
Chapter 6 – Arrays and Array Lists

Chapter Goals

▪To collect elements using arrays and array lists
▪To use the enhanced for loop for traversing arrays and array lists
▪To learn common algorithms for processing arrays and array lists
▪To work with two-dimensional arrays

Arrays

▪A Computer Program often needs to store a list of values and then process
them
▪For example, if you had this list of values, how many variables would you need?

▪double input1, input2, input3….
▪Arrays to the rescue!
▪ An array collects sequences of values of the same type

Declaring an Array

Declaring an array is a two step process
1) double[] values; // declare array variable

2) values = new double[10]; // initialize array

You cannot use the array until
you tell the compiler the size of
the array in step 2.

Declaring an Array (Step 1)

▪Make a named ‘list’ with the following parts:
 Type Square Braces Array name Semicolon
 double [] values ;

▪You are declaring that
▪There is an array named values
▪The elements inside are of type double
▪You have not (YET) declared how many elements are in inside

▪Other Rules:
▪Arrays can be declared anywhere you can declare a variable
▪Do not use ‘reserved’ words or already used names

Declaring an Array (Step 2)

▪Reserve memory for all of the elements:
Array name Keyword Type Size Semicolon
 values = new double [10] ;
▪You are reserving memory for:

▪The array named values
▪needs storage for [10]
▪elements the size of type double

▪You are also setting up the array variable
▪Now the compiler knows how many elements there are

▪You cannot change the size after you declare it without asking for a
new array!

[0] [1] [2] [3] [4] … [9]

double

values

double double double double double

One Line Array Declaration

▪Declare and Create on the same line:
 Type Braces Array name Keyword Type Size Semicolon
 double [] values = new double[10] ;

▪You are declaring that
▪There is an array named values
▪The elements inside are of type double

▪You are reserving memory for the array
▪Needs storage for [10]
▪elements the size of type double

▪You are also setting up the array variable

Declaring and Initializing an Array

▪You can declare and set the initial contents of all elements by:
 Type Braces Array name Contents list Semicolon
 int [] primes = { 2, 3, 5, 7} ;

▪You are declaring that
▪There is an array named primes
▪The elements inside are of type int
▪Reserve space for four elements

▪The compiler counts them for you!
▪Set initial values to 2, 3, 5, and 7
▪Note the curly braces around the contents list

Accessing Array Elements

▪Each element is numbered
▪We call this the index
▪Access an element by:

▪Name of the array
▪Index number
▪ values[i]

public static void main(String[] args)
{
 double values[];
 values = new double[10];
 values[4] = 35;
}

Syntax 6.1 Array

Array Index Numbers

▪Array index numbers start at 0
▪The rest are positive integers

▪A 10 element array has indices 0 through 9
▪There is NO element 10!

public static void main(String[] args)
{
 double values[];
 values = new double[10];
}

The first element is at index 0:

The last element is at index 9 :

Array Bounds Checking

▪An array knows how many elements it can hold
▪values.length is the size of the array named values
▪It is an integer value (index of the last element + 1)

▪Use this to range check and prevent bounds errors

public static void main(String[] args)
{
 int i = 10, value = 34;
 double values[];
 values = new double[10];
 if (0 <= i && i < values.length) // length is 10
 {
 value[i] = value;
 }
}

Strings and arrays use different syntax to
find their length:
 Strings: name.length()
 Arrays: values.length

Summary: Declaring Arrays

Array References

▪Make sure you see the difference between the:
▪Array variable: The named ‘handle’ to the array
▪Array contents: Memory where the values are stored

int[] scores = { 10, 9, 7, 4, 5 };

An array variable contains a reference to the array
contents. The reference is the location of the array
contents (in memory).

Array variable Array contents

Reference

Values

Array Aliases

You can make one array reference refer to the same contents of another array
reference:

int[] scores = { 10, 9, 7, 4, 5 };
Int[] values = scores; // Copying the array reference

An array variable specifies the location of an
array. Copying the reference yields a second
reference to the same array.

Array contents

References

Partially-Filled Arrays

▪An array cannot change size at run time
▪The programmer may need to guess at the maximum number of elements
required
▪It is a good idea to use a constant for the size chosen
▪Use a variable to track how many elements are filled

final int LENGTH = 100;
double[] values = new double[LENGTH];
int currentSize = 0;
Scanner in = new Scanner(System.in);
while (in.hasNextDouble())
{
 if (currentSize < values.length)
 {
 values[currentSize] = in.nextDouble();
 currentSize++;
 }
}

Maintain the number of elements
filled using a variable
(currentSize in this example)

Walking a Partially Filled Array

▪Use currentSize, not values.length for the last element

for (int i = 0; i < currentSize; i++)
{
 System.out.println(values[i]);
}

A for loop is a natural choice
to walk through an array.

