Algorithms II, CS 502 Fibonacci Heaps

Ugur Dogrusoz Computer Eng Dept, Bilkent Univ

Amortized analysis

Average cost of an operation is small when averaged over a sequence of operations even though a single operation might be expensive

Methods

- Aggregate
- Accounting (associated with each object)
- Potential (associated with whole data structure)
- Example: ArrayList in Java

Potential method

Represents prepaid work as potential energy or just potential that can be released to pay for the future operations

> C_i : actual cost of i^{th} operation D_i : data structure after i^{th} operation $\phi(D_i)$: potential associated with D_i \hat{C}_i : amortized cost of i^{th} operation w.r.t. ϕ

Potential method

$$\hat{C}_{i} = C_{i} + \phi(D_{i}) - \phi(D_{i-1})$$

$$\sum_{i=1}^{n} \hat{C}_{i} = \sum_{i=1}^{n} [C_{i} + \phi(D_{i}) - \phi(D_{i-1})] =$$

$$\sum_{i=1}^{n} C_{i} + \phi(D_{n}) - \phi(D_{0})$$

If we ensure that $\phi(D_i) \ge \phi(D_0), 0 \le i \le n$ then total amortized cost is an upper bound on actual cost

Mergeable heaps support:

- маке-неар(): create and return a new empty heap
- □ INSERT(H,x): insert element x into heap H
- MINIMUM (H): return a pointer to element with minimum key in H
- EXTRACT-MIN(H): delete and return a pointer to element with minimum key in H
- UNION(H₁,H₂): create and return a new heap containing all elements of H₁ and H₂

Additionally Fibanocci heaps support:

- DECREASE-KEY(H,x,k): assign key k (no greater than current key value) to element x in H
- □ DELETE(H,x): deletes element x from heap H

Procedure	Binary heap (worst-case)	Fibonacci heap (amortized)
MAKE-HEAP	$\Theta(1)$	$\Theta(1)$
INSERT	$\Theta(\lg n)$	$\Theta(1)$
MINIMUM	$\Theta(1)$	$\Theta(1)$
EXTRACT-MIN	$\Theta(\lg n)$	$O(\lg n)$
UNION	$\Theta(n)$	$\Theta(1)$
DECREASE-KEY	$\Theta(\lg n)$	$\Theta(1)$
Delete	$\Theta(\lg n)$	$O(\lg n)$

Each node x of Fibonacci heap H contains

- x.key: its key
- x.p: its parent
- **x**.child: any one of its children (forms a circular list)
- **x**.degree: number of children
- x.mark: whether x has lost a child since the last time x was made the child of another node
- y.left/right: each child maintains left and right siblings (forms a circular list)

For Fibonacci heap H

H.min: the root of a tree containing the minimum key

H.n: number of nodes in H

a collection of rooted trees that are min-heap ordered H.min

Potential function

For Fibonacci heap H

- **t(H)**: number of trees in the root list of **H**
- □ m(H): number of marked nodes in H
- $\square \Phi(H) = t(H) + 2m(H)$: potential of H
- $\Box \Phi(H_0) \leq \Phi(H_i) \text{ holds}$

Maximum degree

Amortized analysis assumes we know

- an upper bound on the maximum degree D(n) of any node in a Fibonacci heap with n nodes
- □ When only mergeable heap operations are supported D(n) ≤ lg n
- Need to show D(n) = O(lg n) with DECREASE-KEY and DELETE as well

Mergeable heap operations

Delay work as long as possible

- Do not consolidate trees in root list on operations like INSERT OF UNION
- Delay until the next EXTRACT-MIN when we really need to find a new minimum
- After consolidation, each node in the root list has a degree that is unique, ensuring a root list of size at most D(n)+1=O(lg n)

Creating a new empty Fibonacci heap is straightforward in O(1) time, returning **H** with

H.n=0 and H.min=NIL

Inserting a node

The node with new key becomes its own minheap-ordered tree, and added to root list

FIB-HEAP-INSERT(H, x)

