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Augmenting

nOften times “textbook” data structures (DS) 
are sufficient
q need to modify for real-life usage of course (we rarely 

sort “just integers” but rather “objects based on a 
unique field which is an integer”)

nFrequently, will suffice to augment a textbook 
DS by storing additional info in it
q to perform additional operations on the DS
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Example: Dynamic order statistics

nOrder statistic (OS) trees augment red-black 
trees: 
q Associate a size field with each node in the tree
q x.size keeps size of subtree rooted at x (including x)
q x.size = x.left.size + x.right.size + 1
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Selecting i th element 

nWe can use this new field to select i th
element in O(lg n) time
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Selecting i th element

q OS-Select(T.root,17)
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Selecting i th element

q OS-Select(T.root,17)
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rank(T.root)=
12+1=13 < 17th
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Selecting i th element

q OS-Select(x,4)
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17th-13 = 4th in
x
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Selecting i th element

q OS-Select(x,4)
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rank=5+1=6 > 4th

x
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Selecting i th element

q OS-Select(x,4)
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Selecting i th element

q OS-Select(x,4)
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rank=1+1=2 < 4th

x
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Selecting i th element

q OS-Select(x,2)
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Selecting i th element

q OS-Select(x,2)
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rank=1+1=2 = 2nd

Bingo! 17th

smallest is 38

x
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Calculating rank

nWe can use this new field to calculate rank in 
O(lg n) time

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



14

Calculating rank

q OS-Rank(T,y)
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Maintaining subtree sizes: insertion

nFirst phase: go down tree to insert new node 
as a child of an existing node
q Increment x.size for each node on simple path 

traversed from the root downward leaves

nSecond phase: go up tree changing colors 
and rotating to maintain tree properties
q Rotations only locally affect size attribute
q For LEFT-ROTATE(T,x) add:

n y.size = x.size
x.size = x.left.size + x.right.size + 1
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Maintaining subtree sizes: insertion

nExample update on rotations

nAdditional work:
q First phase: O(lg n)
q Second phase: O(1)

nOverall O(lg n) is preserved
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Maintaining subtree sizes: deletion

nFirst phase: only operates on the search tree
q Either removes one node y from tree or moves 

upward it within the tree
q Simply traverse a simple path from node y up to root, 

decrementing size attribute of each node on the path
q Additional cost of O(lg n)

nSecond phase: causes at most 3 rotations 
(no other structural changes)
q Handle similar to insertion
q Additional cost of O(1)

nOverall O(lg n) is preserved
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How to augment a data structure

1. Choose an underlying data structure
q Red-black trees

2. Determine additional information to maintain
q Add the size attribute

3. Verify additional information can be 
maintained for basic modifying operations

q insert and delete still in O(lg n)

4. Develop new operations
q O(lg n) operations OS-Select and OS-Rank
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Example: Dynamic set of intervals

n Interval [t1,t2] represents the set
n Any two intervals i and i' satisfy interval 

trichotomy:
q i and i' overlap,

q i is to the left of i' (i.high < i.low),

q i is to the right of i' (i.high < i.low).
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Interval trees

nA red-black tree that maintains a dynamic set 
of intervals, with each element x containing 
an interval x.int supporting
q Interval-Insert(T,x) adds element x, 

whose int attribute contains an interval, to 
interval tree T

q Interval-Delete(T,x) removes element x
from interval tree T

q Interval-Search(T,i) returns a pointer to an 
element x in interval tree T such that x.int
overlaps interval i, T.nil otherwise 
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Interval trees
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Interval trees

1. Choose an underlying data structure
q Red-black trees with key of node x being x.int.low

2. Determine additional information to maintain
q x.max: max value of any interval endpoint stored in 

subtree rooted at x

3. Verify additional information can be 
maintained for basic modifying operations

q insert and delete still in O(lg n)
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Interval trees

Theorem 14.1 (Augmenting a red-black tree): 
If the value of an augmenting field f for each node x
depends on only the information in nodes x, x.left, 
and x.right, then we can maintain values of f in all 
nodes of T during insertion and deletion without 
asymptotically affecting O(lg n) performance of these 
operations

Determine max value of a node as follows:
x.max = max(x.int.high,x.left.max,x.right.max)
In fact, rotations only take O(1) additional time
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Interval trees

4. Develop new operations
q O(lg n) operation Interval-Search(T,i) returns a 

node in tree T whose interval overlaps i; T.nil
otherwise.
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Interval trees

n Interval-Search(T,i=[22,25])
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Interval trees

n Interval-Search(T,i=[22,25])
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[22,25] û
10<22
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Interval trees

n Interval-Search(T,i=[22,25])
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Interval trees

n Interval-Search(T,i=[11,14])
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Interval trees

Theorem 14.2 (Interval-Search works correctly):
Any execution of Interval-Search(T,i) either returns a node whose interval 
overlaps i, or it returns T.nil and the tree T contains no node whose interval 
overlaps i.

Proof: Invariant: If tree T contains an interval that overlaps i, then the 
subtree rooted at x contains such an interval.
- Initialization (line 1), Maintenance (line 4 or 5), Termination (line 2)
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