
Algorithms II, CS 502
Augmenting Data Structures

Ugur Dogrusoz
Computer Eng Dept, Bilkent Univ

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 1



2

Augmenting

nOften times “textbook” data structures (DS) 
are sufficient
q need to modify for real-life usage of course (we rarely 

sort “just integers” but rather “objects based on a 
unique field which is an integer”)

nFrequently, will suffice to augment a textbook 
DS by storing additional info in it
q to perform additional operations on the DS

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



3

Example: Dynamic order statistics

nOrder statistic (OS) trees augment red-black 
trees: 
q Associate a size field with each node in the tree
q x.size keeps size of subtree rooted at x (including x)
q x.size = x.left.size + x.right.size + 1

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



4

Selecting i th element 

nWe can use this new field to select i th
element in O(lg n) time

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



5

Selecting i th element

q OS-Select(T.root,17)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

17th in



6

Selecting i th element

q OS-Select(T.root,17)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

rank(T.root)=
12+1=13 < 17th



7

Selecting i th element

q OS-Select(x,4)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

17th-13 = 4th in
x



8

Selecting i th element

q OS-Select(x,4)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

rank=5+1=6 > 4th

x



9

Selecting i th element

q OS-Select(x,4)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

4th in
x



10

Selecting i th element

q OS-Select(x,4)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

rank=1+1=2 < 4th

x



11

Selecting i th element

q OS-Select(x,2)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

4th-2 = 2nd in

x



12

Selecting i th element

q OS-Select(x,2)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

rank=1+1=2 = 2nd

Bingo! 17th

smallest is 38

x



13

Calculating rank

nWe can use this new field to calculate rank in 
O(lg n) time

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



14

Calculating rank

q OS-Rank(T,y)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

1
2

4
y



15

Maintaining subtree sizes: insertion

nFirst phase: go down tree to insert new node 
as a child of an existing node
q Increment x.size for each node on simple path 

traversed from the root downward leaves

nSecond phase: go up tree changing colors 
and rotating to maintain tree properties
q Rotations only locally affect size attribute
q For LEFT-ROTATE(T,x) add:

n y.size = x.size
x.size = x.left.size + x.right.size + 1

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



16

Maintaining subtree sizes: insertion

nExample update on rotations

nAdditional work:
q First phase: O(lg n)
q Second phase: O(1)

nOverall O(lg n) is preserved

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



17

Maintaining subtree sizes: deletion

nFirst phase: only operates on the search tree
q Either removes one node y from tree or moves 

upward it within the tree
q Simply traverse a simple path from node y up to root, 

decrementing size attribute of each node on the path
q Additional cost of O(lg n)

nSecond phase: causes at most 3 rotations 
(no other structural changes)
q Handle similar to insertion
q Additional cost of O(1)

nOverall O(lg n) is preserved
Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



18

How to augment a data structure

1. Choose an underlying data structure
q Red-black trees

2. Determine additional information to maintain
q Add the size attribute

3. Verify additional information can be 
maintained for basic modifying operations

q insert and delete still in O(lg n)

4. Develop new operations
q O(lg n) operations OS-Select and OS-Rank

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



19

Example: Dynamic set of intervals

n Interval [t1,t2] represents the set
n Any two intervals i and i' satisfy interval 

trichotomy:
q i and i' overlap,

q i is to the left of i' (i.high < i.low),

q i is to the right of i' (i.high < i.low).

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

{ }21| tttt ££ÂÎ



20

Interval trees

nA red-black tree that maintains a dynamic set 
of intervals, with each element x containing 
an interval x.int supporting
q Interval-Insert(T,x) adds element x, 

whose int attribute contains an interval, to 
interval tree T

q Interval-Delete(T,x) removes element x
from interval tree T

q Interval-Search(T,i) returns a pointer to an 
element x in interval tree T such that x.int
overlaps interval i, T.nil otherwise 

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



21

Interval trees

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



22

Interval trees

1. Choose an underlying data structure
q Red-black trees with key of node x being x.int.low

2. Determine additional information to maintain
q x.max: max value of any interval endpoint stored in 

subtree rooted at x

3. Verify additional information can be 
maintained for basic modifying operations

q insert and delete still in O(lg n)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



23

Interval trees

Theorem 14.1 (Augmenting a red-black tree): 
If the value of an augmenting field f for each node x
depends on only the information in nodes x, x.left, 
and x.right, then we can maintain values of f in all 
nodes of T during insertion and deletion without 
asymptotically affecting O(lg n) performance of these 
operations

Determine max value of a node as follows:
x.max = max(x.int.high,x.left.max,x.right.max)
In fact, rotations only take O(1) additional time

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



24

Interval trees

4. Develop new operations
q O(lg n) operation Interval-Search(T,i) returns a 

node in tree T whose interval overlaps i; T.nil
otherwise.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



25

Interval trees

n Interval-Search(T,i=[22,25])

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

[22,25] û23≥22



26

Interval trees

n Interval-Search(T,i=[22,25])

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

[22,25] û
10<22



27

Interval trees

n Interval-Search(T,i=[22,25])

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

[22,25] ü



28

Interval trees

n Interval-Search(T,i=[11,14])

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

[11,14] û

[11,14] û

[11,14] û



29

Interval trees

Theorem 14.2 (Interval-Search works correctly):
Any execution of Interval-Search(T,i) either returns a node whose interval 
overlaps i, or it returns T.nil and the tree T contains no node whose interval 
overlaps i.

Proof: Invariant: If tree T contains an interval that overlaps i, then the 
subtree rooted at x contains such an interval.
- Initialization (line 1), Maintenance (line 4 or 5), Termination (line 2)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ


