often used in the test condition
▪Your counter can start at 0 or 1, but programmers often start a counter
at 0
▪If I want to paint all 5 fingers, when I am done?

▪Start at 0, use < Start at 1, use <=

int finger = 0;
final int FINGERS = 5;
while (finger < FINGERS)
{
 // paint finger
 finger++;
}

int finger = 1;
final int FINGERS = 5;
while (finger <= FINGERS)
{
 // paint finger
 finger++;
}

Problem Solving: Hand-Tracing

▪Example: Calculate the sum of digits (1+7+2+9)
▪Make columns for key variables (n, sum, digit)
▪Examine the code and number the steps
▪Set variables to state before loop begins

Tracing Sum of Digits

▪Start executing loop body statements changing variable values on a new line
▪Cross out values in previous line

Tracing Sum of Digits

•Continue executing loop statements changing variables
•1729 / 10 leaves 172 (no remainder)

Tracing Sum of Digits

▪Test condition. If true, execute loop again
▪Variable n is 172, Is 172 > 0?, True!

▪Make a new line for the second time through and update variables

Tracing Sum of Digits

▪Third time through
▪Variable n is 17 which is still greater than 0

▪Execute loop statements and update variables

Tracing Sum of Digits

▪Fourth loop iteration:
▪Variable n is 1 at start of loop. 1 > 0? True
▪Executes loop and changes variable n to 0 (1/10 = 0)

Tracing Sum of Digits

▪Because n is 0, the expression (n > 0) is False
▪Loop body is not executed

▪Jumps to next statement after the loop body
▪Finally prints the sum!

Self Check 4.6

Hand-trace the following code, showing the value of n and the output.
int n = 5;
while (n >= 0)
{
 n--;
 System.out.print(n);
}

Answer:
n output
5
4 4
3 3
2 2
1 1
0 0
-1 -1

Self Check 4.7

Hand-trace the following code, showing the value of n and the output. What potential error do
you notice?

int n = 1;
while (n <= 3)
{
 System.out.print(n + ", ");
 n++;
}

Answer:
n output
1 1,
2 1, 2,
3 1, 2, 3,
4

There is a comma after the last value. Usually, commas are between values
only.

Self Check 4.8

Hand-trace the following code, assuming that a is 2 and n is 4. Then explain what the code
does for arbitrary values of a and n.

int r = 1;
int i = 1;
while (i <= n)
{
 r = r * a;
 i++;
}

Answer:
a n r i
2 4 1 1
 2 2
 4 3
 8 4
 16 5

The code computes an.

Self Check 4.9

Trace the following code. What error do you observe?
int n = 1;
while (n != 50)
{
 System.out.println(n);
 n = n + 10;
}

Answer:
n output
 1 1
11 11
21 21
31 31
41 41
51 51
61 61
...

This is an infinite loop. n is never equal to 50.

Self Check 4.10

The following pseudocode is intended to count the number of digits in the number n:
count = 1
temp = n
while (temp > 10)
 Increment count.
 Divide temp by 10.0.

Trace the pseudocode for n = 123 and n = 100. What error do you find?

Answer:
count temp
1 123
2 12.3
3 1.23

This yields the correct answer. The number 123 has 3 digits.
count temp
1 100
2 10.0

This yields the wrong answer. The number 100 also has 3 digits. The loop
condition should have been

while (temp >= 10)

The for Loop

▪Use a for loop when you:
▪Can use an integer counter variable
▪Have a constant increment (or decrement)
▪Have a fixed starting and ending value for the counter

▪Use a for loop when a value runs from a starting point to an ending point with a
constant increment or decrement

int i = 5; // initialize
while (i <= 10) // test
{
 sum = sum + 1;
 i++; // update
}

for (int i = 5; i <= 10; i++)
{
 sum = sum + i;
}

Execution of a for Loop

Syntax 4.2 for Statement

When To Use a for Loop?

▪Yes, a while loop can do everything a for loop can do
▪Programmers like it because it is concise

▪Initialization
▪Condition
▪Update

▪All on one line!

