Lecture 6-b
Randomized Quicksort

View in slide-show mode
Randomized Quicksort

In the avg-case analysis, we assumed that all permutations of the input array are equally likely.
- But, this assumption does not always hold
- e.g. What if all the input arrays are reverse sorted?
 - Always worst-case behavior

Ideally, the avg-case runtime should be independent of the input permutation.
- Randomness should be within the algorithm, not based on the distribution of the inputs.
 - i.e. The avg case should hold for all possible inputs
Randomized Algorithms

- Alternative to assuming a uniform distribution:
 - Impose a uniform distribution
 - e.g. Choose a random pivot rather than the first element

- Typically useful when:
 - there are many ways that an algorithm can proceed
 - but, it’s difficult to determine a way that is always guaranteed to be good.
 - If there are many good alternatives; simply choose one randomly.
Ideally:

- Runtime should be independent of the specific inputs.
- No specific input should cause worst-case behavior.
- Worst-case should be determined only by output of a random number generator.
Randomized Quicksort

Using Hoare’s partitioning algorithm:

\[
\begin{align*}
\text{R-QUICKSORT}(A, p, r) \\
\text{if } p < r \text{ then} \\
q &\leftarrow \text{R-PARTITION}(A, p, r) \\
\text{R-QUICKSORT}(A, p, q) \\
\text{R-QUICKSORT}(A, q+1, r)
\end{align*}
\]

\[
\begin{align*}
\text{R-PARTITION}(A, p, r) \\
s &\leftarrow \text{RANDOM}(p, r) \\
\text{exchange } A[p] &\leftrightarrow A[s] \\
\text{return } \text{H-PARTITION}(A, p, r)
\end{align*}
\]

Alternatively, permuting the whole array would also work

- but, would be more difficult to analyze
Randomized Quicksort

Using Lomuto’s partitioning algorithm:

\[
\text{R-QUICKSORT}(A, p, r) \\
\text{if } p < r \text{ then} \\
\quad q \leftarrow \text{R-PARTITION}(A, p, r) \\
\quad \text{R-QUICKSORT}(A, p, q-1) \\
\quad \text{R-QUICKSORT}(A, q+1, r)
\]

\[
\text{R-PARTITION}(A, p, r) \\
\quad s \leftarrow \text{RANDOM}(p, r) \\
\quad \text{exchange } A[r] \leftrightarrow A[s] \\
\quad \text{return } \text{L-PARTITION}(A, p, r)
\]

Alternatively, permuting the whole array would also work

□ but, would be more difficult to analyze
Notations for Formal Analysis

- Assume all elements in $A[p..r]$ are distinct
- Let $n = r - p + 1$

- Let $\text{rank}(x) = \left| \{A[i] : p \leq i \leq r \text{ and } A[i] \leq x \} \right|$

i.e. $\text{rank}(x)$ is the number of array elements with value less than or equal to x

\[
\begin{array}{cccccc}
5 & 9 & 7 & 6 & 8 & 1 & 4 \\
\end{array}
\]

$\text{rank}(5) = 3$

i.e. it is the 3rd smallest element in the array
Formal Analysis for Average Case

- The following analysis will be for Quicksort using Hoare’s partitioning algorithm.
- **Reminder**: The pivot is selected **randomly** and exchanged with A[p] before calling H-PARTITION

- Let \(x \) be the **random pivot** chosen.
- What is the probability that \(\text{rank}(x) = i \) for \(i = 1, 2, \ldots, n \) ?
 \[
P(\text{rank}(x) = i) = \frac{1}{n}
\]
Various Outcomes of H-PARTITION

Assume that \(\text{rank}(x) = 1 \)

\(i.e. \) the *random pivot* chosen is the *smallest* element

What will be the size of the left partition \(|L|\)?

Reminder: Only the elements less than or equal to \(x \) will be in the left partition.

\[|L| = 1 \]

\[\begin{array}{c}
 p \\
 \text{2} \\
 \hline
 9 & 7 & 6 & 8 & 5 & 4 \\
 r \\
 \text{pivot} = x = 2
\end{array} \]
Various Outcomes of H-PARTITION

Assume that $\text{rank}(x) > 1$

i.e. the random pivot chosen is not the smallest element

What will be the size of the left partition ($|L|$)?

Reminder: Only the elements less than or equal to x will be in the left partition.