- 1 x.degree = 0
- 2 x.p = NIL

7

- 3 x.child = NIL
- 4 x.mark = FALSE
- 5 **if** *H*.*min* == NIL
- 6 create a root list for *H* containing just *x*

$$H.min = x$$

- 8 else insert x into H's root list
- 9 **if** x.key < H.min.key

10
$$H.min = x$$

 $11 \quad H.n = H.n + 1$

Inserting a node

The node with new key becomes its own minheap-ordered tree, and added to root list

Inserting a node

For a heap H before insertion and heap H' after insertion, we have

- \Box t(H')=t(H)+1
- \square m(H') = m(H)

Increase in potential

- [t(H)+1+2m(H)]-[t(H)+2m(H)]=1
- \Box Since actual cost is O(1), the amortized cost is

O(1)+1=O(1)

Finding minimum node

Trivial by following H.min in O(1) time
 Potential of H does not change, thus amortized cost is equal to its O(1) actual cost

Uniting two Fibonacci heaps

Simply concatenates root lists of given heaps and determines the new minimum in O(1) time

FIB-HEAP-UNION (H_1, H_2)

- 1 H = MAKE-FIB-HEAP()
- 2 $H.min = H_1.min$
- 3 concatenate the root list of H_2 with the root list of H
- 4 **if** $(H_1.min == NIL)$ or $(H_2.min \neq NIL$ and $H_2.min.key < H_1.min.key)$
- 5 $H.min = H_2.min$

$$6 \quad H.n = H_1.n + H_2.n$$

7 return H

Uniting two Fibonacci heaps

No change in potential since

$$\begin{split} \phi(H) &- [\phi(H_1) + \phi(H_2)] \\ &= (t(H) + 2m(H)) - [(t(H_1) + 2m(H_1)) + (t(H_2) + 2m(H_2))] \\ &= 0 \end{split}$$

since $t(H) = t(H_1) + t(H_2)$ and $m(H) = m(H_1) + m(H_2)$

Amortized cost then is equal to its actual O(1) cost

Extracting the minimum

- Most complicated operation so far with delayed consolidation of trees in the root taking place
- Works as follows:
 - Make a root out of each of the minimum node's children
 - Remove the minimum node from root list
 - Consolidate the root list by linking roots of equal degree until at most one root remains of each degree

Extracting the minimum

FIB-HEAP-EXTRACT-MIN(H)

z = H.min1 if $z \neq \text{NIL}$ 2 3 for each child x of z add x to the root list of H 4 5 x.p = NILremove z from the root list of H 6 7 **if** *z* == *z*.*right* 8 H.min = NILelse H.min = z.right9 CONSOLIDATE(H)10H.n = H.n - 111 12 return z

Repeatedly execute until every root has a distinct degree:

- □ Find two roots x and y with same degree x.key ≤ y.key
- □ Link y to x by removing y from root list and making y a child of x with FIB-HEAP-LINK
 - Increments x.degree and clears y.mark

FIB-HEAP-LINK (H, y, x)

- 1 remove y from the root list of H
- 2 make *y* a child of *x*, incrementing *x*.*degree*
- 3 y.mark = FALSE

CONSOLIDATE(H)

Ugur Dogrusoz

let A[0...D(H.n)] be a new array for i = 0 to D(H.n)3 A[i] = NILfor each node w in the root list of H 5 x = w6 d = x.degree7 while $A[d] \neq \text{NIL}$ 8 y = A[d]// another node with the same degree as x9 if x.key > y.key10 exchange x with y FIB-HEAP-LINK (H, y, x)11 12 A[d] = NILd = d + 113 A[d] = x14 15 H.min = NILfor i = 0 to D(H.n)16 17 if $A[i] \neq \text{NIL}$ 18 if H.min == NIL19 create a root list for H containing just A[i]20 H.min = A[i]else insert A[i] into H's root list 21 22 if A[i].key < H.min.key H.min = A[i]23

```
CONSOLIDATE(H)
```

