
Chapter 8 – Objects and Classes

Chapter Goals

▪To understand the concepts of classes, objects and encapsulation
▪To implement instance variables, methods and constructors
▪To be able to design, implement, and test your own classes
▪To understand the behavior of object references, static variables and static
methods

Object-Oriented Programming

▪You have learned structured programming
▪Breaking tasks into subtasks
▪Writing re-usable methods to handle tasks

▪We will now study Objects and Classes
▪To build larger and more complex programs
▪To model objects we use in the world

A class describes objects with the same
behavior. For example, a Car class
describes all passenger vehicles that have
a certain capacity and shape.

Objects and Programs

▪Java programs are made of objects that interact with each other
▪Each object is based on a class
▪A class describes a set of objects with the same behavior

▪Each class defines a specific set of methods to use with its objects
▪For example, the String class provides methods:

▪Examples: length() and charAt() methods

String greeting = “Hello World”;
int len = greeting.length();
char c1 = greeting.charAt(0);

Diagram of a Class

▪Private Data
▪Each object has its own private data that other objects cannot directly
access
▪Methods of the public interface provide access to private data, while
hiding implementation details:
▪This is called Encapsulation

▪Public Interface
▪Each object has a set of methods available for other objects to use

Class

Private Data
(Variables)

Public Interface
(Methods)

Self Check 8.1

Is the method call "Hello, World".println() legal? Why or why not?

Answer: No––the object "Hello, World" belongs to the String class,
and the String class has no println method.

Self Check 8.2

When using a String object, you do not know how it stores its characters. How can
you access them?

Answer: Through the substring and charAt methods.

Self Check 8.3

Describe a way in which a String object might store its characters.

Answer: As an ArrayList<Character>. As a char array.

Self Check 8.4

Suppose the providers of your Java compiler decide to change the way that a String object
stores its characters, and they update the String method implementations accordingly.
Which parts of your code do you need to change when you get the new compiler?

Answer: None. The methods will have the same effect, and your code
could not have manipulated String objects in any other way.

Implementing a Simple Class

▪Example: Tally Counter: A class that models a mechanical device that is used
to count people

▪For example, to find out how many people attend a concert or board a
bus

▪What should it do?
▪Increment the tally
▪Get the current total

Tally Counter Class

▪Specify instance variables in the class declaration:

▪Each object instantiated from the class has its own set of instance variables
▪Each tally counter has its own current count

▪Access Specifiers:
▪Classes (and interface methods) are public
▪Instance variables are always private

Instantiating Objects

▪Objects are created based on classes
▪Use the new operator to construct objects
▪Give each object a unique name (like variables)

▪You have used the new operator before:

▪Creating two instances of Counter objects:

Scanner in = new Scanner(System.in);

Use the new operator to construct
objects of a class.

Counter concertCounter = new Counter();
Counter boardingCounter = new Counter();

Object nameClass name Class name

Tally Counter Methods

▪Design a method named count that adds 1 to the instance variable
▪Which instance variable?

▪Use the name of the object
▪concertCounter.count()
▪boardingCounter.count()

public class Counter
{
 private int value;

 public void count()
 {
 value = value + 1;
 }

 public int getValue()
 {
 return value;
 }
}

Self Check 8.5

Supply the body of a method public void reset() that resets the counter back to zero.

Answer:
public void reset()
{
 value = 0;
}

Self Check 8.6

Consider a change to the implementation of the counter. Instead of using an integer counter,
we use a string of | characters to keep track of the clicks, just like a human might do.

public class Counter
{
 private String strokes = "";
 public void count()
 {
 strokes = strokes + "|";
 }
 . . .
}

How do you implement the getValue method with this data representation?

Answer:
public int getValue()
{
 return strokes.length();
}

Self Check 8.7

Suppose another programmer has used the original Counter class. What changes does that
programmer have to make in order to use the modified class?

Answer: None––the public interface has not changed.

Self Check 8.8

Suppose you use a class Clock with private instance variables hours and minutes . How
can you access these variables in your program?

Answer: You cannot access the instance variables directly. You must use
the methods provided by the Clock class.