Reminder: The pivot will stay in the right region after H-PARTITION if $\text{rank}(x) > 1$

$|L| = \text{rank}(x) - 1$

p 4 7 6 8 5 9 r

pivot = $x = 5$
Various Outcomes of H-PARTITION - Summary

\[P(\text{rank}(x) = i) = \frac{1}{n} \quad \text{for} \quad 1 \leq i \leq n \]

\[\text{if} \quad \text{rank}(x) = 1 \quad \text{then} \quad |L| = 1 \]

\[\text{if} \quad \text{rank}(x) > 1 \quad \text{then} \quad |L| = \text{rank}(x) - 1 \]

\[P(|L| = 1) = P(\text{rank}(x) = 1) + P(\text{rank}(x) = 2) = 2/n \]

\[P(|L| = i) = P(\text{rank}(x) = i+1) \quad \text{for} \quad 1 < i < n \]

\[P(|L| = i) = \frac{1}{n} \quad \text{for} \quad 1 < i < n \]
Various Outcomes of H-PARTITION - Summary

<table>
<thead>
<tr>
<th>rank(x)</th>
<th>probability</th>
<th>T(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/n</td>
<td>T(1) + T(n-1) + Θ(n)</td>
</tr>
<tr>
<td>2</td>
<td>1/n</td>
<td>T(1) + T(n-1) + Θ(n)</td>
</tr>
<tr>
<td>3</td>
<td>1/n</td>
<td>T(2) + T(n-2) + Θ(n)</td>
</tr>
<tr>
<td>i+1</td>
<td>1/n</td>
<td>T(i) + T(n-i) + Θ(n)</td>
</tr>
<tr>
<td>n</td>
<td>1/n</td>
<td>T(n-1) + T(1) + Θ(n)</td>
</tr>
</tbody>
</table>
Average - Case Analysis: Recurrence

\[T(n) = \frac{1}{n} (T(1) + T(n-1)) + \frac{1}{n} (T(1) + T(n-1)) + \frac{1}{n} (T(2) + T(n-2)) + \cdots + \frac{1}{n} (T(i) + T(n-i)) + \cdots + \frac{1}{n} (T(n-1) + T(1)) + \Theta(n) \]
Recurrence

\[T(n) = \frac{1}{n} \sum_{q=1}^{n-1} (T(q) + T(n-q)) + \frac{1}{n} (T(1) + T(n-1)) + \Theta(n) \]

Note: \(\frac{1}{n} (T(1) + T(n-1)) = \frac{1}{n} (\Theta(1) + O(n^2)) = O(n) \)

\[\Rightarrow T(n) = \frac{1}{n} \sum_{q=1}^{n-1} (T(q) + T(n-q)) + \Theta(n) \]

- for \(k = 1, 2, \ldots, n-1 \) each term \(T(k) \) appears twice
 - once for \(q = k \) and once for \(q = n-k \)

- \(T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n) \)
Solving Recurrence: Substitution

Guess: \(T(n) = O(n \lg n) \)

I.H. : \(T(k) \leq a k \lg k \) for \(k < n \), for some constant \(a > 0 \)

\[
T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n)
\]

\[
\leq \frac{2}{n} \sum_{k=1}^{n-1} (a k \lg k) + \Theta(n)
\]

\[
= \frac{2}{n} a \sum_{k=1}^{n-1} (k \lg k) + \Theta(n)
\]

Need a tight bound for \(\sum k \lg k \)
Tight bound for $\sum k \lg k$

• Bounding the terms

$$\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{n-1} n \lg n = n(n-1) \lg n \leq n^2 \lg n$$

This bound is not strong enough because

• $T(n) \leq \frac{2a}{n} n^2 \lg n + \Theta(n)$

$$= 2an \lg n + \Theta(n)$$

⇒ couldn’t prove $T(n) \leq an \lg n$
Tight bound for $\sum k \lg k$

- **Splitting summations:** Ignore ceilings for simplicity

\[
\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{n/2-1} k \lg k + \sum_{k=n/2}^{n-1} k \lg k
\]

First summation: $\lg k < \lg(n/2) = \lg n - 1$

Second summation: $\lg k < \lg n$
Splitting:

\[
\sum_{k=1}^{n-1} k \log k \leq \sum_{k=1}^{n/2-1} k \log k + \sum_{k=n/2}^{n-1} k \log k
\]

\[
\sum_{k=1}^{n-1} k \log k \leq \left(\log n - 1 \right) \sum_{k=1}^{n/2-1} k + \log n \sum_{k=n/2}^{n-1} k
\]

\[
= \log n \sum_{k=1}^{n-1} k - \sum_{k=1}^{n/2-1} k = \frac{1}{2} n(n-1) \log n - \frac{1}{2} \frac{n}{2} \left(\frac{n}{2} - 1 \right)
\]

\[
= \frac{1}{2} n^2 \log n - \frac{1}{8} n^2 - \frac{1}{2} n \left(\log n - 1 / 2 \right)
\]

\[
\sum_{k=1}^{n-1} k \log k \leq \frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \quad \text{for } \log n \geq 1 / 2 \Rightarrow n \geq \sqrt{2}
\]
Substituting: \[\sum_{k=1}^{n-1} k \lg k \leq \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \]

\[T(n) \leq \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + \Theta(n) \]

\[\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n) \]

\[= an \lg n - \left(\frac{a}{4} n - \Theta(n) \right) \]

We can choose \(a \) large enough so that \(\frac{a}{4} n \geq \Theta(n) \)

\[\Rightarrow T(n) \leq an \lg n \Rightarrow T(n) = O(n \lg n) \]

Q.E.D.