Planning a for Loop

▪Print the balance at the end of each year for a number of years

InvestmentTable.java

▪Setup variables
▪Get input
▪Loop

▪Calc
▪Output

Good Examples of for Loops

for Loop Variable Scope

▪Scope is the ‘lifetime’ of a variable.
▪When ‘x’ is declared in the for statement:
▪‘x’ exists only inside the ‘block’ of the for loop { }

▪Solution: Declare ‘x’ outside the for loop

for(int x = 1; x < 10; x = x + 1) {

 // steps to do inside the loop

 // You can use ‘x’ anywhere in this box

}

if (x > 100) // Error! x is out of scope!

int x;
for(x = 1; x < 10; x = x + 1)

Self Check 4.11

Write the for loop of the InvestmentTable.java program as a while loop.

Answer:
int year = 1;
while (year <= nyears)
{
 double interest = balance * RATE / 100;
 balance = balance + interest;
 System.out.printf("%4d %10.2f%n", year, balance);
 year++;
}

Self Check 4.12

How many numbers does this loop print?
for (int n = 10; n >= 0; n--)
{
 System.out.println(n);
}

Answer: 11 numbers: 10 9 8 7 6 5 4 3 2 1 0

Self Check 4.13

Write a for loop that prints all even numbers between 10 and 20 (inclusive).

Answer:
for (int i = 10; i <= 20; i = i + 2)
{
 System.out.println(i);
}

Self Check 4.14

Write a for loop that computes the sum of the integers from 1 to n.

Answer:
int sum = 0;
for (int i = 1; i <= n; i++)
{
 sum = sum + i;
}

Self Check 4.15

How would you modify the for loop of the InvestmentTable.java program to print
all balances until the investment has doubled?

Answer:
for (int year = 1;
 balance <= 2 * INITIAL_BALANCE; year++)

However, it is best not to use a for loop in this case because the loop
condition does not relate to the year variable. A while loop would be a
better choice.

Programming Tip

▪Use for loops for their intended purposes only
▪Increment (or decrement) by a constant value
▪Do not update the counter inside the body

▪Update in the third section of the header

▪Most counters start at one ‘end’ (0 or 1)
▪Many programmers use an integer named i for ‘index’ or
‘counter’ variable in for loops

for (int counter = 1; counter <= 100; counter++)
{
 if (counter % 10 == 0) // Skip values divisible by 10
 {
 counter++; // Bad style: Do NOT update the counter inside loop
 }
 System.out.println(counter);
}

Programming Tip

▪Choose loop bounds that match your task
▪for loops establish lower and upper bounds on an index
▪When the same conditional operator is used for both bounds, the
bounds are called symmetric

1 <= i <= 10

▪When different condintional operators are used for both bounds, the
bounds are called asymmetric

1 <= i < 10

▪Both kinds of bounds can be appropriate in loops
▪Asymmetric bounds work well with strings

for(int i = 0; i < str.length(); i++)

Programming Tip

▪Count Iterations
▪Many bugs are ‘off by one’ issues
▪One too many or one too few

▪How many posts are there?
▪How many pairs of rails are there?

final int RAILS = 5;
for (int i = 1; i < RAILS; i++)
{
 System.out.println("Painting rail " + i);
} Painting rail 1

Painting rail 2
Painting rail 3
Painting rail 4

▪The do Loop

▪Use a do loop when you want to:
▪Execute the body at least once
▪Test the condition AFTER your first loop

int i = 1; // initialize
final int FINGERS = 5;
do
{
 // paint finger
 i++; // update
}
while (i <= FINGERS); // test

Note the semicolon at the end!

do Loop Example

▪User Input Validation:
▪Range check a value entered
▪User must enter something to validate first!

int value;
do
{
 System.out.println(“Enter an integer < 100: ”);
 value = in.nextInt();
}
while (value >= 100); // test

Self Check 4.16

Suppose that we want to check for inputs that are at least 0 and at most 100. Modify
the do loop in this section for this check.

Answer:
do
{
 System.out.print(
 "Enter a value between 0 and 100: ");
 value = in.nextInt();
}
while (value < 0 || value > 100);

Self Check 4.17

Rewrite the input check do loop using a while loop. What is the disadvantage of
your solution?

