CS 202, Fall 2020

Homework #2 — Binary Search Trees
Due Date: November 17, 2020

Important Notes
Please do not start the assignment before reading these notes.

e Before 23:55, November 17, upload your solutions in a single ZIP archive using

Moodle submission form. Name the file as studentID_hw2.zip.
e Your ZIP archive should contain the following files:

— hw2.pdf, the file containing the answers to Questions 1 and 3,

— PbBST.h, PbBST. cpp, PbBSTNode . h, PbBSTNode. cpp, analysis.h, analysis.cpp,

main.cpp files which contain the C+4+ source codes, and the Makefile.

— Do not forget to put your name, student id, and section number in all of these
files. Well comment your implementation. Add a header as in Listing 1 to the

beginning of each file:

Listing 1: Header style

/ % %
* Title: Binary Search Trees
* Author: Name Surname
* ID: 21000000
* Section: O
* Assignment: 2

* Description: description of your code

— Do not put any unnecessary files such as the auxiliary files generated from your
favorite IDE. Be careful to avoid using any OS dependent utilities (for example

to measure the time).

— You should prepare the answers of Questions 1 and 3 using a word processor

(in other words, do not submit images of handwritten answers).

1


https://moodle.bilkent.edu.tr/2017-2018-fall/mod/assignment/view.php?id=15818

Fundamental Structures of Computer Science I1

— Use the exact algorithms shown in lectures.

e Although you may use any platform or any operating system to implement your
algorithms and obtain your experimental results, your code should work on the
dijkstra server (dijkstra.ug.bec.bilkent.edu.tr). We will compile and test your pro-

grams on that server. Thus, you may lose a significant amount of points if your

C—++ code does not compile or execute on the dijkstra server.

e This homework will be graded by your TA, Mubashira Zaman. Thus, please contact

her directly for any homework related questions.

Attention: For this assignment, you are allowed to use the codes given in our text-
book and/or our lecture slides. However, you ARE NOT ALLOWED to use any codes
from other sources (including the codes given in other textbooks, found on the Internet,
belonging to your classmates, etc.). Furthermore, you ARE NOT ALLOWED to use any
data structure or algorithm related function from the C++ standard template library
(STL).

Do not forget that plagiarism and cheating will be heavily punished. Please

do the homework yourself.

Question 1 — 20 points

(a) [5 points] What are the preorder, inorder, and postorder traversals of the binary
algebraic expression tree drawn below? Use the inorder traversal to compute the

solution of the expression.

(b) [10 points] Insert 30,19,24,66,44,39,88,63,92,69,51 into an empty binary search
tree. Show only the final tree after all insertions. Then delete 44,92,19,30 in
given order. Show the tree after each delete operation. Verify your answers by

using this visualization tool.

Page 2


mailto:mubashira.zaman@bilkent.edu.tr?subject=CS 202 - Homework 2
mailto:mubashira.zaman@bilkent.edu.tr?subject=CS 202 - Homework 2
https://visualgo.net/en/bst

Fundamental Structures of Computer Science I1

(c) [5 points| The postorder traversal of a full binary tree is D, A, R, S, G, N,O. What is

its inorder traversal? Reconstruct the tree from its traversal and draw it.

Question 2 — 65 points

Write a pointer-based implementation of Binary Search Tree named as PbBST for main-
taining a list of integer keys. As mentioned in your lecture notes, use the TreeNode class

for creating nodes for the tree. You are allowed to create the necessary helper functions.
Put your code into PbBST.h, PbBST.cpp, PbBSTNode.h and PbBSTNode.cpp files.

(a) |10 points] Implement insertKey and deleteKey methods for PbBST class. Prototypes
of required methods are:
void PbBST::insertKey(int key); // 5 points
void PbBST::deleteKey(int key); // 5 points

(b) [15 points| Implement a method findNodesRequired that finds the number of nodes
required to convert a tree into a full binary tree of its current height. Call the methods
getHeight and getNodeCount inside the findNodesRequired method to perform this
task:

int PbBST::getHeight(); // 5 points
int PbBST::getNodeCount(); // 5 points
int PbBST::findNodesRequired(); // 5 points

(c) [15 points| Implement a method mirrorTree that swaps the right and left pointers
of each node. Also write a method that prints the contents of the tree using preorder
traversal. The output of the mirrorTree method should yield results as shown in
Figure 1.

void PbBST::mirrorTree(); // 10 points
void PbBST::preorderTraversal(); // 5 points

Original Tree Mirror Tree

Figure 1: Tree mirroring

Page 3



Fundamental Structures of Computer Science I1

(d)

[10 points| Write another method to return the median of numbers in the binary
search tree in linear time (linear in the number of items). Your method should have
the following prototype:

int medianOfBST(); // 10 points

[10 points| Height of BST is a very important property which affects the performance
of search, delete, and insert operations directly. In this part, you will analyze how
the height of BST changes as you insert and delete random numbers into/from the

tree. Write a global function, void heightAnalysis(), which does the following:

(1) Creates an array of 15000 random numbers and starts inserting them into an
empty pointer based BST. At each 1500 insertions, outputs the height of the

tree.

(2) Shuffles the array created in part el. Then iterates over it and deletes the numbers
from the tree. After each 1500 deletions, outputs the height of the tree.

Add your code into analysis.h and analysis.cpp file. When heightAnalysis

function is called, it needs to produce an output similar to the following one:

Listing 2: Sample output

Part e - Height analysis of Binary Search Tree - part 1
Tree Size Tree Height

1500 X ms

3000 X ms

Part e - Height analysis of Binary Search tree - part 2
Tree Size Tree Height

13500 X ms

12000 X ms

Page 4



Fundamental Structures of Computer Science I1

(f) [5 points, mandatory| Create a main.cpp file which does the following in order:

e creates a pointer based binary search tree and insert the following numbers into
it: {42,19,22,35,56,11,94,32,28,8,6,81,63,13,45}
e calls the findNodesRequired method
e deletes 56 and 19 from the tree
e calls the median0fBST method
e creates a mirrored copy of the tree and prints its preorder traversal
At the end, write a basic Makefile which compiles all your code and creates an ex-

ecutable file named hw2. Check out these tutorials for writing a simple make file:

tutorial 1, tutorial 2. Please make sure that your Makefile works properly, otherwise

you will not get any points from Question 2.

Question 3 — 15 points

After running your programs, you are expected to prepare a single page report about the
experimental results that you obtained in Question 2 e. With the help of a spreadsheet
program (Microsoft Excel, Matlab or other tools), plot number of elements versus height
after each 1500 insertions and deletions. On the same figure, plot number of elements
versus theoretical height after each 1500 insertions and deletions. A sample figure is given
in Figure 2 (these values do not reflect real values).

In your report, you need to discuss the following points:

e Interpret and compare your empirical results with the theoretical ones. Explain any

differences between the empirical and theoretical results, if any.

e How would the height of the tree change if you inserted sorted numbers into it

instead of randomly generated numbers?

Page 5


http://mrbook.org/blog/tutorials/make/
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

Fundamental Structures of Computer Science 11

Analysis of BST Implementation Performance

60

50

40

30

Height

20

10

1500 3000 4500 6000 7500 9000 10500 12000 13500 15000

Number of elements in tree

e Theoretical Values — s pfter Insertions s After Deletions

Figure 2: Sample figure for BST Performance Analysis

Page 6



	Important Notes
	Question 1 – 20 points
	Question 2 – 65 points
	Question 3 – 15 points

