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Amortized analysis

nAverage cost of an operation is small when 
averaged over a sequence of operations 
even though a single operation might be 
expensive

nMethods
q Aggregate
q Accounting (associated with each object)
q Potential (associated with whole data structure)

nExample: ArrayList in Java
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Potential method

nRepresents prepaid work as potential energy 
or just potential that can be released to pay 
for the future operations
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Potential method

n If we ensure that                          
then total amortized cost is an upper bound 
on actual cost
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Fibonacci heaps

nMergeable heaps support:
q Make-Heap(): create and return a new empty heap
q Insert(H,x): insert element x into heap H
q Minimum (H): return a pointer to element with minimum 

key in H
q Extract-Min(H): delete and return a pointer to element 

with minimum key in H
q Union(H1,H2): create and return a new heap containing 

all elements of H1 and H2
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Fibonacci heaps

nAdditionally Fibanocci heaps support:
q Decrease-Key(H,x,k): assign key k (no greater than 

current key value) to element x in H
q Delete(H,x): deletes element x from heap H
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Fibonacci heaps
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Fibonacci heaps

nEach node x of Fibonacci heap H contains
q x.key: its key
q x.p: its parent
q x.child: any one of its children (forms a circular list)
q x.degree: number of children
q x.mark: whether x has lost a child since the last time 
x was made the child of another node

q y.left/right: each child maintains left and right 
siblings (forms a circular list)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



9

Fibonacci heaps

nFor Fibonacci heap H
q H.min: the root of a tree containing the minimum key
q H.n: number of nodes in H
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Fibonacci heaps

na collection of rooted trees that are min-heap 
ordered
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Potential function

nFor Fibonacci heap H
q t(H): number of trees in the root list of H
q m(H): number of marked nodes in H
q Φ(H)=t(H)+2m(H): potential of H
q Φ(H0)≤Φ(Hi) holds
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Maximum degree

nAmortized analysis assumes we know
q an upper bound on the maximum degree D(n) of any 

node in a Fibonacci heap with n nodes
q When only mergeable heap operations are supported 
D(n)≤lg n

q Need to show D(n)=O(lg n) with Decrease-Key
and Delete as well
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Mergeable heap operations

nDelay work as long as possible
q Do not consolidate trees in root list on operations like 

Insert or Union
q Delay until the next Extract-Min when we really need 

to find a new minimum
q After consolidation, each node in the root list has a 

degree that is unique, ensuring a root list of size at 
most D(n)+1=O(lg n)

nCreating a new empty Fibonacci heap is 
straightforward in O(1) time, returning H with
q H.n=0 and H.min=NIL
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Inserting a node

nThe node with new key becomes its own min-
heap-ordered tree, and added to root list
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Inserting a node

nThe node with new key becomes its own min-
heap-ordered tree, and added to root list
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Inserting a node

nFor a heap H before insertion and heap H’
after insertion, we have
q t(H’)=t(H)+1
q m(H’)=m(H)
q Increase in potential

n [t(H)+1+2m(H)]-[t(H)+2m(H)]=1

q Since actual cost is O(1), the amortized cost is
n O(1)+1=O(1)
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Finding minimum node

nTrivial by following H.min in O(1) time
nPotential of H does not change, thus 

amortized cost is equal to its O(1) actual cost
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Uniting two Fibonacci heaps

nSimply concatenates root lists of given heaps 
and determines the new minimum in O(1) 
time
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Uniting two Fibonacci heaps

nNo change in potential since

nAmortized cost then is equal to its actual O(1) 
cost
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Extracting the minimum

nMost complicated operation so far with 
delayed consolidation of trees in the root 
taking place

nWorks as follows:
q Make a root out of each of the minimum node’s 

children
q Remove the minimum node from root list
q Consolidate the root list by linking roots of equal 

degree until at most one root remains of each degree
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Extracting the minimum
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Consolidation during extracting
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nRepeatedly execute until every root has a 
distinct degree:
q Find two roots x and y with same degree x.key ≤ y.key
q Link y to x by removing y from root list and making y a 

child of x with Fib-Heap-Link
n Increments x.degree and clears y.mark
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Consolidation during extracting
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Consolidation during extracting
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Consolidation during extracting
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Consolidation during extracting
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Consolidation during extracting
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Consolidation during extracting
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q Amortized cost is at most

q since at most D(n)+1 roots remain and no nodes 
become marked during the operation

q Intuitively cost of performing each link is paid for by the 
reduction in potential due to the link’s reducing the 
number of roots by one

q Since D(n)=O(lg n), amortized cost is O(lg n).
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Decreasing a key
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Decreasing a key
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Decreasing a key
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q Amortized cost is

q where each Fib-Heap-Decrease-Key results in c calls 
to Cascading-Cut
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Deleting a node
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q First make x the minimum node by decreasing its key to 
-∞, and then extract it

q Same amortized cost O(D(n))=O(lg n) as extraction
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Bounding maximum degree
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nLemma Let x be any node in a Fibonacci 
heap, and suppose that x.degree=k. Let 
y1,y2,…yk denote the children of x in the 
order in which they were linked to x, from 
the earliest to the latest. Then, 
y1.degree≥0 and yi.degree≥i-2 for
i=2,3,…,k.
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Bounding maximum degree
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nLemma For all integers k≥0,

nProof Use induction on k
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Bounding maximum degree
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nLemma For all integers k≥0,

nProof Use induction on k
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Bounding maximum degree
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nLemma Let x be any node in a Fibonacci 
heap, and let k=x.degree. Then,

nProof
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Bounding maximum degree
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nCorollary The maximum degree D(n) of 
any node in an n-node Fibonacci heap is 
O(lg n).

nProof
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