Algorithms 11, CS 502
Fibonacci Heaps

Ugur Dogrusoz
Computer Eng Dept, Bilkent Univ

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

Average cost of an operation is small when
averaged over a sequence of operations
even though a single operation might be
expensive

Methods
Aggregate
Accounting (associated with each object)
Potential (associated with whole data structure)

Example: ArrayList in Java

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

Represents prepaid work as potential energy
or just potential that can be released to pay
for the future operations

C. : actual cost of i™ operation

D. : data structure after i operation

@(D,) : potential associated with D,

C, : amortized cost of i operation w.r.t. ¢

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

C, =C,+$(D,)—$D,.)

3G =3 IC, + (D)~ H(D,)] =

> C,+¢(D,)~ H(Dy)

If we ensure that ¢&(D.)=¢(D,),0<i<n

then total amortized cost is an upper bound
on actual cost

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

Mergeable heaps support:
make-Hear(): create and return a new empty heap
InserT(H,X): Insert element x into heap H
minimum (H): return a pointer to element with minimum
key in H
ExTracT-MIN(H): delete and return a pointer to element
with minimum key in H
union(H¢,H,): create and return a new heap containing
all elements of H;and H,

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

Additionally Fibanocci heaps support:

pecrease-Kev(H,X,K): assign key k (no greater than
current key value) to element x in H

peLeTe(H,x): deletes element x from heap H

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

Fibonacci heaps

Binary heap Fibonacci heap
Procedure (worst-case) | (amortized)
MAKE-HEAP e(1) e(1)

[INSERT O(lgn) o) |
MINIMUM e(1) e(1)
EXTRACT-MIN O(lgn) O(lgn)

{ UNION On) o))

[DECREASE-KEY O(lgn) o) |
DELETE O(lgn) O(lgn)

Ugur Dogrusoz

CS 502, Algorithms II, Bilkent Univ

Each node x of Fibonacci heap H contains

x .key: its key

x .p. its parent

x .child: any one of its children (forms a circular list)
x .degree: number of children

x .mark: whether x has lost a child since the last time
x was made the child of another node

y.left/right: each child maintains left and right
siblings (forms a circular list)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

For Fibonacci heap H
H.min: the root of a tree containing the minimum key
H.n: number of nodes in H

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

a collection of rooted trees that are min-heap
O rd e red H.min

H.min
>3 (7)< (3)< a(O)» ’(A;@%
< < 7 S -

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

10

For Fibonacci heap H
t (H) : number of trees in the root list of H
m(H) : number of marked nodes in H
& (H)=t(H)+2m(H) : potential of H
& (H,) <% (H;) holds

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

11

Amortized analysis assumes we know

an upper bound on the maximum degree D(n) of any
node in a Fibonacci heap with n nodes

When only mergeable heap operations are supported
D(n)<lg n

Need to show D(n)=0(1g n) with DECREASE-KEY
and DeLeTE as well

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

12

Delay work as long as possible

Do not consolidate trees in root list on operations like
INSERT OF UNION

Delay until the next ExTracT-MIN When we really need
to find a new minimum

After consolidation, each node in the root list has a
degree that is unique, ensuring a root list of size at
most D(n)+1=0(1lg n)

Creating a new empty Fibonacci heap is
straightforward in O(1) time, returning H with

H.n=0 and H.min=NIL

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 13

The node with new key becomes its own min-
heap-ordered tree, and added to root list

FIB-HEAP-INSERT(H. x)

o) I\) P—

TS

10
I1

Ugur Dogrusoz

X.degree = 0

X.p = NIL

X.child = NIL

X.mark = FALSE

if H.min == NIL
create a root list for H containing just x
H.min = x

else insert x into H s root list
if x.key < H.min.key

H.min = x
Hn= Hn+1

CS 502, Algorithms II, Bilkent Univ

14

The node with new key becomes its own min-
heap-ordered tree, and added to root list