Public Interface of a Class

▪When you design a class, start by specifying the public interface of the new
class

▪Example: A Cash Register Class
▪What tasks will this class perform?
▪What methods will you need?
▪What parameters will the methods need to receive?
▪What will the methods return?

Task Method Returns

Add the price of an item addItem(double) void

Get the total amount owed getTotal() double

Get the count of items purchased getCount() int

Clear the cash register for a new sale clear() void

Writing the Public Interface

/**
 A simulated cash register that tracks the item count
 and the total amount due.
*/
public class CashRegister
{
 /**
 Adds an item to this cash register.
 @param price: the price of this item
 */
 public void addItem(double price)
 {
 // Method body
 }
 /**
 Gets the price of all items in the current sale.
 @return the total price
 */
 public double getTotal() ...

Javadoc style comments
document the class and the
behavior of each method

The method declarations make up
the public interface of the class

The data and method bodies make up
the private implementation of the class

Non-static Methods Means…

▪We have been writing class methods using the static modifier:

▪For non-static (instance) methods, you must instantiate an object of the class
before you can invoke methods

▪Then invoke methods of the object

public static void addItem(double val)

public void addItem(double val)

public static void main(String[] args)
{
 // Construct a CashRegister object
 CashRegister register1 = new CashRegister();
 // Invoke a non-static method of the object
 register1.addItem(1.95);
}

Accessor and Mutator Methods

▪Many methods fall into two categories:
1) Accessor Methods: 'get' methods

▪Asks the object for information without changing it
▪Normally return a value of some type

2) Mutator Methods: 'set' methods
▪Changes values in the object
▪Usually take a parameter that will change an instance variable
▪Normally return void

public double getTotal() { }
public int getCount() { }

public void addItem(double price) { }
public void clear() { }

Self Check 8.9

What does the following code segment print?
CashRegister reg = new CashRegister();
reg.clear();
reg.addItem(0.95);
reg.addItem(0.95);
System.out.println(reg.getCount() + " " + reg.getTotal());

Answer: 2 1.90

Self Check 8.10

What is wrong with the following code segment?
CashRegister reg = new CashRegister();
reg.clear();
reg.addItem(0.95);
System.out.println(reg.getAmountDue());

Answer: There is no method named getAmountDue.

Self Check 8.11

Declare a method getDollars of the CashRegister class that yields the amount of the total
sale as a dollar value without the cents.

Answer: public int getDollars();

Self Check 8.12

Name two accessor methods of the String class.

Answer: length, substring. In fact, all methods of the String class are
accessors.

Self Check 8.13

Is the nextInt method of the Scanner class an accessor or a mutator?

Answer: A mutator. Getting the next number removes it from the input,
thereby modifying it. Not convinced? Consider what happens if you call the
nextInt method twice. You will usually get two different numbers. But if
you call an accessor twice on an object (without a mutation between the two
calls), you are sure to get the same result.

Self Check 8.14

Provide documentation comments for the Counter class of Section 8.2.

Answer:
/**
 This class models a tally counter.
*/
public class Counter
{
 private int value;
 /**
 Gets the current value of this counter.
 @return the current value
 */
 public int getValue()
 {
 return value;
 }
 /**
 Advances the value of this counter by 1.
 */
 public void count()
 {
 value = value + 1;
 }
}

Special Topic: Javadoc

▪The Javadoc utility generates a set of HTML files from the Javadoc style
comments in your source code

▪Methods document parameters and returns:
▪@param
▪@return

Designing the Data Representation

▪An object stores data in instance variables
▪Variables declared inside the class
▪All methods inside the class have access to them

▪Can change or access them
▪What data will our CashRegister methods need?

Task Method Data Needed

Add the price of an item addItem() total, count

Get the total amount owed getTotal() total

Get the count of items purchased getCount() count

Clear the cash register for a new sale clear() total, count

An object holds instance variables
that are accessed by methods

Instance Variables of Objects

▪Each object of a class has a separate set of instance variables.

The values stored in
instance variables make up
the state of the object.

Accessing Instance Variables

▪private instance variables cannot be accessed from methods outside of the
class

▪Use accessor methods of the class instead!

public static void main(String[] args)
{
 . . .
 System.out.println(register1.itemCount); // Error
 . . .
} The compiler will not allow

this violation of privacy

public static void main(String[] args)
{
 . . .
 System.out.println(register1.getCount()); // OK
 . . .
}

Encapsulation provides a public interface
and hides the implementation details.

