
Algorithms II, CS 502
Fibonacci Heaps

Ugur Dogrusoz
Computer Eng Dept, Bilkent Univ

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 1

2

Amortized analysis

nAverage cost of an operation is small when
averaged over a sequence of operations
even though a single operation might be
expensive

nMethods
q Aggregate
q Accounting (associated with each object)
q Potential (associated with whole data structure)

nExample: ArrayList in Java

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

3

Potential method

nRepresents prepaid work as potential energy
or just potential that can be released to pay
for the future operations

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

f

f

 w.r.t.operation ofcost amortized:

 with associated potential:)(
operation after structure data:

operation ofcost actual:

th
^

th

th

iC

DD
iD

iC

i

ii

i

i

4

Potential method

n If we ensure that
then total amortized cost is an upper bound
on actual cost

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

å

åå

=

=
-

=

-

-+

=-+=

-+=

n

i
ni

n

i
iii

n

i
i

iiii

DDC

DDCC

DDCC

1
0

1
1

1

^

1

^

)()(

])()([

)()(

ff

ff

ff

niDDi ££³ 0),()(0ff

5

Fibonacci heaps

nMergeable heaps support:
q Make-Heap(): create and return a new empty heap
q Insert(H,x): insert element x into heap H
q Minimum (H): return a pointer to element with minimum

key in H
q Extract-Min(H): delete and return a pointer to element

with minimum key in H
q Union(H1,H2): create and return a new heap containing

all elements of H1 and H2

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

6

Fibonacci heaps

nAdditionally Fibanocci heaps support:
q Decrease-Key(H,x,k): assign key k (no greater than

current key value) to element x in H
q Delete(H,x): deletes element x from heap H

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

7

Fibonacci heaps

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

8

Fibonacci heaps

nEach node x of Fibonacci heap H contains
q x.key: its key
q x.p: its parent
q x.child: any one of its children (forms a circular list)
q x.degree: number of children
q x.mark: whether x has lost a child since the last time
x was made the child of another node

q y.left/right: each child maintains left and right
siblings (forms a circular list)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

9

Fibonacci heaps

nFor Fibonacci heap H
q H.min: the root of a tree containing the minimum key
q H.n: number of nodes in H

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

10

Fibonacci heaps

na collection of rooted trees that are min-heap
ordered

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

11

Potential function

nFor Fibonacci heap H
q t(H): number of trees in the root list of H
q m(H): number of marked nodes in H
q Φ(H)=t(H)+2m(H): potential of H
q Φ(H0)≤Φ(Hi) holds

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

12

Maximum degree

nAmortized analysis assumes we know
q an upper bound on the maximum degree D(n) of any

node in a Fibonacci heap with n nodes
q When only mergeable heap operations are supported
D(n)≤lg n

q Need to show D(n)=O(lg n) with Decrease-Key
and Delete as well

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

13

Mergeable heap operations

nDelay work as long as possible
q Do not consolidate trees in root list on operations like

Insert or Union
q Delay until the next Extract-Min when we really need

to find a new minimum
q After consolidation, each node in the root list has a

degree that is unique, ensuring a root list of size at
most D(n)+1=O(lg n)

nCreating a new empty Fibonacci heap is
straightforward in O(1) time, returning H with
q H.n=0 and H.min=NIL

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

14

Inserting a node

nThe node with new key becomes its own min-
heap-ordered tree, and added to root list

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

15

Inserting a node

nThe node with new key becomes its own min-
heap-ordered tree, and added to root list

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

16

Inserting a node

nFor a heap H before insertion and heap H’
after insertion, we have
q t(H’)=t(H)+1
q m(H’)=m(H)
q Increase in potential

n [t(H)+1+2m(H)]-[t(H)+2m(H)]=1

q Since actual cost is O(1), the amortized cost is
n O(1)+1=O(1)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

17

Finding minimum node

nTrivial by following H.min in O(1) time
nPotential of H does not change, thus

amortized cost is equal to its O(1) actual cost

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

18

Uniting two Fibonacci heaps

nSimply concatenates root lists of given heaps
and determines the new minimum in O(1)
time

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

19

Uniting two Fibonacci heaps

nNo change in potential since

nAmortized cost then is equal to its actual O(1)
cost

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

)()()(and)()()(since
0

))](2)(())(2)([())(2)((
)]()([)(

2121

2211

21

HmHmHmHtHtHt

HmHtHmHtHmHt
HHH

+=+=
=

+++-+=
+- fff

20

Extracting the minimum

nMost complicated operation so far with
delayed consolidation of trees in the root
taking place

nWorks as follows:
q Make a root out of each of the minimum node’s

children
q Remove the minimum node from root list
q Consolidate the root list by linking roots of equal

degree until at most one root remains of each degree

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

21

Extracting the minimum

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

22

Consolidation during extracting

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

nRepeatedly execute until every root has a
distinct degree:
q Find two roots x and y with same degree x.key ≤ y.key
q Link y to x by removing y from root list and making y a

child of x with Fib-Heap-Link
n Increments x.degree and clears y.mark

23

Consolidation during extracting

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

24

Consolidation during extracting

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

25

Consolidation during extracting

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

26

Consolidation during extracting

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

27

Consolidation during extracting

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

28

Consolidation during extracting

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

q Amortized cost is at most

q since at most D(n)+1 roots remain and no nodes
become marked during the operation

q Intuitively cost of performing each link is paid for by the
reduction in potential due to the link’s reducing the
number of roots by one

q Since D(n)=O(lg n), amortized cost is O(lg n).

))((
)())(())((

))(2)(())(2)1)((())()((
)()(1

^

nDO
HtHtOnDO

HmHtHmnDHtnDO
DDCC iiii

=
-+=

+-++++=
-+= -ff

29

Decreasing a key

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

30

Decreasing a key

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

31

Decreasing a key

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

q Amortized cost is

q where each Fib-Heap-Decrease-Key results in c calls
to Cascading-Cut

)1(4)(
))(2)(()2)((2))(()(

)()(1

^

OccO
HmHtcHmcHtcO

DDCC iiii

=-+=
+-+-+++=

-+= -ff

32

Deleting a node

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

q First make x the minimum node by decreasing its key to
-∞, and then extract it

q Same amortized cost O(D(n))=O(lg n) as extraction

33

Bounding maximum degree

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

nLemma Let x be any node in a Fibonacci
heap, and suppose that x.degree=k. Let
y1,y2,…yk denote the children of x in the
order in which they were linked to x, from
the earliest to the latest. Then,
y1.degree≥0 and yi.degree≥i-2 for
i=2,3,…,k.

34

Bounding maximum degree

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

nLemma For all integers k≥0,

nProof Use induction on k

å
=

+ +=
k

i
ik FF

0
2 1

35

Bounding maximum degree

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

nLemma For all integers k≥0,

nProof Use induction on k

k
kF f³+2

kkk

kk
kkk FFF

fffff

ff

==+=

+³+=
--

--
++

222

21
12

)1(

36

Bounding maximum degree

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

nLemma Let x be any node in a Fibonacci
heap, and let k=x.degree. Then,

nProof

2/)51(where,)(2 +=³³ + ff kkFxsize

åå
=

-
=

+³+³³
k

i
i

k

i
yk sssxsize
i

2
2

2
degree. 22)(

kk

k

i
i

k

i
i

k

i
ik FFFss f³=+=+³+³ +

===
- ååå 2

022
2 122

37

Bounding maximum degree

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

nCorollary The maximum degree D(n) of
any node in an n-node Fibonacci heap is
O(lg n).

nProof

knxsizen k ³Þ³³ ff log)(