H.min H.min

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 15

For a heap H before insertion and heap H’
after insertion, we have

t(H’)=t (H)+1

m(H’)=m(H)

Increase in potential
[t(H)+1+2m(H)]-[t(H) +2m(H)]=1

Since actual cost is O(1), the amortized cost is
O(1)+1=0(1)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

16

Trivial by following H.min in O(1) time
Potential of H does not change, thus
amortized cost is equal to its O(1) actual cost

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 17

Simply concatenates root lists of given heaps
and determines the new minimum in O(1)
time

FIB-HEAP-UNION (H,. H>)

| H = MAKE-FIB-HEAP()

2 H.min = H{.min

3 concatenate the root list of H, with the root list of H

4 if (H{.min == NIL) or (H,.min # NIL and H,.min.key < H.min.key)
5 H.min = H,.min

6 Hn= H;.n+ Hy.n

7 return H

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 18

No change in potential since

¢(H)_[¢(H1)+¢(Hz)]

= @(H)+2m(H)) —[((H,)+2m(H,))+ @(H,)+2m(H,))]
=0

sincet(H)=t(H,)+t(H,))and m(H)=m(H,)+m(H,)

Amortized cost then is equal to its actual O(1)
cost

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 19

Most complicated operation so far with
delayed consolidation of trees in the root

taking place

Works as follows:

Make a root out of each of the minimum node’s
children

Remove the minimum node from root list

Consolidate the root list by linking roots of equal
degree until at most one root remains of each degree

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

20

Extracting the minimum

FIB-HEAP-EXTRACT-MIN (H)

1

L

0o N n B

11
12

z = H.min
if Z # NIL
for each child x of Z
add x to the root list of H
X.p = NIL
remove Z from the root list of H
if z==2z.right
H.min = NIL
else H.min = Z.right

[CONSOLIDATE(H)|
Hn= H.n—1
return Z

Ugur Dogrusoz

CS 502, Algorithms II, Bilkent Univ

21

Repeatedly execute until every root has a
distinct degree.:

Find two roots x and y with same degree x.key < y.key

Link y to x by removing y from root list and making y a
child of x with FiB-HEAP-LINK

Increments x.degree and clears y.mark

FIB-HEAP-LINK(H, y, Xx)

[remove y from the root list of H
2 make y a child of x, incrementing x.degree
3 y.mark = FALSE

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

22

‘ Consolidation during extracting

H.min H.min

! 4
0 B (S o0E@ET" @
Too @ © © V0o ®
D @ 33 &)

0123

°'
o @@@ - @ @@@ 7 @m
@@ %

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 23

‘ Consolidation during extracting

0123

01 2
|
|

W L ™
o ND-P-D®)—
it

0123 0123
Aldy1/] Javan
© [O ®E26 (h) (Tr—Y2)-@-52-3)
17) (23 39 @) €L 24) (17) (23 39 (a1)
(30) 46) (30
& y

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 24

M)

‘ Consolidation during extracting

CONSOLIDATE(H)
I let A[0.. D(H.n)] be a new array \
2 fori =0to D(H.n)
3 Ali] = NIL
4 for each node w in the root list of H
5 X =w
6 d = x.degree
7 while A[d] # NIL
8 y = Ald] // another node with the same degree as x
9 if x.key > y.key
10 exchange x with y
11 FIB-HEAP-LINK(H. y.x)
12 Ald] = NIL

13 d=d+1
R Ald] = x

15 H.min = NIL
16 fori = Oto D(H.n)
17 if A[i] # NIL

18 if H.min == NIL
19 create a root list for H containing just A[7]
20 H.min = Ali]
21 else insert A[i] into H’s root list
22 if Ali].key < H.min.key
Ugur Dogrusoz 23 H.min = Ali]

‘ Consolidation during extracting

CONSOLIDATE(H)