Ugur Dogrusoz

```
let A[0...D(H.n)] be a new array
    for i = 0 to D(H.n)
 2
 3
         A[i] = \text{NIL}
    for each node w in the root list of H
 4
 5
         x = w
 6
         d = x.degree
 7
         while A[d] \neq \text{NIL}
 8
              v = A[d]
                               // another node with the same degree as x
 9
             if x.key > y.key
                  exchange x with y
10
             FIB-HEAP-LINK (H, y, x)
11
12
             A[d] = \text{NIL}
             d = d + 1
13
         A[d] = x
14
    H.min = NIL
15
    for i = 0 to D(H.n)
16
17
         if A[i] \neq \text{NIL}
18
             if H.min == NIL
19
                  create a root list for H containing just A[i]
20
                  H.min = A[i]
21
             else insert A[i] into H's root list
22
                  if A[i].key < H.min.key
23
                       H.min = A[i]
```

Amortized cost is at most

$$\hat{C}_i = C_i + \phi(D_i) - \phi(D_{i-1})$$

$$= O(D(n) + t(H)) + ((D(n) + 1) + 2m(H)) - (t(H) + 2m(H))$$

$$= O(D(n)) + O(t(H)) - t(H)$$

$$= O(D(n))$$

- since at most D(n)+1 roots remain and no nodes become marked during the operation
- Intuitively cost of performing each link is paid for by the reduction in potential due to the link's reducing the number of roots by one
- □ Since D(n) = O(lg n), amortized cost is O(lg n).

Decreasing a key

Decreasing a key

FIB-HEAP-DECREASE-KEY(H, x, k)

if k > x.key 2 **error** "new key is greater than current key" 3 x.key = k4 $y = x \cdot p$ 5 if $y \neq \text{NIL}$ and $x \cdot key < y \cdot key$ CUT(H, x, y)6 7 CASCADING-CUT(H, y)if x.key < H.min.key 8 9 H.min = x

CUT(H, x, y)

remove x from the child list of y, decrementing y.degree

add x to the root list of H 2 CASCADING-CUT(H, y)3 x.p = NILz = y.pL x.mark = FALSE4 if $z \neq \text{NIL}$ 2 3 **if** *y*.*mark* == FALSE y.mark = TRUE4 5 else CUT(H, y, z)CASCADING-CUT(H, z)

6

Decreasing a key

Amortized cost is

$$\hat{C}_{i} = C_{i} + \phi(D_{i}) - \phi(D_{i-1})$$

= $O(c) + (t(H) + c) + 2(m(H) - c + 2) - (t(H) + 2m(H))$
= $O(c) + 4 - c = O(1)$

□ where each FIB-HEAP-DECREASE-KEY results in c calls to Cascading-Cut

Deleting a node

□ First make x the minimum node by decreasing its key to -∞, and then extract it

FIB-HEAP-DELETE(H, x)

- 1 FIB-HEAP-DECREASE-KEY $(H, x, -\infty)$
- 2 FIB-HEAP-EXTRACT-MIN(H)

□ Same amortized cost O(D(n))=O(lg n) as extraction

Lemma Let x be any node in a Fibonacci heap, and suppose that x.degree=k. Let y₁,y₂,...y_k denote the children of x in the order in which they were linked to x, from the earliest to the latest. Then, y₁.degree≥0 and y_i.degree≥i-2 for i=2,3,...,k.

Lemma For all integers $k \ge 0$, $F_{k+2} = 1 + \sum_{i=0}^{k} F_i$

Proof Use induction on k

Lemma For all integers $k \ge 0$, $F_{k+2} \ge \phi^k$ ■ Proof Use induction on k

$$F_{k+2} = F_{k+1} + F_k \ge \phi^{k-1} + \phi^{k-2}$$
$$= \phi^{k-2} (\phi + 1) = \phi^{k-2} \phi^2 = \phi^k$$

Lemma Let **x** be any node in a Fibonacci heap, and let **k=x.degree**. Then, $size(x) \ge F_{k+2} \ge \phi^k$, where $\phi = (1 + \sqrt{5})/2$

Corollary The maximum degree D(n) of any node in an n-node Fibonacci heap is O(lg n).

Proof

$n \ge size(x) \ge \phi^k \Longrightarrow \log_\phi n \ge k$