Self Check 6.1

Declare an array of integers containing the first five prime numbers.

Answer: int[] primes = { 2, 3, 5, 7, 11 };

Self Check 6.2

Assume the array primes has been initialized as described in Self Check 1. What
does it contain after executing the following loop?

for (int i = 0; i < 2; i++)
{
 primes[4 - i] = primes[i];
}

Answer: 2, 3, 5, 3, 2

Self Check 6.3

Assume the array primes has been initialized as described in Self Check 1. What does it
contain after executing the following loop?

for (int i = 0; i < 5; i++)
{
 primes[i]++;
}

Answer: 3, 4, 6, 8, 12

Self Check 6.4

Given the declaration
int[] values = new int[10];

write statements to put the integer 10 into the elements of the array values with the lowest
and the highest valid index.

Answer:
values[0] = 10;
values[9] = 10;
or better: values[values.length - 1] = 10;

Self Check 6.5

Declare an array called words that can hold ten elements of type String.

Answer: String[] words = new String[10];

Self Check 6.6

Declare an array containing two strings, "Yes", and "No".

Answer: String[] words = { "Yes", "No" };

Self Check 6.7

Can you produce the output on page 262 without storing the inputs in an array, by using an
algorithm similar to that for finding the maximum in Section 4.7.5?

Answer: No. Because you don’t store the values, you need to print them
when you read them. But you don’t know where to add the <= until you
have seen all values.

Common Error

▪Array Bounds Errors
▪Accessing a nonexistent element is very common error
▪Array indexing starts at 0
▪Your program will abnormally end at run time

public class OutOfBounds
{
 public static void main(String[] args)
 {
 double values[];
 values = new double[10];
 values[10] = 100;
 }
}

The is no element 10:

java.lang.ArrayIndexOutOfBoundsException: 10
at OutOfBounds.main(OutOfBounds.java:7)

Common Error

▪Uninitialized Arrays
▪Don’t forget to initialize the array variable!
▪The compiler will catch this error

double[] values;
...
values[0] = 29.95; // Error—values not initialized

double[] values;
values = new double[10];
values[0] = 29.95; // No error

Error: D:\Java\Unitialized.java:7:
variable values might not have been initialized

The Enhanced for Loop

▪Using for loops to ‘walk’ arrays is very common
▪The enhanced for loop simplifies the process
▪Also called the “for each” loop
▪Read this code as:

▪“For each element in the array”
▪As the loop proceeds, it will:

▪Access each element in order (0 to length-1)
▪Copy it to the element variable
▪Execute loop body

▪Not possible to:
▪Change elements
▪Get bounds error double[] values = . . .;

double total = 0;
for (double element : values)
{
 total = total + element;
}

Syntax 6.2 The Enhanced for loop

Self Check 6.8

What does this enhanced for loop do?
int counter = 0;
for (double element : values)
{
 if (element == 0) { counter++; }
}

Answer: It counts how many elements of values are zero.

Self Check 6.9

Write an enhanced for loop that prints all elements in the array values.

Answer:
for (double x : values)
{
 System.out.println(x);
}

Self Check 6.10

Write an enhanced for loop that multiplies all elements in a double[] array named
factors , accumulating the result in a variable named product .

Answer:
double product = 1;
for (double f : factors)
{
 product = product * f;
}

Self Check 6.11

Why is the enhanced for loop not an appropriate shortcut for the following basic for loop?
for (int i = 0; i < values.length; i++) { values[i] = i * i; }

Answer: The loop writes a value into values[i]. The enhanced for loop
does not have the index variable i.

Common Array Algorithms

▪Filling an Array
▪Sum and Average Values
▪Find the Maximum or Minimum
▪Output Elements with Separators
▪Linear Search
▪Removing an Element
▪Inserting an Element
▪Swapping Elements
▪Copying Arrays
▪Reading Input

Common Algorithms 1 and 2

1) Filling an Array
▪Initialize an array to a set of calculated values
▪Example: Fill an array with squares of 0 through 10

2) Sum and Average
•Use enhanced for loop, and make sure not to divide by zero

int[] values = new int[11];
for (int i = 0; i < values.length; i++)
{
 values[i] = i * i;
}

double total = 0, average = 0;
for (double element : values)
{
 total = total + element;
}
if (values.length > 0) { average = total / values.length; }

Common Algorithms 3

▪Maximum and Minimum
▪Set largest to first element
▪Use for or enhanced for loop
▪Use the same logic for minimum

double largest = values[0];
for (int i = 1; i < values.length; i++)
{
 if (values[i] > largest)
 {
 largest = values[i];
 }
}

