
Chapter 14 – Sorting and
Searching

Chapter Goals

To study several sorting and searching algorithms

To appreciate that algorithms for the same task can
differ widely in performance

To understand the big-Oh notation
To estimate and compare the performance of
algorithms

To write code to measure the running time of a
program

Selection Sort

A sorting algorithm rearranges the elements of a
collection so that they are stored in sorted order.
Selection sort sorts an array by repeatedly finding
the smallest element of the unsorted tail region
and moving it to the front.
Slow when run on large data sets.

Example: sorting an array of integers

11 9 17 5 12

Sorting an Array of Integers

1. Find the smallest and swap it with the first element

5 9 17 11 12

2. Find the next smallest. It is already in the correct place

5 9 17 11 12

3. Find the next smallest and swap it with first element of
unsorted portion

5 9 11 17 12

4. Repeat

5 9 11 12 17

5. When the unsorted portion is of length 1, we are done

5 9 11 12 17

Selection Sort

In selection sort, pick the smallest element
and swap it with the first one. Pick the
smallest element of the remaining ones
and swap it with the next one, and so on.

section_1/SelectionSorter.java

1 /**

2 The sort method of this class sorts an array, using the selection
3 sort algorithm.
4 */

5 public class SelectionSorter
6 {
7 /**

8 Sorts an array, using selection sort.
9 @param a the array to sort

section_1/SelectionSortDemo.java

1 import java.util.Arrays;

2
3 /**

4 This program demonstrates the selection sort algorithm by
5 sorting an array that is filled with random numbers.
6 */

7 public class SelectionSortDemo
8 {
9 public static void main(String[] args)

section_1/ArrayUtil.java

1 import java.util.Random;

2
3 /**

4 This class contains utility methods for array manipulation.
5 */

6 public class ArrayUtil
7 {
8 private static Random generator = new Random();
9

Typical Program Run:

[65, 46, 14, 52, 38, 2, 96, 39, 14, 33, 13, 4, 24, 99, 89, 77, 73, 87, 36, 81]

[2, 4, 13, 14, 14, 24, 33, 36, 38, 39, 46, 52, 65, 73, 77, 81, 87, 89, 96, 99]

Self Check 14.1

Why do we need the temp variable in the swap method? What
would happen if you simply assigned a[i] to a[j] and a[j] to
a[i]?

Answer: Dropping the temp variable would not
work. Then a[i] and a[j] would end up being
the same value.

Self Check 14.2

What steps does the selection sort algorithm go through to sort the
sequence 6 5 4 3 2 1?

1 2 4 3 5 6

1 2 3 4 5 6

Answer:

1 5 4 3 2 6

Self Check 14.3

How can you change the selection sort algorithm so that it sorts the
elements in descending order (that is, with the largest element at the
beginning of the array)?

Answer: In each step, find the maximum of the
remaining elements and swap it with the
current element (or see Self Check 4).

Self Check 14.4

Suppose we modified the selection sort algorithm to start at the end of
the array, working toward the beginning. In each step, the current
position is swapped with the minimum. What is the result of this
modification?

Answer: The modified algorithm sorts the array in
descending order.

Profiling the Selection Sort
Algorithm
▪ We want to measure the time the algorithm takes to execute:

▪ Exclude the time the program takes to load
Exclude output time

▪ To measure the running time of a method, get the current
time immediately before and after the method call.

▪ We will create a StopWatch class to measure
execution time of an algorithm:

▪ It can start, stop and give elapsed time

▪ Use System.currentTimeMillis method

▪ Create a StopWatch object:

▪ Start the stopwatch just before the sort

▪ Stop the stopwatch just after the sort

▪ Read the elapsed time

section_2/StopWatch.java

1 /**

2 A stopwatch accumulates time when it is running. You can
3 repeatedly start and stop the stopwatch. You can use a
4 stopwatch to measure the running time of a program.
5 */

6 public class StopWatch
7 {
8 private long elapsedTime;
9 private long startTime;

section_2/SelectionSortTimer.java

1 import java.util.Scanner;

2
3 /**

4 This program measures how long it takes to sort an
5 array of a user-specified size with the selection
6 sort algorithm.
7 */

8 public class SelectionSortTimer
9 {

Program Run:
Enter array size: 50000

Elapsed time: 13321 milliseconds

Figure 1 Time Taken by Selection Sort

Selection Sort on Various Size
Arrays

n Milliseconds

10,000 786

20,000 2,148

30,000 4,796

40,000 9,192

50,000 13,321

60,000 19,299

Doubling the size of the array more than doubles the time needed
to sort it.

