
Algorithms II, CS 502

Data Structures for Disjoint
Sets

Ugur Dogrusoz
Computer Eng Dept, Bilkent Univ

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 1

2

Disjoint-set data structure

nMaintains a collection of disjoint dynamic sets

q Identify each set with a representative, a member of
the set

q Supported operations:
n Make-Set(x) creates a new set with member x
n Union(x,y) unites dynamic sets containing x and y
n Find-Set(x) returns a pointer to representative of set

containing x
q Analyze running time using n: # of Make-Set

operations and m: # of total operations (Make-Set,
Union, and Find-Set)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

{ }kSSSS ,...,, 21=

3

An application: connected components

nConstruct and answer connected
components of an undirected graph

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

4

An application: connected components

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

5

Disjoint sets: linked list representation

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

Make-Set(x) O(1)
Find-Set(x) O(1)
Union(x,y) O(n) θ(n) amortized running time

6

Disjoint sets: linked list representation

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

θ(n2) / n = θ(n) amortized running time

7

nWeighted union heuristic:
q always append the shorter list onto the longer,

breaking ties arbitrarily
q a single union will still take Ω(n) time if both sets

have Ω(n) members

Disjoint sets: linked list representation

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

8

n Theorem Using linked-list representation of
disjoint sets and weighted-union heuristic, a
sequence of m Make-Set, Union, and Find-
Set operations, n of which are Make-Set
operations, takes O(m + n lg n) time

n Proof For k≤n, after x’s pointer has been
updated └lg k┘ times, the resulting set must
have at least k members.

Disjoint sets: linked list representation

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

9

nSets by rooted trees, with each node
containing one member and each tree
representing one set

Disjoint sets: forest representation

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

{b,c,e,h} {d,f,g}

UNION(e,g)={b,c,e,h,d,f,g}

10

nMake root with smaller rank point to root
with larger rank during a Union operation
q rank: an upper bound on height of a node
qonly the rank of the roots may change:

n if both roots have same rank, rank of new root increases by 1
n otherwise, no change

q O(m log n) (every node has rank at most └lg n┘)

Heuristics: union by rank

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

11

nmake each node on the find path point
directly to root (during Find-Set)
q path compression does not change any ranks
q for a sequence of n Make-Set operations and f
Find-Set operations, worst-case running time is

Heuristics: path compression

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

))log1((/2 nfn nf+++Q

12

Disjoint set forests: operations

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

13

Disjoint set forests, both heuristics

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

qWorst case running time is O(m α(n))
n where α(n) is a very slowly growing function

(inverse of very fast growing function called
Ackermann function Ak(n))

ï
ï
ï

î

ïï
ï

í

ì

³££

££
££

=
££

=

],10)1([)1(2048for ,4

,20478for ,3
,74for ,2

,3nfor ,1
,20for ,0

)(

80
44 AAn

n
n

n

na