Typical for loop to find maximum

double largest = values[0];
for (double element : values)
{
 if element > largest)
 largest = element;
}

double smallest = values[0];
for (double element : values)
{
 if element < smallest)
 smallest = element;
}

Enhanced for to find maximum Enhanced for to find minimum

Common Algorithms 4

▪Element Separators
▪Output all elements with separators between them
▪No separator before the first or after the last element

▪Handy Array method: Arrays.toString()
▪Useful for debugging!

for (int i = 0; i < values.length; i++)
{
 if (i > 0)
 {
 System.out.print(" | ");
 }
 System.out.print(values[i]);
}

import java.util.*;
System.out.println(Arrays.toString(values));

Common Algorithms 5

▪Linear Search
▪Search for a specific value in an array
▪Start from the beginning (left), stop if/when it is found
▪Uses a boolean found flag to stop loop if found

int searchedValue = 100; int pos = 0;
boolean found = false;
while (pos < values.length && ! found)
{
 if (values[pos] == searchedValue)
 {
 found = true;
 }
 else
 {
 pos++;
}
 if (found)
 {
 System.out.println(“Found at position: ” + pos);
 }
 else { System.out.println(“Not found”);
}

Compound condition to
prevent bounds error if
value not found.

Common Algorithms 6a

▪Removing an element (at a given position)
▪Requires tracking the ‘current size’ (# of valid elements)
▪But don’t leave a ‘hole’ in the array!
▪Solution depends on if you have to maintain ‘order’

▪If not, find the last valid element, copy over position, update size

values[pos] = values[currentSize – 1];
currentSize--;

Common Algorithms 6b

▪Removing an element and maintaining order
▪Requires tracking the ‘current size’ (# of valid elements)
▪But don’t leave a ‘hole’ in the array!
▪Solution depends on if you have to maintain ‘order’

▪If so, move all of the valid elements after pos up one spot,
update size

for (int i = pos; i < currentSize - 1; i++)
{
 values[i] = values[i + 1];
}
currentSize--;

Common Algorithms 7

▪Inserting an Element
▪Solution depends on if you have to maintain ‘order’

▪If not, just add it to the end and update the size

if (currentSize < values.length)
{ currentSize++;
 for (int i = currentSize - 1; i > pos; i--)
 {
 values[i] = values[i - 1];
 }
 values[pos] = newElement;
}

Common Algorithms 7

▪Inserting an Element
▪Solution depends on if you have to maintain ‘order’

▪If so, find the right spot for the new element, move all of the valid
elements after ‘pos’ down one spot, insert the new element, and
update size

if (currentSize < values.length)
{
 currentSize++;
 for (int i = currentSize - 1; i > pos; i--)
 {
 values[i] = values[i - 1]; // move down
 }
 values[pos] = newElement; // fill hole
}

Common Algorithms 8

▪Swapping Elements
▪Three steps using a temporary variable

double temp = values[i];
values[i] = values[j];
Values[j] = temp;

Common Algorithms 9a

▪Copying Arrays
▪Not the same as copying only the reference

▪Copying creates two set of contents!

▪Use the Arrays.copyOf method

double[] values = new double[6];
. . . // Fill array
double[] prices = values; // Only a reference so far
double[] prices = Arrays.copyOf(values, values.length);
// copyOf creates the new copy, returns a reference

Common Algorithms 9b

▪Growing an array
▪Copy the contents of one array to a larger one
▪Change the reference of the original to the larger one

▪Example: Double the size of an existing array
▪Use the Arrays.copyOf method
▪Use 2 * in the second parameter

double[] values = new double[6];
. . . // Fill array
double[] newValues = Arrays.copyOf(values, 2 * values.length);
values = newValues;

Arrays.copyOf second parameter
is the length of the new array

Increasing the Size of an Array

▪Copy all elements of values to newValues
▪Then copy newValues reference over values reference

Common Algorithms 10

▪Reading Input
▪A: Known number of values to expect

▪Make an array that size and fill it one-by-one

▪B: Unknown number of values
▪Make maximum sized array, maintain as partially filled array

double[] inputs = new double[NUMBER_OF_INPUTS];
for (i = 0; i < values.length; i++)
{
 inputs[i] = in.nextDouble();
}

double[] inputs = new double[MAX_INPUTS];
int currentSize = 0;
while (in.hasNextDouble() && currentSize < inputs.length)
{
 inputs[currentSize] = in.nextDouble();
 currentSize++;
}

LargestInArray.java (1)

Input values and store in next
available index of the array

LargestInArray.java (2)

Use a for loop and the
‘Find the largest’ algorithm

Self Check 6.12

Given these inputs, what is the output of the LargestInArray program?
20 10 20 Q

Answer:
20 <== largest value
10
20 <== largest value

Self Check 6.13

Write a loop that counts how many elements in an array are equal to zero.