Answer:
int value = 100;
while (value >= 100)
{
 System.out.print("Enter a value < 100: ");
 value = in.nextInt();
}

Here, the variable value had to be initialized with an artificial value to
ensure that the loop is entered at least once.

Self Check 4.18

Suppose Java didn’t have a do loop. Could you rewrite any do loop as a while
loop?

Answer: Yes. The do loop
do { body } while (condition);
is equivalent to this while loop:
boolean first = true;
while (first || condition)
{
 body;
 first = false;
}

Self Check 4.19

Write a do loop that reads integers and computes their sum. Stop when reading the
value 0.

Answer:
int x;
int sum = 0;
do
{
 x = in.nextInt();
 sum = sum + x;
}
while (x != 0);

Self Check 4.20

Write a do loop that reads integers and computes their sum. Stop when reading a zero or the
same value twice in a row. For example, if the input is 1 2 3 4 4, then the sum is 14 and the
loop stops.

Answer:
int x = 0;
int previous;
do
{
 previous = x;
 x = in.nextInt();
 sum = sum + x;
}
while (x != 0 && previous != x);

▪Flowcharts for loops
▪To avoid ‘spaghetti code’, never have an arrow that points inside the loop
body

Programming Tip

while and for
 test before

do
 tests after

Processing Sentinel Values

▪A sentinel value denotes the end of a data set, but it is not part of the data
▪Sentinel values are often used:

▪When you don’t know how many items are in a list, use a ‘special’ character or
value to signal no more items.
▪For numeric input of positive numbers, it is common to use the value -1:

salary = in.nextDouble();
while (salary != -1)
{
 sum = sum + salary;
 count++;
 salary = in.nextDouble();
}

▪Declare and initialize a ‘sum’ variable to 0
▪Declare and initialize a ‘count’ variable to 0
▪Declare and initialize an ‘input’ variable to 0
▪Prompt user with instructions
▪Loop until sentinel value is entered

▪Save entered value to input variable
▪If input is not -1 (sentinel value)

▪Add input to sum variable
▪Add 1 to count variable

▪Make sure you have at least one entry before you divide!
▪Divide sum by count and output. Done!

Averaging a Set of Values

SentinelDemo.java (1)

Outside the while loop, declare and initialize
variables to use

Since salary is initialized to 0, the
while loop statements will be executed

Input new salary and compare to
sentinel

Update running sum and count to
average later

SentinelDemo.java (2)

Prevent divide by 0

Calculate and output the
average salary using sum
and count variables

Boolean Variables and Sentinels

▪A boolean variable can be used to control a loop
▪Sometimes called a ‘flag’ variable

System.out.print("Enter salaries, -1 to finish: ");
boolean done = false;
while (!done)
{
 value = in.nextDouble();
 if (value == -1)
 {
 done = true;
 }
 else
 {
 // Process value
 }
}

To Input Any Numeric Value…

▪When valid values can be positive or negative
▪You cannot use -1 (or any other number) as a sentinel

▪One solution is to use a non-numeric sentinel
▪But Scanner’s in.nextDouble will fail!
▪Use Scanner’s in.hasNextDouble first

▪Returns a boolean: true (all’s well) or false (not a number)
▪Then use in.nextDouble if true

System.out.print("Enter values, Q to quit: ");
while (in.hasNextDouble())
{
 value = in.nextDouble();
 // Process value
}

Self Check 4.21

What does the SentinelDemo.java program print when the user immediately types –1
when prompted for a value?

Answer: No Data

Self Check 4.22

Why does the SentinelDemo.java program have two checks of the form
salary != -1

Answer: The first check ends the loop after the sentinel has been read.
The second check ensures that the sentinel is not processed as an input
value.

Self Check 4.23

What would happen if the declaration of the salary variable in SentinelDemo.java
was changed to
double salary = -1;

Answer: The while loop would never be entered. The user would
never be prompted for input. Because count stays 0, the program
would then print "No data".

Self Check 4.24

In the last example of this section, we prompt the user “Enter values, Q to quit.” What
happens when the user enters a different letter?