Self Check 8.15

What is wrong with this code segment?
CashRegister register2 = new CashRegister();
register2.clear();
register2.addItem(0.95);
System.out.println(register2.totalPrice);

Answer: The code tries to access a private instance variable.

Self Check 8.16

Consider a class Time that represents a point in time, such as 9 a.m. or 3:30 p.m. Give two sets
of instance variables that can be used for implementing the Time class. (Hint for the second set:
Military time.)

Answer:
(1) int hours; // Between 1 and 12
int minutes; // Between 0 and 59
boolean pm; // True for p.m., false for a.m.
(2) int hours; // Military time, between 0 and 23
int minutes; // Between 0 and 59
(3) int totalMinutes // Between 0 and 60 * 24 - 1

Self Check 8.17

Suppose the implementor of the Time class changes from one implementation strategy to another,
keeping the public interface unchanged. What do the programmers who use the Time class need to
do?

Answer: They need not change their programs at all because the public
interface has not changed. They need to recompile with the new version of the
Time class.

Self Check 8.18

Consider a class Grade that represents a letter grade, such as A+ or B. Give two
different sets of instance variables that can be used for implementing the Grade
class.

Answer:
(1) String letterGrade; // "A+", "B"
(2) double numberGrade; // 4.3, 3.0

Implementing Instance Methods

▪Implement instance methods that will use the private instance variables

public void addItem(double price)
{
 itemCount++;
 totalPrice = totalPrice + price;
}

Task Method Returns

Add the price of an item addItem(double) void

Get the total amount owed getTotal() double

Get the count of items purchased getCount() int

Clear the cash register for a new sale clear() void

Syntax 8.2 Instance Methods

▪Use instance variables inside methods of the class
▪There is no need to specify the implicit parameter (name of the object)
when using instance variables inside the class
▪Explicit parameters must be listed in the method declaration

Implicit and Explicit Parameters

▪When an item is added, it affects the instance variables of the object on which the
method is invoked

The object on which a
method is applied is the
implicit parameter

Self Check 8.19

What are the values of register1.itemCount , register1.totalPrice ,
register2.itemCount , and register2.totalPrice after these statements?

CashRegister register1 = new CashRegister();
register1.addItem(0.90);
register1.addItem(0.95);
CashRegister register2 = new CashRegister();
register2.addItem(1.90);

Answer: 2 1.85 1 1.90

Self Check 8.20

Implement a method getDollars of the CashRegister class that yields the amount of the
total sale as a dollar value without the cents.

Answer:
public int getDollars()
{
 int dollars = (int) totalPrice; // Truncates cents
 return dollars;
}

Self Check 8.21

Consider the substring method of the String class that is described in Section 2.5.6.
How many parameters does it have, and what are their types?

Answer: Three parameters: two explicit parameters of type int, and
one implicit parameter of type String.

Self Check 8.22

Consider the length method of the String class. How many parameters does it have,
and what are their types?

Answer: One parameter: the implicit parameter of type String. The
method has no explicit parameters.

Constructors

▪A constructor is a method that initializes instance variables of an object
▪It is automatically called when an object is created
▪It has exactly the same name as the class

public class CashRegister
{
 . . .
 /**
 Constructs a cash register with cleared item count and total.
 */
 public CashRegister() // A constructor
 {
 itemCount = 0;
 totalPrice = 0;
 }
}

Constructors never return values, but do not
use void in their declaration

Multiple Constructors

▪A class can have more than one constructor
▪Each must have a unique set of parameters

public class BankAccount
{
 . . .
 /**
 Constructs a bank account with a zero balance.
 */
 public BankAccount() { . . . }
 /**
 Constructs a bank account with a given balance.
 @param initialBalance the initial balance
 */
 public BankAccount(double initialBalance) { . . . }
}

BankAccount joesAccount = new BankAccount();
BankAccount lisasAccount = new BankAccount(499.95);

The compiler picks the constructor that
matches the construction parameters.