Answer:
int count = 0;
for (double x : values)
{
 if (x == 0) { count++; }
}

Self Check 6.14

Consider the algorithm to find the largest element in an array. Why don’t we initialize largest
and i with zero, like this?

double largest = 0;
for (int i = 0; i < values.length; i++)
{
 if (values[i] > largest)
 {
 largest = values[i];
 }
}

Answer: If all elements of values are negative, then the result is
incorrectly computed as 0.

Self Check 6.15

When printing separators, we skipped the separator before the initial element. Rewrite
the loop so that the separator is printed after each element, except for the last element.

Answer:
for (int i = 0; i < values.length; i++)
{
 System.out.print(values[i]);
 if (i < values.length - 1)
 {
 System.out.print(" | ");
 }
}

Now you know why we set up the loop the other way.

Self Check 6.16

What is wrong with these statements for printing an array with separators?
System.out.print(values[0]);
for (int i = 1; i < values.length; i++)
{
 System.out.print(", " + values[i]);
}

Answer: If the array has no elements, then the program terminates
with an exception.

Self Check 6.17

When finding the position of a match, we used a while loop, not a for loop. What
is wrong with using this loop instead?

for (pos = 0; pos < values.length && !found; pos++)
{
 if (values[pos] > 100)
 {
 found = true;
 }
}

Answer: If there is a match, then pos is incremented before the
loop exits.

Self Check 6.18

When inserting an element into an array, we moved the elements with larger index
values, starting at the end of the array. Why is it wrong to start at the insertion
location, like this?

for (int i = pos; i < currentSize - 1; i++)
{
 values[i + 1] = values[i];
}

Answer: This loop sets all elements to values[pos].

Common Error

▪Underestimating the Size of the Data Set
▪The programmer cannot know how someone might want to use
a program!
▪Make sure that you write code that will politely reject excess
input if you used fixed size limits

 Sorry, the number of lines of text is higher than
expected, and some could not be processed. Please break
your input into smaller size segments (1000 lines maximum)
and run the program again.

Special Topic: Sorting Arrays

▪When you store values into an array, you can choose to either:
▪Keep them unsorted (random order)

▪Sort them (Ascending or Descending…)

▪A sorted array makes it much easier to find a specific value in a large data set
▪The Java API provides an efficient sort method:

Arrays.sort(values); // Sort all of the array
Arrays.sort(values, 0, currentSize); // partially filled

Special Topic: Searching

▪We have seen the Linear Search (6.3.5)
▪It works on an array that is sorted, or unsorted
▪Visit each element (start to end), and stop if you find a match or find
the end of the array

▪Binary Search
▪Only works for a sorted array
▪Compare the middle element to our target

▪If it is lower, exclude the lower half
▪If it is higher, exclude the higher half

▪Do it again until you find the target or you cannot split what is left

Binary Search

▪Binary Search
▪Only works for a sorted array
▪Compare the middle element to our target

▪If it is lower, exclude the lower half
▪If it is higher, exclude the higher half
▪Do it again until you find the target or you cannot split
what is left

▪Example: Find the value 15

Sorry, 15 is not in this array.

Binary Search Example

boolean found = false, int low = 0, int pos = 0;
int high = values.length - 1;

while (low <= high && !found)
{
 pos = (low + high) / 2; // Midpoint of the subsequence
 if (values[pos] == searchedValue)
 { found = true; } // Found it!
 else if (values[pos] < searchedValue)
 { low = pos + 1; } // Look in first half
 else { high = pos - 1; } // Look in second half
}
if (found)
 { System.out.println("Found at position " + pos); }
else
 { System.out.println("Not found. Insert before position " + pos); }

▪Methods can be declared to receive references as parameter variables
▪What if we wanted to write a method to sum all of the elements in an array?

▪Pass the array reference as an argument!

Using Arrays with Methods

public static double sum(double[] values)
{
 double total = 0;
 for (double element : values)
 total = total + element;
 return total;
}

reference

priceTotal = sum(prices);

Arrays can be used as method
arguments and method return values.

Passing References (Step 1)

▪Passing a reference give the called method access to all of the data elements
▪It CAN change the values!