Answer: The nextDouble method also returns false. A more accurate
prompt would have been: “Enter values, a key other than a digit to quit.”
But that might be more confusing to the program user who would need to
ponder which key to choose.

Self Check 4.25

What is wrong with the following loop for reading a sequence of values?
System.out.print("Enter values, Q to quit: ");
do
{
 double value = in.nextDouble();
 sum = sum + value;
 count++;
}
while (in.hasNextDouble());

 Answer: If the user doesn’t provide any numeric input, the first call to
in.nextDouble()will fail.

Storyboards

▪One useful problem solving technique is the use of storyboards to model user
interaction. It can help answer:

▪What information does the user provide, and in which order?
▪What information will your program display, and in which format?
▪What should happen when there is an error?
▪When does the program quit?

Storyboard Example

▪Goal: Converting a sequence of values
▪Will require a loop and some variables
▪Handle one conversion each time through the loop

What Can Go Wrong?

▪Unknown unit types
▪How do you spell centimeters and inches?
▪What other conversions are available?
▪Solution:

▪Show a list of the acceptable unit types

What Else Can Go Wrong?

▪How does the user quit the program?

▪Storyboards help you plan a program
▪Knowing the flow helps you structure your code

Self Check 4.26

Provide a storyboard panel for a program that reads a number of test scores and
prints the average score. The program only needs to process one set of scores.
Don’t worry about error handling.
 Answer: Computing the average

Self Check 4.27

Google has a simple interface for converting units. You just type the question, and you
get the answer.

Make storyboards for an equivalent interface in a Java program. Show a scenario in
which all goes well, and show the handling of two kinds of errors.

Answer: Simple conversion

 Unknown unit

 Program doesn’t understand question syntax

Self Check 4.28

Consider a modification of the program in Self Check 26. Suppose we want to drop
the lowest score before computing the average. Provide a storyboard for the
situation in which a user only provides one score.
 Answer: One score is not enough

Self Check 4.29

What is the problem with implementing the following storyboard in Java?

 Answer: It would not be possible to implement this interface
using the Java features we have covered up to this point. There is no
way for the program to know when the first set of inputs ends. (When
you read numbers with value = in.nextDouble(), it is your
choice whether to put them on a single line or multiple lines.)

Self Check 4.30

Produce a storyboard for a program that compares the growth of a $10,000
investment for a given number of years under two interest rates.
 Answer: Comparing two interest rates

Common Loop Algorithms

1: Sum and Average Value
2: Counting Matches
3: Finding the First Match
4: Prompting until a match is found
5: Maximum and Minimum
6: Comparing Adjacent Values

Sum and Average Examples

▪Sum of Values
▪Initialize total to 0
▪Use while loop with sentinel

▪Average of Values
▪Use Sum of Values
▪Initialize count to 0

▪Increment per input
▪Check for count 0

▪Before divide!

double total = 0;
while (in.hasNextDouble())
{
 double input = in.nextDouble();
 total = total + input;
}

double total = 0;
int count = 0;
while (in.hasNextDouble())
{
 double input = in.nextDouble();
 total = total + input;
 count++;
}
double average = 0;
if (count > 0)
 { average = total / count; }

Counting Matches

▪Counting Matches
▪Initialize count to 0
▪Use a for loop
▪Add to count per match

int upperCaseLetters = 0;
for (int i = 0; i < str.length(); i++)
{
 char ch = str.charAt(i);
 if (Character.isUpperCase(ch))
 {
 upperCaseLetters++;
 }
}

Finding the First Match

▪Initialize boolean sentinel to false
▪Initialize position counter to 0

▪First char in String
▪Use a compound conditional in loop

boolean found = false;
char ch;
int position = 0;
while (!found &&
 position < str.length())
{
 ch = str.charAt(position);
 if (Character.isLowerCase(ch))
 {
 found = true;
 }
 else { position++; }
}

Prompt Until a Match Is Found

▪Initialize boolean flag to false
▪Test sentinel in while loop

▪Get input, and compare to range
▪If input is in range, change flag to true
▪Loop will stop executing

boolean valid = false;
double input;
while (!valid)
{
 System.out.print("Please enter a positive value < 100: ");
 input = in.nextDouble();
 if (0 < input && input < 100) { valid = true; }
 else { System.out.println("Invalid input."); }
}

Maximum and Minimum

▪Get first input value
▪This is the largest (or smallest) that you have seen so far!