Syntax 8.2 Constructors

▪One constructor is invoked when the object is created with the new keyword
based on arguments you supply

Initializing Instance Variables

▪A constructor creates an object by initializing all instance variables defined in
the class
▪If you don’t initialize an instance variable explicitly, Java does it for you by
default:

▪Numbers are set to zero
▪Boolean variables are initialized as false
▪Object and array references are set to the special value null that
indicates no object is associated with the variable

▪It is a good programming practice to initialize all the instance variables in a
class

Null Object References

▪Uninitialized object references in a constructor are set to by null default
▪Calling a method on a null reference results in a runtime error:
NullPointerException

public class BankAccount
{
 private String name; // default constructor will set to null

 public void showStrings()
 {
 String localName;
 System.out.println(name.length());
 System.out.println(localName.length());
 }
}

Runtime Error:
java.lang.NullPointerException

Compiler Error: variable localName might not
have been initialized

The Default Constructor

▪If you do not supply any constructors, the compiler will make a default
constructor automatically

▪It takes no parameters
▪It initializes all instance variables

public class CashRegister
{
 . . .
 /**
 Does exactly what a compiler generated constructor would do.
 */
 public CashRegister()
 {
 itemCount = 0;
 totalPrice = 0;
 }
}

By default, numbers are initialized to 0,
booleans to false, and objects as null.

CashRegister.java

Self Check 8.23

Consider this class:
public class Person
{
 private String name;

 public Person(String firstName, String lastName)
 {
 name = lastName + ", " + firstName;
 }
 . . .
}

If an object is constructed as
Person harry = new Person("Harry", "Morgan");

what is its name instance variable?

Answer: "Morgan, Harry"

Self Check 8.24

Provide an implementation for a Person constructor so that after the call
Person p = new Person();

the name instance variable of p is "unknown".

Answer: public Person() { name = "unknown"; }

Self Check 8.25

What happens if you supply no constructor for the CashRegister class?

 Answer: A constructor is generated that has the same effect as the
constructor provided in this section. It sets both instance variables to
zero.

Self Check 8.26

Consider the following class:
public class Item
{
 private String description;
 private double price;
 public Item() { . . . }
 // Additional methods omitted
}

Provide an implementation for the constructor.

 Answer:
public Item()
{
 price = 0;
 description = "";
}

The price instance variable need not be initialized because it is
set to zero by default, but it is clearer to initialize it explicitly.

Self Check 8.27

Which constructors should be supplied in the Item class so that each of the
following declarations compiles?
a. Item item2 = new Item("Corn flakes");
b. Item item3 = new Item(3.95);
c. Item item4 = new Item("Corn flakes", 3.95);
d. Item item1 = new Item();
e. Item item5;

 Answer: (a) Item(String) (b) Item(double) (c)
Item(String, double) (d) Item() (e) No constructor has
been called.

Common Error

▪Trying to Call a Constructor
▪You cannot call a constructor like other methods
▪It is ‘invoked’ for you by the new reserved word

▪You cannot invoke the constructor on an existing object:

▪But you can create a new object using your existing reference

CashRegister register1 = new CashRegister();

register1.CashRegister(); // Error

CashRegister register1 = new CashRegister();
Register1.newItem(1.95);
CashRegister register1 = new CashRegister();

Common Error

▪Declaring a constructor as void
▪A constructor is not a method and doesn’t return a value
▪Constructors are never give return types

public void class BankAccount //Syntax error … don’t use void!

Special Topic

▪Overloading
▪We have seen that multiple constructors can have exactly the same
name

▪They require different lists of parameters
▪Actually any method can be overloaded

▪Same method name with different parameters

▪We will not be using overloading in this book
▪Except as required for constructors

void print(CashRegister register) { . . . }
void print(BankAccount account) { . . . }
void print(int value) { . . . }
Void print(double value) { . . . }

Testing a Class

▪We wrote a CashRegister class but…
▪You cannot execute the class – it has no main method

▪It can become part of a larger program
▪Test it first though with unit testing

▪To test a new class, you can use:
▪Programming tools that interactively create objects:

▪DrJava: www.drjava.org
▪BlueJ: www.bluej.org

▪Or write a tester class:
▪With a main

public class CashRegisterTester
{
 public static void main(String[] args)
 {
 CashRegister c1 = new CashRegister();
 ...

http://www.drjava.org/
http://www.bluej.org/

BlueJ: An IDE for Testing

▪BlueJ can interactively instantiate objects of a class, and allows you to
invoke their methods

▪Great for testing!