▪Example: Multiply each element in the passed array by the value passed in the
second parameter

public static void multiply(double[] data, double factor)
{
 for (int i = 0; i < data.length; i++)
 data[i] = data[i] * factor;
}

reference value
multiply(values, 10);

Passing References (Step 2)

Passing References (Steps 3 & 4)

public static int[] squares(int n)
{
 int[] result = new int[n];
 for (int i = 0; i < n; i++)
 {
 result[i] = i * i;
 }
 return result;
}

Method Returning an Array

▪Methods can be declared to return an array

▪To Call: Create a compatible array reference:

▪Call the method

public static int[] squares(int n)

value

int[] numbers = squares(10);

reference

Self Check 6.19

How do you call the squares method to compute the first five squares and store the
result in an array numbers?

Answer: int[] numbers = squares(5);

Self Check 6.20

Write a method fill that fills all elements of an array of integers with a given value. For
example, the call fill(scores, 10) should fill all elements of the array scores with the
value 10.

Answer:
public static void fill(int[] values, int value)
{
 for (int i = 0; i < values.length; i++)
 {
 values[i] = value;
 }
}

Self Check 6.21

Describe the purpose of the following method:
public static int[] mystery(int length, int n)
{
 int[] result = new int[length];
 for (int i = 0; i < result.length; i++)
 {
 result[i] = (int) (n * Math.random());
 }
 return result;
}

Answer: The method returns an array whose length is given in the first
argument. The array is filled with random integers between 0 and n - 1.

Self Check 6.22

Consider the following method that reverses an array:
public static int[] reverse(int[] values)
{
 int[] result = new int[values.length];
 for (int i = 0; i < values.length; i++)
 {
 result[i] = values[values.length - 1 - i];
 }
 return result;
}

Suppose the reverse method is called with an array scores that contains the numbers 1,
4, and 9. What is the contents of scores after the method call?

Answer: The contents of scores is unchanged. The reverse method
returns a new array with the reversed numbers.

Self Check 6.23

Provide a trace diagram of the reverse method when called with an array that
contains the values 1, 4, and 9.

Answer:

Problem Solving

▪Adapting Algorithms
▪Consider this example problem: You are given the quiz scores of a student. You are
to compute the final quiz score, which is the sum of all scores after dropping the
lowest one.

▪For example, if the scores are
 8 7 8.5 9.5 7 5 10
▪then the final score is 50.

Adapting a Solution

▪What steps will we need?
Find the minimum.
Remove it from the array.
Calculate the sum.

▪What tools do we know?
▪Finding the minimum value (Section 6.3.3)
▪Removing an element (Section 6.3.6)
▪Calculating the sum (Section 6.3.2)

▪But wait… We need to find the POSITION of the minimum value, not the value
itself..

▪Hmmm. Time to adapt

Planning a Solution

▪Refined Steps:
Find the minimum value.
Find it’s position.
Remove it from the array.
Calculate the sum.

▪Let’s try it
▪Find the position of the minimum:

▪At position 5

▪Remove it from the array
▪Calculate the sum

Adapting the Code

▪Adapt smallest value to smallest position:

double smallest = values[0];
for (int i = 1; i < values.length; i++)
{
 if (values[i] < smallest)
 {
 smallest = values[i];
 }
}

int smallestPosition = 0;
for (int i = 1; i < values.length; i++)
{
 if (values[i] < values[smallestPosition])
 {
 smallestPosition = i;
 }
}

Self Check 6.24

Section 6.3.6 has two algorithms for removing an element. Which of the two should be used
to solve the task described in this section?

Answer: Use the first algorithm. The order of elements does not matter
when computing the sum.

Self Check 6.25

It isn’t actually necessary to remove the minimum in order to compute the total score.
Describe an alternative.

 Answer:
Find the minimum value.
Calculate the sum.
Subtract the minimum value from the sum.

Self Check 6.26

How can you print the number of positive and negative values in a given array,
using one or more of the algorithms in Section 4.7?

 Answer: Use the algorithm for counting matches (Section 4.7.2)
twice, once for counting the positive values and once for counting
the negative values.

Self Check 6.27

How can you print all positive values in an array, separated by commas?

Answer: You need to modify the algorithm in Section 6.3.4.
boolean first = true;
for (int i = 0; i < values.length; i++)
{
 if (values[i] > 0))
 {
 if (first) { first = false; }
 else { System.out.print(", "); }
 }
 System.out.print(values[i]);
}

Note that you can no longer use i > 0 as the criterion for printing a
separator.

Self Check 6.28

Consider the following algorithm for collecting all matches in an array:
int matchesSize = 0;
for (int i = 0; i < values.length; i++)
{
 if (values[i] fulfills the condition)
 {
 matches[matchesSize] = values[i];
 matchesSize++;
 }
}

How can this algorithm help you with Self Check 27?

