Algorithms II, CS 502 Algorithms Basics

Ugur Dogrusoz
 Computer Eng Dept, Bilkent Univ

What is an Algorithm?

Procedure that always halts with a correct solution to the problem at hand

Why study Algorithms?

\square Analyze performance to determine "feasible vs. not"
\square Algorithmic mathematics (e.g. big-O notation) allows comparing performance of two algorithms for the same problem

- Build a repertoire of algorithms for future use
- Learn various algorithm design paradigms and apply to new problems

Kinds of analyses

\square Worst case (usually):
$\square \mathrm{T}(\mathrm{n})=$ maximum time it takes for an algorithm for any input of size n
\square Average case (sometimes):
$\square T(n)=$ expected time of algorithm over all inputs of size n
\square Need to know statistical distribution of inputs
\square Harder

- Best case (rarely):
- Can always cheat with a slow algorithm that works fast on some input

Asymptotic notation

\square Use for running time or memory requirement analysis
\square Ignore machine-dependent constants, look at growth in $T(n)$ as n goes to infinity
\square When input size gets large enough, a quadratic algorithm always beats a cubic one

O-notation

Formally
$O(g(n))=\left\{f(n):\right.$ there exist positive constants c and n_{0} such that

$$
\left.0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\right\}
$$

- Informally
\square drop low order terms, ignore leading constants to form an upper bound

$$
3 n^{3}+90 n^{2}-5 n+6046=O\left(n^{3}\right)
$$

Ω-notation

- Formally
$\Omega(g(n))=\left\{f(n):\right.$ there exist positive constants c and n_{0} such that $0 \leq c g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$.
- Informally
\square drop low order terms, ignore leading constants to form a lower bound

$$
3 n^{3}+90 n^{2}-5 n+6046=\Omega\left(n^{3}\right)
$$

0 - and ω-notation

Strict versions of O and Ω

$$
\begin{aligned}
& 3 \mathrm{n}^{3}+90 \mathrm{n}^{2}-5 \mathrm{n}+6046=O\left(\mathrm{n}^{3}\right) \\
& 3 \mathrm{n}^{3}+90 \mathrm{n}^{2}-5 \mathrm{n}+6046 \neq o\left(\mathrm{n}^{3}\right) \\
& 3 \mathrm{n}^{3}+90 \mathrm{n}^{2}-5 \mathrm{n}+6046=o\left(\mathrm{n}^{3.01}\right) \\
& 3 \mathrm{n}^{3}+90 \mathrm{n}^{2}-5 \mathrm{n}+6046=\Omega\left(\mathrm{n}^{3}\right) \\
& 3 \mathrm{n}^{3}+90 \mathrm{n}^{2}-5 \mathrm{n}+6046 \neq \omega\left(\mathrm{n}^{3}\right) \\
& 3 \mathrm{n}^{3}+90 \mathrm{n}^{2}-5 \mathrm{n}+6046=\omega\left(\mathrm{n}^{2.99}\right)
\end{aligned}
$$

Θ-notation

Formally
$\Theta(g(n))=\left\{f(n):\right.$ there exist positive constants c_{1}, c_{2}, and n_{0} such that $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $\left.n \geq n_{0}\right\}$.

- Informally
\square drop low order terms, ignore leading constants to form a tight (both lower and upper) bound

$$
3 n^{3}+90 n^{2}-5 n+6046=\Theta\left(n^{3}\right)
$$

Algorithm design paradigms

Divide-and-conquer
Dynamic programming
Greedy
Branch-and-bound

Methods for running time complexity

- Master Method
\square Applies to limited types of algorithms
Substitution Method
\square Difficult to make the guess that works
\square Might not work (lead to induction that works)
\square Recursive Tree Method
\square Difficult to get tight complexity

Example: Fibonacci numbers

Calculate $\mathrm{n}^{\text {th }}$ Fibonnaci number
$\square F_{0}=0, F_{1}=1, F_{i}=F_{i-1}+F_{i-2}$ for $i \geq 2$
Divide-and-conquer solution
\square Running time?
\square How to improve?

