Lecture 6-a
Analysis of Quicksort

View in slide-show mode
Analysis of Quicksort

Assume *all elements are distinct* in the following analysis.

QUICKSORT \((A, p, r)\)

- **if** \(p < r\) **then**
 - \(q \leftarrow \text{H-PARTITION}(A, p, r)\)
 - **QUICKSORT**\((A, p, q)\)
 - **QUICKSORT**\((A, q + 1, r)\)
Question

QUICKSORT \((A, p, r) \)

\[
\text{if } p < r \text{ then }
q \leftarrow \text{H-PARTITION}(A, p, r)
\]

QUICKSORT\((A, p, q) \)

QUICKSORT\((A, q + 1, r) \)

Q: Remember that \(\text{H-PARTITION} \) always chooses \(A[p] \) (the first element) as the **pivot**. What is the runtime of \(\text{QUICKSORT} \) on an already-sorted array?

- a) \(\Theta(n) \)
- b) \(\Theta(n \log n) \)
- c) \(\Theta(n^2) \)
- d) cannot provide a tight bound

✔

❖

❖

❖

❖

❖
Example: An Already Sorted Array

Partitioning always leads to 2 parts of size 1 and $n-1$
Worst Case Analysis of Quicksort

- **Worst case** is when the PARTITION algorithm always returns imbalanced partitions (of size 1 and n-1) in every recursive call.
 - This happens when the pivot is selected to be either the min or max element.
 - This happens for H-PARTITION when the input array is already sorted or reverse sorted.

\[
T(n) = T(1) + T(n-1) + \Theta(n)
\]
\[
= T(n-1) + \Theta(n)
\]
\[
= \Theta(n^2) \quad (\text{arithmetic series})
\]
Worst Case Recursion Tree

\[T(n) = T(1) + T(n-1) + cn \]
Worst Case Recursion Tree

\[T(n) = T(1) + T(n-1) + cn \]

\[\sum_{k=1}^{n} ck = \Theta(n^2) \]

\[T(n) = \Theta(n^2) + \Theta(n) \]

\[T(n) = \Theta(n^2) \]
Best Case Analysis (for intuition only)

- If we’re extremely lucky, H-PARTITION splits the array evenly at every recursive call

\[
T(n) = 2T(n/2) + \Theta(n) = \Theta(n \log n)
\]

- Instead of splitting 0.5:0.5, what if every split is 0.1:0.9?

\[
T(n) = T(n/10) + T(9n/10) + \Theta(n)
\]

\[\square \text{ solve this recurrence}\]
“Almost-Best” Case Analysis

\[\Theta(1) \]

\[\frac{n}{100} \]

\[\frac{n}{10} \]

\[\frac{9n}{100} \]

\[\frac{9n}{10} \]

\[\frac{81n}{100} \]

\[\Theta(1) \]
“Almost-Best” Case Analysis

\[\Theta(1) \rightarrow \frac{n}{100} \rightarrow \frac{9n}{100} \rightarrow \frac{9n}{100} \rightarrow \frac{81n}{100} \rightarrow \cdots \rightarrow cn \]

\[\Theta(1) \rightarrow \leq cn \]
“Almost-Best” Case Analysis

\[T(n) = \Theta(n \log n) \]
Balanced Partitioning

- We have seen that if H-PARTITION always splits the array with 0.1-to-0.9 ratio, the runtime will be $\Theta(n \log n)$.
- Same is true with a split ratio of 0.01-to-0.99, etc.

- Possible to show that if the split has always constant ($\Theta(1)$) proportionality, then the runtime will be $\Theta(n \log n)$.

- In other words, for a constant α ($0 < \alpha \leq 0.5$):
 α–to–$(1-\alpha)$ proportional split yields $\Theta(n \log n)$ total runtime
Balanced Partitioning

- In the rest of the analysis, assume that all input permutations are equally likely.
 - This is only to gain some intuition
 - We cannot make this assumption for average case analysis
 - We will revisit this assumption later
- Also, assume that all input elements are distinct.

- What is the probability that H-PARTITION returns a split that is more balanced than 0.1-to-0.9?
Balanced Partitioning

Reminder: *H-PARTITION* will place the pivot in the right partition unless the pivot is the smallest element in the arrays.

Question: If the pivot selected is the m^{th} smallest value ($1 < m \leq n$) in the input array, what is the size of the left region after partitioning?

\[
\begin{align*}
1 & \quad q & \quad n \\
\text{there are } m-1 \text{ elements less than the pivot} & \quad \text{pivot is placed in the right region} & \\
q = m-1
\end{align*}
\]
Balanced Partitioning

Question: What is the probability that the pivot selected is the m^{th} smallest value in the array of size n?

$\frac{1}{n}$ (since all input permutations are equally likely)

Question: What is the probability that the left partition returned by H-PARTITION has size m, where $1 < m < n$?