▪Loop while you have a valid number (non-sentinel)
▪Get another input value
▪Compare new input to largest (or smallest)
▪Update largest (or smallest), if necessary

double largest = in.nextDouble();
while (in.hasNextDouble())
{
 double input = in.nextDouble();
 if (input > largest)
 {
 largest = input;
 }
}

double smallest = in.nextDouble();
while (in.hasNextDouble())
{
 double input = in.nextDouble();
 if (input > smallest)
 {
 smallest = input;
 }
}

Comparing Adjacent Values

▪Get first input value
▪Use while to determine if there are more to check

▪Copy input to previous variable
▪Get next value into input variable
▪Compare input to previous, and output if same

double input = in.nextDouble();
while (in.hasNextDouble())
{
 double previous = input;
 input = nextDouble();
 if (input == previous)
 {
 System.out.println("Duplicate input");
 }
}

Self Check 4.31

What total is computed when no user input is provided in the algorithm in Section
4.7.1?

Answer: The total is zero.

Self Check 4.32

How do you compute the total of all positive inputs?

Answer:
double total = 0;
while (in.hasNextDouble())
{
 double input = in.nextDouble();
 if (input > 0) { total = total + input; }
}

Self Check 4.33

What are the values of position and ch when no match is found in the algorithm in
Section 4.7.3?

Answer: position is str.length() and ch is set to the last
character of the string or, if the string is empty, is unchanged from its
initial value, '?'. Note that ch must be initialized with some value—
otherwise the compiler will complain about a possibly uninitialized
variable.

Self Check 4.34

What is wrong with the following loop for finding the position of the first space in a string?
boolean found = false;
for (int position = 0; !found && position < str.length();
position++)
{
 char ch = str.charAt(position);
 if (ch == ' ') { found = true; }
}

Answer: The loop will stop when a match is found, but you cannot access
the match because neither position nor ch are defined outside the loop.

Self Check 4.35

How do you find the position of the last space in a string?

Answer: Start the loop at the end of string:
boolean found = false;
int i = str.length() - 1;
while (!found && i >= 0)
{
 char ch = str.charAt(i);
 if (ch == ' ') { found = true; }
 else { i--; }
}

Self Check 4.36

What happens with the algorithm in Section 4.7.6 when no input is provided at all?
How can you overcome that problem?

Answer: The initial call to in.nextDouble() fails, terminating the
program. One solution is to do all input in the loop and introduce a
Boolean variable that checks whether the loop is entered for the first
time.
double input = 0;
boolean first = true;
while (in.hasNextDouble())
{
 double previous = input;
 input = in.nextDouble();
 if (first) { first = false; }
 else if (input == previous)
 {
 System.out.println("Duplicate input");
 }
}

Steps to Writing a Loop

Planning:
1. Decide what work to do inside the loop
2. Specify the loop condition
3. Determine loop type
4. Setup variables before the first loop
5. Process results when the loop is finished
6. Trace the loop with typical examples
Coding:

7. Implement the loop in Java

Nested Loops

▪How would you print a table with rows and columns?
▪Print top line (header)

▪Use a for loop
▪Print table body…

▪How many rows?
▪How many columns?

▪Loop per row
▪Loop per column

Flowchart of a Nested Loop

Inner Loop

x = 1

x <=
10?

n= 1

n <= 4? Print x^n

n++

Print new line

x++

True

False

True

Done

False

PowerTable.java

Body of outer loop

Body of inner loop

Nested Loop Examples (1)

Nested Loop Examples (2)

Self Check 4.37

Why is there a statement System.out.println(); in the outer loop but not in
the inner loop of the PowerTable.java program?

Answer: All values in the inner loop should be displayed on the
same line.

Self Check 4.38

How would you change the program to display all powers from x0 to x5?

