Lecture 1
Introduction to Analysis of Algorithms
Motivation

– Procedure vs. Algorithm

– What kind of problems are solved by Algorithms?
 • determine/compare DNA sequences
 • efficiently search (e.g. Google) web pages w/ keywords
 • route data (e.g. email) on the Internet
 • decode data (e.g. banking) for security

– Data Structures & Algorithms

– Repertoire vs. New Algorithms (Techniques)
Motivation cntd

– Efficient (scope of course) vs. Inefficient
– Design algorithms that are
 • fast,
 • uses as little memory as possible, and
 • correct!
Problem : Sorting (from Section 1.1)

Input : Sequence of numbers

\[\langle a_1, a_2, \ldots, a_n \rangle \]

Output : A permutation

\[\Pi = \langle \Pi(1), \Pi(2), \ldots, \Pi(n) \rangle \]

such that

\[a_{\Pi(1)} \leq a_{\Pi(2)} \leq \ldots \leq a_{\Pi(n)} \]
Algorithm: Insertion sort (from Section 1.1)

Insertion-Sort (A)

1. for \(j \leftarrow 2 \) to \(n \) do
2. \(\text{key} \leftarrow A[j]; \)
3. \(i \leftarrow j - 1; \)
4. while \(i > 0 \) and \(A[i] > \text{key} \) do
5. \(A[i+1] \leftarrow A[i]; \)
6. \(i \leftarrow i - 1; \)
7. endwhile
8. \(A[i+1] \leftarrow \text{key}; \)
endfor
Pseudocode Notation

- Liberal use of English
- Use of indentation for block structure
- Omission of error handling and other details
 - Needed in real programs
Algorithm: Insertion sort

Idea:

- Items sorted **in-place**
 - Items rearranged within array
 - At most constant number of items stored outside the array at any time
 - Input array A contains sorted output sequence when Insertion-Sort is finished

- **Incremental approach**
Algorithm: Insertion sort

Example: Sample sequence

A = ⟨31, 42, 59, 26, 40, 35⟩

Assume first 5 items are already sorted in A[1..5]

A = ⟨26, 31, 40, 42, 59, 35⟩

already sorted key

26 31 40 42 59 35 35 = key
26 31 40 42 59 59 35 = key
26 31 40 42 42 59 35 = key
26 31 40 40 42 59 35 = key
26 31 35 40 42 59

26 31 35 40 42 59
Running Time

• Depends on
 – Input size (e.g., 6 elements vs 60000 elements)
 – Input itself (e.g., partially sorted)

• Usually want *upper bound*
Kinds of running time analysis:

- **Worst Case** (Usually):
 \[T(n) = \text{max time on any input of size } n \]

- **Average Case** (Sometimes):
 \[T(n) = \text{average time over all inputs of size } n \]
 Assumes statistical distribution of inputs

- **Best Case** (Rarely):
 BAD*: Cheat with slow algorithm that works fast on some inputs
 GOOD: Only for showing bad lower bound

*Can modify any algorithm (almost) to have a low best-case running time
 - Check whether input constitutes an output at the very beginning of the algorithm
Running Time

• For Insertion-Sort, what is its worst-case time
 – Depends on speed of primitive operations
 • Relative speed (on same machine)
 • Absolute speed (on different machines)

• Asymptotic analysis
 – Ignore machine-dependent constants
 – Look at growth of $T(n)$ as $n \to \infty$
\(\Theta \) Notation

- Drop low order terms
- Ignore leading constants

\[E.g. \ 3n^3 + 90n^2 - 2n + 5 = \Theta(n^3) \]
• As \(n \) gets large a \(\Theta(n^2) \) algorithm runs faster than a \(\Theta(n^3) \) algorithm

![Graph showing \(T(n) \) vs. \(n \) with a point indicating the minimum value for \(n_0 \).]
Running Time Analysis of **Insertion-Sort**

- Sum up costs:

\[
T(n) = c_1 n + c_2 (n - 1) + c_3 (n - 1) + c_4 \sum_{j=2}^{n} t_j + \\
 c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n - 1)
\]

- The best case (sorted order):

\[
T(n) = (c_1 + c_2 + c_3 + c_4 + c_7) n - (c_2 + c_3 + c_4 + c_7)
\]

- The worst case (reverse sorted order):

\[
T(n) = \frac{1}{2} (c_4 + c_5 + c_6) n^2 + \\
 (c_1 + c_2 + c_3 + \frac{1}{2} (c_4 + c_5 + c_6) + c_7) n - (c_2 + c_3 + c_4 + c_7)
\]
Running Time Analysis of Insertion-Sort

- Worst-case (input reverse sorted)
 - Inner loop is $\Theta(j)$
 \[
 T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta \left(\sum_{j=2}^{n} j \right) = \Theta(n^2)
 \]

- Average case (all permutations equally likely)
 - Inner loop is $\Theta(j/2)$
 \[
 T(n) = \sum_{j=2}^{n} \Theta(j/2) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)
 \]
 - Often, average case not much better than worst case

- Is this a fast sorting algorithm?
 - Yes, for small n. No, for large $n.$
Algorithm: Merge-Sort

• Basic Step: Merge 2 sorted lists of total length n in $\Theta(n)$ time

• Example:

\[
\begin{array}{cccc}
2 & 3 & 7 & 8 \\
1 & 4 & 5 & 6 \\
\end{array}
\]

\[
\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & \ldots
\end{array}
\]
Recursive Algorithm:

Merge-Sort (A, p, r) \((T(n)) \)

if \(p = r \) then return; \((\Theta(1)) \)
else

q \leftarrow \lfloor (p+r)/2 \rfloor; \quad \text{: Divide} \quad (\Theta(1))

Merge-Sort(A, p, q); \quad \text{: Conquer} \quad (T(n/2))

Merge-Sort(A, q+1, r); \quad \text{: Conquer} \quad (T(n/2))

Merge(A, p, q, r); \quad \text{: Combine} \quad (\Theta(n))
endif

• Call Merge-Sort(A, 1, n) to sort A[1..n]
• Recursion bottoms up when subsequences have length 1
Recurrence (for Merge-Sort) - From Section 1.3

- Describes a function recursively in terms of itself
- Describes performance of recursive algorithms

For Merge-Sort

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases}
\]
• How do we find a good upper bound on $T(n)$ in closed form?
• Generally, will assume $T(n) = \text{Constant (}\Theta(1))$ for sufficiently small n
• For Merge-Sort write the above recurrence as

$$T(n) = 2 \ T(n/2) + \Theta(n)$$

• Solution to the recurrence

$$T(n) = \Theta(n \log n)$$
Conclusions (from Section 1.3)

• $\Theta(n \log n)$ grows more slowly than $\Theta(n^2)$

Therefore Merge-Sort beats Insertion-Sort in the worst case

• In practice, Merge-Sort beats Insertion-Sort for $n > 30$ or so.