CashRegisterTester.java

▪Test all methods
▪Print expected results
▪Output actual results
▪Compare results

A unit test verifies that a class
works correctly in isolation,
outside a complete program.

Self Check 8.28

How would you enhance the tester class to test the clear method?

 Answer: Add these lines:
register1.clear();
System.out.println(register1.getCount());
System.out.println("Expected: 0");
System.out.printf("%.2f%n", register1.getTotal());
System.out.println("Expected: 0.00");

Self Check 8.29

When you run the CashRegisterTester program, how many objects of class
CashRegister are constructed? How many objects of type
CashRegisterTester ?
 Answer: 1, 0

Self Check 8.30

Why is the CashRegisterTester class unnecessary in development
environments that allow interactive testing, such as BlueJ?

 Answer: These environments allow you to call methods on an
object without creating a main method.

Steps to Implementing a Class

1) Get an informal list of responsibilities for your objects

2) Specify the public interface

3) Document the public interface
▪Javadoc comments

4) Determine the instance variables

5) Implement constructors and methods

6) Test your class

Problem Solving: Tracing Objects

▪Use an Index card for each object

▪An object is manipulated through the public interface (front of the card)
▪The encapsulated data is on the back of the card

Mutator Methods and Cards

▪As mutator methods are called, keep track of the value of instance variables

CashRegister reg2(7.5); // 7.5 percent sales tax
reg2.addItem(3.95, false); // Not taxable
reg2.addItem(19.95, true); // Taxable

Self Check 8.31

Consider a Car class that simulates fuel consumption in a car. We will assume a fixed
efficiency (in miles per gallon) that is supplied in the constructor. There are methods for
adding gas, driving a given distance, and checking the amount of gas left in the tank.
Make a card for a Car object, choosing suitable instance variables and showing their
values after the object was constructed.

 Answer:

Self Check 8.32

Trace the following method calls:
Car myCar = new Car(25);
myCar.addGas(20);
myCar.drive(100);
myCar.drive(200);
myCar.addGas(5);

 Answer:

Self Check 8.33

Suppose you are asked to simulate the odometer of the car, by adding a method
getMilesDriven . Add an instance variable to the object’s card that is suitable
for computing this method.

 Answer:

Self Check 8.34

Trace the methods of Self Check 32, updating the instance variable that you added
in Self Check 33.

 Answer:

Object References

▪Objects are similar to arrays because they always have reference variables
▪Array Reference

▪Object Reference

double[] values = new double[5];

CashRegister reg1 = new CashRegister;

An object reference specifies the
memory location of the object

Shared References

▪Multiple object variables may contain references to the same object.
▪Single Reference

▪Shared References

CashRegister reg1 = new CashRegister;

CashRegister reg2 = reg1;

The internal values can be changed
through either reference

Primitive versus Reference Copy

▪Primitive variables can be copied, but work differently than object references
▪Primitive Copy Reference Copy
 Two locations One location for both

int num1 = 0;
int num2 = num1;
num2++;

CashRegister reg1 = new CashRegister;
CashRegister reg2 = reg1;
reg2.addItem(2.95);

Why? Primitives take much less
storage space than objects!

The null Reference

▪A reference may point to ‘no’ object
▪You cannot invoke methods of an object via a null reference – causes a
run-time error

▪To test if a reference is null before using it:

CashRegister reg = null;
System.out.println(reg.getTotal()); // Runtime Error!