 Answer: Use the algorithm to collect all positive elements in an
array, then use the algorithm in Section 6.3.4 to print the array of
matches.

Using Arrays with Methods

1) Decompose the task into steps
Read inputs.
Remove the minimum.
Calculate the sum.

2) Determine the algorithms to use
Read inputs.
Find the minimum.
Find the position of the minimum.
Remove the element at the position.
Calculate the sum.

3) Use methods to structure the program

4) Assemble and test the program

double[] scores = readInputs();
double total = sum(scores) - minimum(scores);
System.out.println("Final score: " + total);

Assembling and Testing

▪Place methods into a class
▪Review your code

▪Handle exceptional situations?
▪Empty array?
▪Single element array?
▪No match?
▪Multiple matches?

Problem Solving: Discovering Algorithms by Manipulating Physical Objects

▪Consider this example problem: You are given an array whose size is an
even number, and you are to switch the first and the second half.
▪For example, if the array contains the eight numbers

▪Rearrange it to:

Finding the First Match

▪Initialize boolean sentinel to false
▪Initialize position counter to 0

▪First char in String
▪Use a compound conditional in loop

Manipulating Objects

▪One useful technique for discovering an algorithm is to manipulate physical
objects
▪Start by lining up some objects to denote an array

▪Coins, playing cards, or small toys are good choices

▪Visualize removing one object

Manipulating Objects

▪Visualize inserting one object

▪How about swapping two coins?

Manipulating Objects

▪Back to our original problem. Which tool(s) to use?
▪How about swapping two coins? Four times?

▪Pick two locations (indexes) for the first swap and start a loop
i j

▪How can j be set to handle any number of items?
▪… if size is 8, j is index 4…

▪And when do we stop our loop?...

Develop an Algorithm

Self Check 6.29

Walk through the algorithm that we developed in this section, using two paper clips
to indicate the positions for i and j. Explain why there are no bounds errors in the
pseudocode.

 Answer: The paperclip for i assumes positions 0, 1, 2, 3. When i
is incremented to 4, the condition i < size / 2 becomes false, and
the loop ends. Similarly, the paperclip for j assumes positions 4, 5,
6, 7, which are the valid positions for the second half of the array.

Self Check 6.30

Take out some coins and simulate the following pseudocode, using two paper clips
to indicate the positions for i and j.

i = 0
j = size - 1
While i < j
 Swap elements at positions i and j.
 i++
 j--

What does the algorithm do?

 Answer: It reverses the elements in the array.

Self Check 6.31

Consider the task of rearranging all elements in an array so that the even numbers
come first. Otherwise, the order doesn’t matter. For example, the array

1 4 14 2 1 3 5 6 23
could be rearranged to

4 2 14 6 1 5 3 23 1
Using coins and paperclips, discover an algorithm that solves this task by swapping
elements, then describe it in pseudocode.

Answer: Here is one solution. The basic idea is to move all odd
elements to the end. Put one paper clip at the beginning of the array
and one at the end. If the element at the first paper clip is odd, swap
it with the one at the other paper clip and move that paper clip to the
left. Otherwise, move the first paper clip to the right. Stop when the
two paper clips meet. Here is the pseudocode:

i = 0
j = size - 1
While i < j
 If a[i] is odd
 Swap elements at positions i and j.
 j--
 Else
 i++

Self Check 6.32

Discover an algorithm for the task of Self Check 31 that uses removal and insertion
of elements instead of swapping.

Answer: Here is one solution. The idea is to remove all odd
elements and move them to the end. The trick is to know when to
stop. Nothing is gained by moving odd elements into the area that
already contains moved elements, so we want to mark that area
with another paper clip.

i = 0
moved = size
While i < moved
 If a[i] is odd
 Remove the element at position i.
 Add the removed element to the end.
 moved--

Self Check 6.33

Consider the algorithm in Section 4.7.4 that finds the largest element in a sequence
of inputs—not the largest element in an array. Why is this algorithm better visualized
by picking playing cards from a deck rather than arranging toy soldiers in a
sequence?

Answer: When you read inputs, you get to see values one at a
time, and you can’t peek ahead. Picking cards one at a time from a
deck of cards simulates this process better than looking at a
sequence of items, all of which are revealed.

Two-Dimensional Arrays

▪Arrays can be used to store data in two dimensions (2D) like a spreadsheet
▪Rows and Columns
▪Also known as a ‘matrix’

Declaring Two-Dimensional Arrays

▪Use two ‘pairs’ of square braces

▪You can also initialize the array

const int COUNTRIES = 7;
const int MEDALS = 3;
int[][] counts = new int[COUNTRIES][MEDALS];

const int COUNTRIES = 7;
const int MEDALS = 3;
int[][] counts =
{
 { 1, 0, 1 },
 { 1, 1, 0 },
 { 0, 0, 1 },
 { 1, 0, 0 },
 { 0, 1, 1 },
 { 0, 1, 1 },
 { 1, 1, 0 }
};

Note the use of two ‘levels’ of curly
braces. Each row has braces with
commas separating them.