Answer: Change lines 13, 18, and 30 to for (int n = 0; n <=
NMAX; n++). Change NMAX to 5.

Self Check 4.39

If you make the change in Self Check 38, how many values are displayed?

Answer: 60: The outer loop is executed 10 times, and the inner
loop 6 times.

Self Check 4.40

What do the following nested loops display?
for (int i = 0; i < 3; i++)
{
 for (int j = 0; j < 4; j++)
 {
 System.out.print(i + j);
 }
 System.out.println();
}

Answer:
0123
1234
2345

Self Check 4.41

Write nested loops that make the following pattern of brackets:
[][][][]
[][][][]
[][][][]

Answer:
for (int i = 1; i <= 3; i++)
{

for (int j = 1; j <= 4; j++)
{

System.out.print("[]");
}
System.out.println();

}

Problem Solving: Gallery6.java

Self Check 4.42

Suppose you are asked to find all words in which no letter is repeated from a list of
words. What simpler problem could you try first?

Answer: Of course, there is more than one way to simplify the
problem. One way is to print the words in which the first letter is not
repeated.

Self Check 4.43

You need to write a program for DNA analysis that checks whether a substring of one
string is contained in another string. What simpler problem can you solve first?

Answer: You could first write a program that prints all substrings of
a given string.

Self Check 4.44

You want to remove “red eyes” from images and are looking for red circles. What simpler
problem can you start with?

Answer: You can look for a single red pixel, or a block of nine neighboring
red pixels.

Self Check 4.45

Consider the task of finding numbers in a string. For example, the string “In 1987, a typical
personal computer cost $3,000 and had 512 kilobytes of RAM.” has three numbers. Break
this task down into a sequence of simpler tasks.

Answer: Here is one plan:
a. Find the position of the first digit in a string.
b. Find the position of the first non-digit after a given position in a string.
c. Extract the first integer from a string (using the preceding two steps).
d. Print all integers from a string. (Use the first three steps, then repeat
with the substring that starts after the extracted integer.)

Random Numbers and Simulations

▪Games often use random numbers to make things interesting
▪Rolling Dice
▪Spinning a wheel
▪Pick a card

▪A simulation usually involves looping through a sequence of events
▪Days
▪Events

RandomDemo.java

Simulating Die Tosses

▪Goal
▪Get a random integer between 1 and 6

The Monte Carlo Method

▪Used to find approximate solutions to problems that cannot be precisely
solved
▪Example: Approximate PI using the relative areas of a circle inside a
square

▪Uses simple arithmetic
▪Hits are inside circle
▪Tries are total number of tries
▪Ratio is 4 x Hits / Tries

MonteCarlo.java (1)

MonteCarlo.java (2)

Self Check 4.46

How do you simulate a coin toss with the Math.random() method?

Answer: Compute (int) (Math.random() * 2), and use 0 for
heads, 1 for tails, or the other way around.

Self Check 4.47

How do you simulate the picking of a random playing card?

Answer: Compute (int) (Math.random() * 4) and associate
the numbers 0 . . . 3 with the four suits. Then compute (int)
(Math.random() * 13) and associate the numbers 0 . . . 12
with Jack, Ace, 2 . . . 10, Queen, and King.

Self Check 4.48

Why does the loop body in Dice.java call Math.random() twice?

Answer: We need to call it once for each die. If we printed the
same value twice, the die tosses would not be independent.

Self Check 4.49

In many games, you throw a pair of dice to get a value between 2 and 12. What is wrong with
this simulated throw of a pair of dice?

int sum = (int) (Math.random() * 11) + 2;

Answer: The call will produce a value between 2 and 12, but all values
have the same probability. When throwing a pair of dice, the number 7 is six
times as likely as the number 2. The correct formula is

int sum = (int) (Math.random() * 6) + (int)
(Math.random() * 6) + 2;

Self Check 4.50

How do you generate a random floating-point number ≥ 0 and < 100?

Answer: Math.random() * 100.0

Drawing Graphical Shapes

Drawing Graphical Shapes

TwoRowsOfSquares.java