String middleInitial = null; // No middle initial

if (middleInitial == null)
 System.out.println(firstName + " " + lastName);
else
 System.out.println(firstName + " " + middleInitial + ". "

+ lastName);

The this Reference

▪Methods receive the ‘implicit parameter’ in a reference variable called this
▪It is a reference to the object the method was invoked on:

▪It can clarify when instance variables are used:

void addItem(double price)
{
 this.itemCount++;
 this.totalPrice = this.totalPrice + price;
}

Constructor this Reference

▪Sometimes people use the this reference in constructors
▪It makes it very clear that you are setting the instance variable:

public class Student
{
 private int id;
 private String name;
 public Student(int id, String name)
 {
 this.id = id;
 this.name = name;
 }
}

Self Check 8.35

Suppose we have a variable
String greeting = "Hello";

What is the effect of this statement?
String greeting2 = greeting;

 Answer: Both greeting and greeting2 refer to the same string
"Hello".

Self Check 8.36

After calling String greeting3 = greeting2.toUpperCase() , what are the
contents of greeting and greeting2?

 Answer: They both still refer to the string "Hello". The
toUpperCase method computes the string "HELLO", but it is not a
mutator—the original string is unchanged.

Self Check 8.37

What is the value of s.length() if s is
a. the empty string ""?
b. null?

 Answer: (a) 0
(b) A null pointer exception is thrown.

Self Check 8.38

What is the type of this in the call greeting.substring(1, 4) ?

 Answer: It is a reference of type String.

Self Check 8.39

Supply a method addItems(int quantity, double price) in the
CashRegister class to add multiple instances of the same item. Your
implementation should repeatedly call the addItem method. Use the this
reference.

 Answer:
public void addItems(int quantity, double price)
{
 for (int i = 1; i <= quantity; i++)
 {
 this.addItem(price);
 }
}

Common Error

▪Not initializing object references in constructor
▪References are by default initialized to null
▪Calling a method on a null reference results in a runtime error:
NullPointerException
▪The compiler catches uninitialized local variables for you

public class BankAccount
{
 private String name; // default constructor will set to null

 public void showStrings()
 {
 String localName;
 System.out.println(name.length());
 System.out.println(localName.length());
 }
}

Runtime Error:
java.lang.NullPointerException

Compiler Error: variable localName might not
have been initialized

Special Topic

▪Calling one constructor from another
▪Use this to call another constructor of the same class

public class BankAccount
{
 public BankAccount(double initialBalance)
 {
 balance = initialBalance;
 }
 public BankAccount()
 {
 this(0);
 }
 . . .
}

Special Topic

▪When this is followed by parentheses and zero or more parameters, it
denotes a constructor call – this(0)
▪We will not use this technique in the book

Static Variables and Methods

▪Variables can be declared as static in the Class declaration
▪There is one copy of a static variable that is shared among all objects
of the Class

public class BankAccount
{
 private double balance;
 private int accountNumber;
 private static int lastAssignedNumber = 1000;

 public BankAccount()
 {
 lastAssignedNumber++;
 accountNumber = lastAssignedNumber;
 }
 . . .
}

Methods of any object of the class can use
or change the value of a static variable

Using Static Variables

▪Example:
▪Each time a new account is created, the lastAssignedNumber
variable is incremented by the constructor

▪Access the static variable using:
▪ClassName.variableName

Using Static Methods

▪The Java API has many classes that provide methods you can use without
instantiating objects

▪The Math class is an example we have used
▪Math.sqrt(value) is a static method that returns the square root
of a value
▪You do not need to instantiate the Math class first

▪Access static methods using:
▪ClassName.methodName()

Writing Your Own Static Methods

▪You can define your own static methods

▪Invoke the method on the Class, not an object

public class Financial
{
 /**
 Computes a percentage of an amount.
 @param percentage the percentage to apply
 @param amount the amount to which the percentage is applied
 @return the requested percentage of the amount
 */
 public static double percentOf(double percentage, double amount)
 {
 return (percentage / 100) * amount;
 }
} static methods usually return a value. They

can only access static variables and methods.

double tax = Financial.percentOf(taxRate, total);

Self Check 8.40

Name two static variables of the System class.

 Answer: System.in and System.out

Self Check 8.41

Name a static constant of the Math class.

 Answer: Math.PI

Self Check 8.42

The following method computes the average of an array of numbers:
public static double average(double[] values)

Why should it not be defined as an instance method?

 Answer: The method needs no data of any object. The only
required input is the values argument.

Self Check 8.43

Harry tells you that he has found a great way to avoid those pesky objects: Put all
code into a single class and declare all methods and variables static. Then main
can call the other static methods, and all of them can access the static variables. Will
Harry’s plan work? Is it a good idea?