Syntax 6.3 2D Array Declaration

▪The name of the array continues to be a reference to the contents of the
array

▪Use new or fully initialize the array

Accessing Elements

▪Use two index values:
 Row then Column

▪To print
▪Use nested for loops
▪Outer row(i) , inner column(j) :

int value = counts[3][1];

for (int i = 0; i < COUNTRIES; i++)
{
 // Process the ith row
 for (int j = 0; j < MEDALS; j++)
 {
 // Process the jth column in the ith row
 System.out.printf("%8d", counts[i][j]);
 }
 System.out.println(); // Start a new line at the end of the row
}

Locating Neighboring Elements

▪Some programs that work with two-dimensional arrays need to locate the
elements that are adjacent to an element
▪This task is particularly common in games
▪You are at loc i, j
▪Watch out for edges!

▪No negative indexes!
▪Not off the ‘board’

Adding Rows and Columns

Rows (x) Columns (y)

int total = 0;
for (int j = 0; j < MEDALS; j++)
{
 total = total + counts[i][j];
}

int total = 0;
for (int i = 0; i < COUNTRIES; i++)
{
 total = total + counts[i][j];
}

Medals.java (1)

Medals.java (2)

Self Check 6.34

What results do you get if you total the columns in our sample data?

Answer: You get the total number of gold, silver, and bronze medals in the
competition. In our example, there are five of each.

Self Check 6.35

Consider an 8 × 8 array for a board game:
int[][] board = new int[8][8];

Using two nested loops, initialize the board so that zeroes and ones alternate, as on a
checkerboard:

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
. . .
1 0 1 0 1 0 1 0

Hint: Check whether i + j is even.

Answer:

for (int i = 0; i < 8; i++)
{
 for (int j = 0; j < 8; j++)
 {
 board[i][j] = (i + j) % 2;
 }
}

Self Check 6.36

Declare a two-dimensional array for representing a tic-tac-toe board. The board has
three rows and columns and contains strings "x", "o", and " ".

Answer: String[][] board = new String[3][3];

Self Check 6.37

Write an assignment statement to place an "x" in the upper-right corner of the
tic-tac-toe board in Self Check 36.

Answer: board[0][2] = "x";

Self Check 6.38

Which elements are on the diagonal joining the upper-left and the lower-right corners
of the tic-tac-toe board in Self Check 36?

Answer: board[0][0], board[1][1], board[2][2]

Array Lists

▪When you write a program that collects values, you don’t always know
how many values you will have.
▪In such a situation, a Java Array List offers two significant advantages:

▪Array Lists can grow and shrink as needed.
▪The ArrayList class supplies methods for common tasks, such
as inserting and removing elements.

Declaring and Using Array Lists

▪The ArrayList class is part of the java.util package
▪It is a generic class

▪Designed to hold many types of objects
▪Provide the type of element during declaration

▪ Inside < > as the ‘type parameter’
▪The type must be a Class
▪Cannot be used for primitive types (int, double…)

ArrayList<String> names = new ArrayList<String>();

Syntax 6.4 Array Lists

▪ArrayList provides many useful methods:
▪add: add an element
▪get: return an element
▪remove: delete an element
▪set: change an element
▪size: current length

Adding an Element with add()

▪The add method has two versions:
▪Pass a new element to add to the end

▪Pass a location (index) and the new value to add
 Moves all other

elements

names.add(“Cindy”);

names.add(1,“Cindy”);

Adding an Element in the Middle

▪Pass a location (index) and the new value to add
▪Moves all other elements

names.add(1, “Ann”);

Removing an Element

▪Pass a location (index) to be removed
▪Moves all other elements

names.remove(1);

Using Loops with Array Lists

▪You can use the enhanced for loop with Array Lists:

▪Or ordinary loops:

ArrayList<String> names = . . . ;
for (String name : names)
{
 System.out.println(name);
}

ArrayList<String> names = . . . ;
for (int i = 0; i < names.size(); i++)
{
 String name = names.get(i);
 System.out.println(name);
}

Working with Array Lists

Copying an ArrayList

▪Remember that ArrayList variables hold a reference to an ArrayList
(just like arrays)
▪Copying a reference:

▪To make a copy, pass the reference of the original ArrayList to the
constructor of the new one:

ArrayList<String> friends = names;
friends.add("Harry");