Self Check 14.5

Approximately how many seconds would it take to sort a data set of
80,000 values?

Answer: Four times as long as 40,000 values, or
about 37 seconds.

Self Check 14.6

Look at the graph in Figure 1. What mathematical shape does it
resemble?

Answer: A parabola.

Analyzing the Performance of
the Selection Sort Algorithm

In an array of size n, count how many times an array
element is visited:

To find the smallest, visit n elements + 2 visits for the swap
To find the next smallest, visit (n - 1) elements + 2 visits for
the swap

The last term is 2 elements visited to find the smallest +
2 visits for the swap

Analyzing the Performance of
the Selection Sort Algorithm

The number of visits:

n + 2 + (n - 1) + 2 + (n - 2) + 2 + . . .+ 2 + 2

This can be simplified to n2 /2 + 5n/2 - 3

5n/2 - 3 is small compared to n2 /2 – so let's ignore it

Also ignore the 1/2 – it cancels out when comparing ratios

Analyzing the Performance of
the Selection Sort Algorithm

The number of visits is of the order n2.

Computer scientists use the big-Oh notation
to describe the growth rate of a function.

Using big-Oh notation: The number of visits is O(n2).

Multiplying the number of elements in an array by 2
multiplies the processing time by 4.

To convert to big-Oh notation: locate
fastest-growing term, and ignore constant
coefficient.

Self Check 14.7

If you increase the size of a data set tenfold, how much longer does it
take to sort it with the selection sort algorithm?

Answer: It takes about 100 times longer.

Self Check 14.8

How large does n need to be so that 1/2 n2 is bigger than 5/2 n – 3?

Answer: If n is 4, then n2 is 8 and 5/2 n – 3 is 7.

Self Check 14.9

Section 7.3.6 has two algorithms for removing an element from an
array of length n. How many array visits does each algorithm require
on average?

Answer: The first algorithm requires one visit, to
store the new element. The second algorithm
requires T(p) = 2 × (n – p – 1) visits, where p is the
location at which the element is removed. We don’t
know where that element is, but if elements are
removed at random locations, on average, half of the
removals will be above the middle and half below, so
we can assume an average p of n / 2 and T(n) = 2 ×
(n – n / 2 – 1) = n – 2.

Self Check 14.10

Describe the number of array visits in Self Check 9 using the big-Oh
notation.

Answer: The first algorithm is O(1), the second
O(n).

Self Check 14.11

What is the big-Oh running time of checking whether an array is
already sorted?

Answer: We need to check that a[0] ≤ a[1],
a[1] ≤ a[2], and so on, visiting 2n – 2 elements.
Therefore, the running time is O(n).

Self Check 14.12

Consider this algorithm for sorting an array. Set k to the length of the array. Find the

maximum of the first k elements. Remove it, using the second algorithm of Section

7.3.6. Decrement k and place the

removed element into the k th position. Stop if k is 1. What is the algorithm’s
running time in big-Oh notation?

Answer: Let n be the length of the array. In the kth step, we need
k visits to find the minimum. To remove it, we need an average of k
– 2 visits (see Self Check 9). One additional visit is required to add
it to the end. Thus, the kth step requires 2k – 1 visits. Because k
goes from n to 2, the total number of visits is

2n – 1 + 2(n –1) – 1 + ... + 2 · 3 – 1 + 2 · 2 – 1 =
2(n + (n – 1) + ... + 3 + 2 + 1 – 1) – (n – 1) =

n(n + 1) – 2 – n +1 = n2 – 3
(because 1 + 2 + 3 + ... + (n – 1) + n = n (n + 1) / 2)

Therefore, the total number of visits is O(n2).

Common Big-Oh Growth Rates