 Answer: Yes, it works. Static methods can call each other and
access static variables—any method can. But it is a terrible idea. A
program that consists of a single class with many methods is hard
to understand.

Problem Solving

▪Patterns for Object Data
▪Common patterns when designing instance variables

▪Keeping a Total
▪Counting Events
▪Collecting Values
▪Managing Object Properties
▪Modeling Objects with Distinct States
▪Describing the Position of an Object

Patterns: Keeping a Total

▪Examples
▪Bank account balance
▪Cash Register total
▪Car gas tank fuel level

▪Variables needed
▪Total (totalPrice)

▪Methods Required
▪Add (addItem)
▪Clear
▪getTotal

public class CashRegister
{
 private double totalPrice;

 public void addItem(double price)
 {
 totalPrice += price;
 }
 public void clear()
 {
 totalPrice = 0;
 }
 public double getTotal()
 {
 return totalPrice;
 }
}

Patterns: Counting Events

▪Examples
▪Cash Register items
▪Bank transaction fee

▪Variables needed
▪Count

▪Methods Required
▪Add
▪Clear
▪Optional: getCount

public class CashRegister
{
 private double totalPrice;
 private int itemCount;
 public void addItem(double price)
 {
 totalPrice += price;
 itemCount++;
 }
 public void clear()
 {
 totalPrice = 0;
 itemCount = 0;
 }
 public double getCount()
 {
 return itemCount;
 }
}

Patterns: Collecting Values

▪Examples
▪Multiple choice question
▪Shopping cart

▪Storing values
▪Array or ArrayList

▪Constructor
▪Initialize to empty collection

▪Methods Required
▪Add public class Question

{
 private ArrayList<String> choices;
 public Question()
 {
 choices = new ArrayList<String>();
 }
 public void add(String choice)
 {
 choices.add(choice);
 }
}

Patterns: Managing Properties

▪A property of an object can be set and retrieved
▪Examples

▪Student: name, ID
▪Constructor

▪Set a unique value
▪Methods Required

▪set
▪get

public class Student
{
 private String name;
 private int ID;
 public Student(int anID)
 {
 ID = anID;
 }
 public void setName(String newname)
 {
 if (newName.length() > 0)
 name = newName;
 }
 public getName()
 {
 return name;
 }
}

Patterns: Modeling Stateful Objects

▪Some objects can be in one of a set of distinct states.
▪Example: A fish

▪Hunger states:
▪Somewhat Hungry
▪Very Hungry
▪Not Hungry

▪Methods will change the state
▪eat
▪move

public class Fish
{
 private int hungry;
 public static final int NOT_HUNGRY

= 0;
 public static final int

SOMEWHAT_HUNGRY = 1;
 public static final int VERY_HUNGRY

= 2;

 public void eat()
 {
 hungry = NOT_HUNGRY;
 }
 public void move()
 {
 if (hungry < VERY_HUNGRY)
 { hungry++; }
}

Patterns: Object Position

▪Examples
▪Game object
▪Bug (on a grid)
▪Cannonball

▪Storing values
▪Row, column, direction, speed. . .

▪Methods Required
▪move
▪turn

public class Bug
{
 private int row;
 private int column;
 private int direction;
// 0 = N, 1 = E, 2 = S, 3 = W
 public void moveOneUnit()
 {
 switch(direction) {
 case 0: row--; break;
 case 1: column++; break;
 . . .
 }
 }
}

Self Check 8.44

Suppose we want to count the number of transactions in a bank account in a
statement period, and we add a counter to the BankAccount class:

public class BankAccount
{
 private int transactionCount;
 . . .
}

In which methods does this counter need to be updated?

 Answer: It needs to be incremented in the deposit and withdraw
methods. There also needs to be some method to reset it after the
end of a statement period.

Self Check 8.45

In the example in Section 8.11.3, why is the add method required? That is, why
can’t the user of a Question object just call the add method of the
ArrayList<String> class?

 Answer: The ArrayList<String> instance variable is private,
and the class users cannot access it.