ArrayList<String> newNames = new ArrayList<String>(names);

reference

Array Lists and Methods

▪Like arrays, Array Lists can be method parameter variables and return
values
▪Here is an example: a method that receives a list of Strings and returns
the reversed list

public static ArrayList<String> reverse(ArrayList<String> names)
{
 // Allocate a list to hold the method result
 ArrayList<String> result = new ArrayList<String>();
 // Traverse the names list in reverse order (last to first)
 for (int i = names.size() - 1; i >= 0; i--)
 {
 // Add each name to the result
 result.add(names.get(i));
 }
 return result;
}

reference

Wrappers and Auto-boxing

▪Java provides wrapper classes for primitive types
▪Conversions are automatic using auto-boxing

▪Primitive to wrapper Class

▪wrapper Class to primitive

double x = 29.95;
Double wrapper;
wrapper = x; // boxing

double x;
Double wrapper = 29.95;
x = wrapper; // unboxing

Wrappers and Auto-boxing

▪You cannot use primitive types in an ArrayList, but you can use their
wrapper classes

▪Depend on auto-boxing for conversion
▪Declare the ArrayList with wrapper classes for primitive types

▪Use ArrayList<Double>
▪Add primitive double variables
▪Or double values

double x = 19.95;
ArrayList<Double> values = new ArrayList<Double>();
values.add(29.95); // boxing
values.add(x); // boxing
double x = values.get(0); // unboxing

ArrayList Algorithms

▪Converting from Array to ArrayList requires changing:
▪index usage: [i]
▪values.length

▪To
▪methods: get()
▪values.size()

double largest = values[0];
for (int i = 1; i < values.length; i++)
{
 if (values[i] > largest)
 {
 largest = values[i];
 }
}

double largest = values.get(0);
for (int i = 1; i < values.size(); i++)
{
 if (values.get(i) > largest)
 {
 largest = values.get(i);
 }
}

Choosing Arrays or Array Lists

▪Use an Array if:
▪The size of the array never changes
▪You have a long list of primitive values

▪For efficiency reasons
▪Your instructor wants you to

▪Use an Array List:
▪For just about all other cases
▪Especially if you have an unknown number of input values

Array and Array List Operations

Self Check 6.39

Declare an array list primes of integers that contains the first five prime numbers (2,
3, 5, 7, and 11).

Answer:
ArrayList<Integer> primes =
 new ArrayList<Integer>();
primes.add(2);
primes.add(3);
primes.add(5);
primes.add(7);
primes.add(11);

Self Check 6.40

Given the array list primes declared in Self Check 39, write a loop to print its elements in
reverse order, starting with the last element.

Answer:
for (int i = primes.size() - 1; i >= 0; i--)
{
 System.out.println(primes.get(i));
}

Self Check 6.41

What does the array list names contain after the following statements?
ArrayList<String> names = new ArrayList<String>;
names.add("Bob");
names.add(0, "Ann");
names.remove(1);
names.add("Cal");

Answer: "Ann", "Cal"

Self Check 6.42

What is wrong with this code snippet?
ArrayList<String> names;
names.add(Bob);

Answer: The names variable has not been initialized.

Self Check 6.43

Consider this method that appends the elements of one array list to another.
public static void append(ArrayList<String> target,
 ArrayList<String> source)
{
 for (int i = 0; i < source.size(); i++)
 {
 target.add(source.get(i));
 }
}

What are the contents of names1 and names2 after these statements?
ArrayList<String> names1 = new ArrayList<String>();
names1.add("Emily");
names1.add("Bob");
names1.add("Cindy");
ArrayList<String> names2 = new ArrayList<String>();
names2.add("Dave");
append(names1, names2);

Answer: names1 contains “Emily”, “Bob”, “Cindy”, “Dave”; names2
contains “Dave”

Self Check 6.44

Suppose you want to store the names of the weekdays. Should you use an array list or an
array of seven strings?

Answer: Because the number of weekdays doesn’t change, there is no
disadvantage to using an array, and it is easier to initialize:

String[] weekdayNames = { "Monday", "Tuesday",
"Wednesday", "Thursday", “Friday”, "Saturday", "Sunday" };

Self Check 6.45

The sec08 directory of your source code contains an alternate implementation of the
problem solution in How To 6.1 on page 287. Compare the array and array list
implementations. What is the primary advantage of the latter?

Answer: Reading inputs into an array list is much easier.

Common Error

▪Length versus Size
▪Unfortunately, the Java syntax for determining the number of
elements in an array, an ArrayList, and a String is not
consistent.
▪It is a common error to confuse these. You just have to remember
the correct syntax for each data type.