1

let A[O0.. D(H.n)] be a new array

2 fori = 0to D(H.n)
3 Ali] = NIL
4 for each node w in the root list of H
5 X =w
6 d = x.degree
7 while A[d] # NIL
8 y = Ald] // another node with the same degree as x
9 if x.key > y.key
10 exchange x with y
11 FIB-HEAP-LINK(H. y.x)
12 Ald] = NIL
13 d=d+1
14 Ald] = x
ﬂS H.min = NIL \
16 fori = Oto D(H.n)
17 if A[i] # NIL
18 if H.min == NIL
19 create a root list for H containing just A[7]

Ugur Dogrusoz

H.min = Ali]
else insert A[i] into H’s root list
if Ali].key < H.min.key

H.min = Ali] j

27

Amortized cost is at most

éi =C, +¢(D,)— (D,)
=0(Dn)+t(H)+(Dn)+DH)+2m(H))—((H)+2m(H))
=O0(D(n)+O0@(H))—t(H)

= O0(D(n))

since at most D(n) +1 roots remain and no nodes
become marked during the operation

Intuitively cost of performing each link is paid for by the
reduction in potential due to the link’s reducing the
number of roots by one

Since D (n)=0(1lg n), amortized costis 0 (1g n).

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 28

‘ Decreasing a key

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

29

Decreasing a key

FIB-HEAP-DECREASE-KEY (H.x.k)

I ifk > x.key

2 error “‘new key is greater than current key™
3 x.key =k

4 y=x.p

5 if y # NIL and x.key < y.key
6 CUT(H.x.y)

7 CASCADING-CUT(H. y)
8 ifx.key < H.min.key

9 H.min = x
CUT(H.x.y)

I remove x from the child list of y, decrementing y.degree
2 add x to the root list of H CASCADING-CUT(H. v)
3 x.p=NIL '
4 x.mark = FALSE L z=yp
2 ifz #NIL
3 if y.mark == FALSE
4 y.mark = TRUE
5 else CUT(H.y.2)
6 CASCADING-CUT(H.2)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 30

Amortized cost is

C =C,+4(D)—$(D,.,)
=0@)+(H))+c)+2(m(H)—c+2)—(H)+2m(H))
=0(c)+4—c=00)

where each FIB-HEAP-DECREASE-KEY results in ¢ calls
to cascaDING-CUT

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 31

First make x the minimum node by decreasing its key to
-, and then extract it

FIB-HEAP-DELETE(H. x)

| FIB-HEAP-DECREASE-KEY (H.x.—00)
2 FIB-HEAP-EXTRACT-MIN (H)

Same amortized cost O (D (n))=0(1g n) as extraction

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 32

Ugur

Lemma Let x be any node in a Fibonacci
heap, and suppose that x. degree=k. Let
Y1,Y5,... ¥ denote the children of x in the
order in which they were linked to x, from
the earliest to the latest. Then,
y,.degree20 and y; .degree2i-2 for
i=2,3,..,k.

Dogrusoz CS 502, Algorithms II, Bilkent Univ 33

Lemma For all integers k20,
k
Fk+2 :1+ZF1'
i=0

Proof Use induction on k

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

34

Ugur

Lemma For aII mtegers k20,

k+2 —¢

Proof Use induction on k
Fk+2 :Fk+1 +Fk 2 ¢k_1 +¢k_2

=¢" (gt =¢""¢ =¢"

Dogrusoz CS 502, Algorithms II, Bilkent Univ

35

Ugur

Lemma Let x be any node in a Fibonacci
heap, and let k=x.degree. Then,

size(x) 2 F,, > ¢", where ¢ = (1++/5)/2

Proof v L
size(x)=s, 22+ Zsyl_.degree > 2+ Zsi_z

>2+Zs12_2+2F —1+ZF =F, >4

Dogrusoz CS 502, Algorithms II, Bilkent Univ 36

Ugur

Corollary The maximum degree D (n) of
any node in an n-node Fibonacci heap is

O(lg n).
Proof

n > size(x) > ¢" = log,n=>k

Dogrusoz CS 502, Algorithms II, Bilkent Univ

37