Self Check 8.46

Suppose we want to enhance the CashRegister class in Section 8.6 to track the
prices of all purchased items for printing a receipt. Which instance variable should
you provide? Which methods should you modify?

 Answer: Add an ArrayList<Double> prices. In the addItem
method, add the current price. In the reset method, replace the
array list with an empty one. Also supply a method
printReceipt that prints the prices.

Self Check 8.47

Consider an Employee class with properties for tax ID number and salary. Which of
these properties should have only a getter method, and which should have getter and
setter methods?

 Answer: The tax ID of an employee does not change, and no
setter method should be supplied. The salary of an employee can
change, and both getter and setter methods should be supplied.

Self Check 8.48

Look at the direction instance variable in the bug example in Section 8.11.6. This
is an example of which pattern?

 Answer: It is an example of the “state pattern” described in Section
8.11.5. The direction is a state that changes when the bug turns,
and it affects how the bug moves.

Packages

▪Related classes are organized into Java packages

▪To put one of your classes in a package, add a line as the first instruction of the
source containing the class

▪The package name consists of one or more identifiers separated by periods (see
8.12.3)

Organizing Your Classes

package packagename;

 package com.horstmann.bigjava;
 public class Financial
 {
 . . .
 }

The package statement adds the Financial
class to the com.horstmann.bigjava package.

Importing Classes

▪To use a class from a package, you can refer to it by its full name (package name
plus class name)

▪Using package names in this way can be inconvenient, so Java allows classes to be
imported

▪Imported classes can be referenced without using the package name prefix

java.util.Scanner in = new java.util.Scanner(System.in);

 import java.util.Scanner;

Importing Multiple Classes

▪You can import all classes of a package with an import statement that ends in .*

▪You never need to import the classes in the java.lang package explicitly
▪Effectively, an automatic import java.lang.*; statement has been placed into
every source file
▪ You don’t need to import other classes in the same package

 import java.util.*;
This import statement allows you to refer
to the Scanner or Random classes without
qualifying the names with java.util.

Syntax 8.4 Package Specification

▪Organize the classes in your source file with a package statement

Package Names

▪When two classes have the same name, name clashes are avoided by putting
them into different packages
▪Two different Timer classes

▪java.util.Timer
▪javax.swing.Timer

▪Unique package names are often constructed by reversing domain names or email
addresses

▪com.horstman
▪walters@cs.sjsu.edu

Package and Source Files

▪A source file must be located in a subdirectory that matches the package name
▪Parts of a package name between periods represent successively nested directories

A class we are writing in the problem1
directory can import the
Financial.java class from the
com.horstmann.bigjava subdirectory

Self Check 8.49

Which of the following are packages?
a. java
b. java.lang
c. java.util
d. java.lang.Math

 Answer: (a) No; (b) Yes; (c) Yes; (d) No

Self Check 8.50

Is a Java program without import statements limited to using the default and
java.lang packages?

 Answer: No—you can use fully qualified names for all other
classes, such as java.util.Random and java.awt.Rectangle.

Self Check 8.51

Suppose your homework assignments are located in the directory
/home/me/cs101 (c:\Users\Me\cs101 on Windows) . Your instructor tells
you to place your homework into packages. In which directory do you place the class
hw1.problem1. TicTacToeTester ?

 Answer: /home/me/cs101/hw1/problem1 or, on Windows,
c:\Users\Me\cs101\hw1\problem1.

Common Error

▪Dots (.) are used in several situations which can be confusing
▪Between package names (java.util)
▪Between package and class names (homework1.Bank)
▪Between class and inner class names (Ellipse2D.Double)
▪Between class and instance variable names (Math.PI)
▪Between objects and methods (account.getBalance())

▪Consider java.lang.System.out.println(x);
▪out – an object of type PrintStream
▪System – without context, might be an object with a public variable out, or a
class with a static variable

▪Start class names with an uppercase letter and variables, methods and packages
with lowercase

Special Topic

▪Package Access
▪A class, instance variable or method without an access modifier has package
access
▪Features with package access can be accessed by all classes in the same
package, which is usually not desirable.

public class Window extends Container
{
 String warningString;
 ...
}

The variable warningString has
package access and can be accessed by
any other class in java.awt – the
package that contains the Window class