$\frac{1}{n}$ (due to the answers to the previous 2 questions)
Balanced Partitioning

Question: What is the probability that \(H\text{-PARTITION} \) returns a split that is more balanced than 0.1-to-0.9?

\[
\text{Probability} = \sum_{q=0.1n+1}^{0.9n-1} \frac{1}{n} = \frac{1}{n}(0.9n - 1 - 0.1n - 1 + 1) = 0.8 - \frac{1}{n}
\]

\(\approx 0.8 \) for large \(n \)

The partition boundary will be in this region for a more balanced split than 0.1-to-0.9.
Balanced Partitioning

- The probability that \(H\text{-PARTITION} \) yields a split that is more balanced than 0.1-to-0.9 is 80% on a random array.

- Let \(P_{\alpha} \) be the probability that \(H\text{-PARTITION} \) yields a split more balanced than \(\alpha\)-to-\((1-\alpha)\), where \(0 < \alpha \leq 0.5 \)

- Repeat the analysis to generalize the previous result
Balanced Partitioning

Question: What is the probability that H-PARTITION returns a split that is more balanced than α-to-$(1-\alpha)$?

The partition boundary will be in this region for a more balanced split than αn-to-$(1-\alpha)n$.

\[
\text{Probability} = \sum_{q=\alpha n+1}^{(1-\alpha)n-1} \frac{1}{n} = \frac{1}{n} \left((1-\alpha)n - 1 - \alpha n - 1 + 1 \right) = (1 - 2\alpha) - \frac{1}{n}
\]

\[\approx (1-2\alpha) \text{ for large } n\]
Balanced Partitioning

- We found $P_{\alpha} = 1 - 2\alpha$

 Examples: $P_{0.1} = 0.8$ $P_{0.01} = 0.98$

- Hence, H-PARTITION produces a split
 - *more balanced* than a
 - 0.1-to-0.9 split 80% of the time
 - 0.01-to-0.99 split 98% of the time
 - *less balanced* than a
 - 0.1-to-0.9 split 20% of the time
 - 0.01-to-0.99 split 2% of the time
Intuition for the Average Case

- **Assumption**: All permutations are equally likely
 - Only for intuition; we’ll revisit this assumption later
- **Unlikely**: Splits always the same way at every level

- **Expectation**:
 - Some splits will be reasonably balanced
 - Some splits will be fairly unbalanced

- **Average case**: A mix of good and bad splits
 - *Good* and *bad* splits distributed randomly thru the tree
Intuition for the Average Case

- *Assume for intuition*: Good and bad splits occur in the alternate levels of the tree

 Good split: Best case split

 Bad split: Worst case split
Intuition for the Average Case

Compare 2-successive levels of avg case vs. 1 level of best case
Intuition for the Average Case

- In terms of the remaining subproblems, two levels of avg case is slightly better than the single level of the best case.
- The avg case has extra divide cost of $\Theta(n)$ at alternate levels.
Intuition for the Average Case

- The extra divide cost $\Theta(n)$ of bad splits absorbed into the $\Theta(n)$ of good splits.
- Running time is still $\Theta(n \log n)$
Intuition for the Average Case

- Running time is still $\Theta(n \log n)$
 - But, slightly larger hidden constants, because the height of the recursion tree is about twice of that of best case.
Intuition for the Average Case

- Another way of looking at it:
 Suppose we alternate lucky, unlucky, lucky, unlucky, …
 We can write the recurrence as:
 \[L(n) = 2 \ U(n/2) + \Theta(n) \]
 lucky split (best)
 \[U(n) = L(n-1) + \Theta(n) \]
 unlucky split (worst)

Solving:
 \[L(n) = 2 \ (L(n/2-1) + \Theta(n/2)) + \Theta(n) \]
 \[= 2L(n/2-1) + \Theta(n) \]
 \[= \Theta(n \log n) \]

How can we make sure we are usually lucky for all inputs?
Summary: Quicksort Runtime Analysis

Worst case: Unbalanced split at *every* recursive call

\[T(n) = T(1) + T(n-1) + \Theta(n) \]

\[T(n) = \Theta(n^2) \]

Best case: Balanced split at *every* recursive call (extremely lucky)

\[T(n) = 2T(n/2) + \Theta(n) \]

\[T(n) = \Theta(n \log n) \]
Summary: Quicksort Runtime Analysis

Almost-best case: Almost-balanced split at **every** recursive call

\[
T(n) = T(n/10) + T(9n/10) + \Theta(n)
\]

or

\[
T(n) = T(n/100) + T(99n/100) + \Theta(n)
\]

or

\[
T(n) = T(\alpha n) + T((1-\alpha)n) + \Theta(n)
\]

for any constant \(\alpha, 0 < \alpha \leq 0.5 \)

\[T(n) = \Theta(n \log n) \]
Summary: Quicksort Runtime Analysis

For a **random** input array, the probability of having a split

more balanced than $0.1 \text{ to } 0.9 : 80\%$

more balanced than $0.01 \text{ to } 0.99 : 98\%$

more balanced than $\alpha \text{ to } (1-\alpha) : 1 - 2\alpha$

for any constant α, $0 < \alpha \leq 0.5$
Summary: Quicksort Runtime Analysis

Avg case intuition: Different splits expected at different levels
- some balanced (good), some unbalanced (bad)

Avg case intuition: Assume the good and bad splits alternate
- i.e. good split □ bad split □ good split □ …
- T(n) = Θ(nlgn)
 (informal analysis for intuition)