Algorithms II, CS 502 Data Structures for Disjoint Sets

Ugur Dogrusoz Computer Eng Dept, Bilkent Univ

Disjoint-set data structure

Maintains a collection of disjoint dynamic sets $S = \{S_1, S_2, ..., S_k\}$

- Identify each set with a representative, a member of the set
- Supported operations:
 - MAKE-SET(x) creates a new set with member x
 - UNION(x,y) unites dynamic sets containing x and y
 - FIND-SET(x) returns a pointer to representative of set containing x
- Analyze running time using n: # of MAKE-SET operations and m: # of total operations (MAKE-SET, UNION, and FIND-SET)

An application: connected components

Construct and answer connected components of an undirected graph

a c	b	(e g	(f	h i		j		
Edge processed	Collection of disjoint sets									
initial sets	$\{a\}$	$\{b\}$	$\{c\}$	$\{d\}$	$\{e\}$	{ <i>f</i> }	$\{g\}$	$\{h\}$	<i>{i}</i>	{ <i>j</i> }
(<i>b</i> , <i>d</i>)	$\{a\}$	$\{b,d\}$	$\{c\}$		$\{e\}$	{ <i>f</i> }	$\{g\}$	$\{h\}$	<i>{i}</i>	{ <i>j</i> }
(<i>e</i> , <i>g</i>)	$\{a\}$	$\{b,d\}$	$\{c\}$		$\{e,g\}$	{ <i>f</i> }		$\{h\}$	<i>{i}</i>	{ <i>j</i> }
(<i>a</i> , <i>c</i>)	$\{a,c\}$	$\{b,d\}$			$\{e,g\}$	{ <i>f</i> }		$\{h\}$	$\{i\}$	{ <i>j</i> }
(<i>h</i> , <i>i</i>)	$\{a,c\}$	$\{b,d\}$			$\{e,g\}$	{ <i>f</i> }		$\{h,i\}$		{ <i>j</i> }
(<i>a</i> , <i>b</i>)	$\{a,b,c,d\}$				$\{e,g\}$	{ <i>f</i> }		$\{h,i\}$		{ <i>j</i> }
(e,f)	$\{a,b,c,d\}$				$\{e, f, g\}$			$\{h,i\}$		{ <i>j</i> }
(b,c)	$\{a,b,c,d\}$				$\{e, f, g\}$			$\{h,i\}$		{ <i>j</i> }

CS 502, Algorithms II, Bilkent Univ

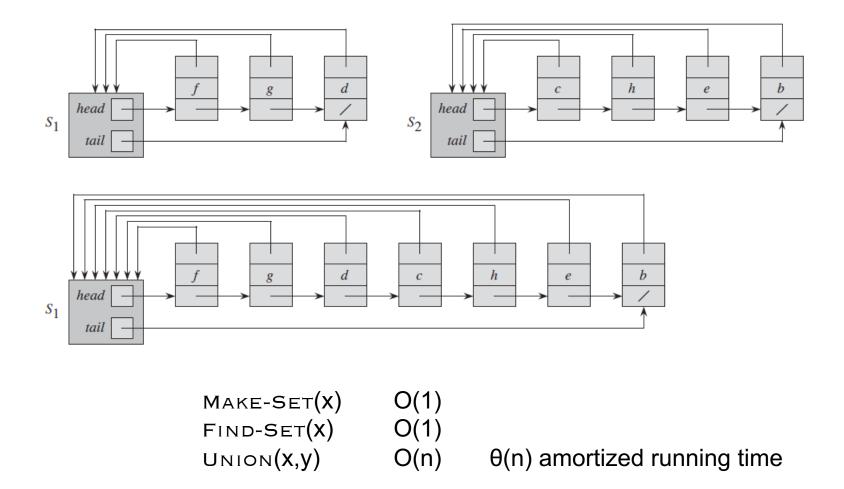
An application: connected components

CONNECTED-COMPONENTS (G)

- 1 for each vertex $v \in G.V$
- 2 MAKE-SET (ν)
- 3 for each edge $(u, v) \in G.E$
- 4 **if** FIND-SET $(u) \neq$ FIND-SET(v)
- 5 UNION(u, v)

SAME-COMPONENT (u, v)

- 1 **if** FIND-SET(u) == FIND-SET(v)
- 2 return TRUE
- 3 else return FALSE



Operation	Number of objects updated					
MAKE-SET (x_1)	1					
MAKE-SET (x_2)	1					
÷	:					
MAKE-SET (x_n)	1					
$UNION(x_2, x_1)$	1					
$UNION(x_3, x_2)$	2					
UNION (x_4, x_3)	3					
÷	:					
$\text{UNION}(x_n, x_{n-1})$	n-1					

 $\theta(n^2) / n = \theta(n)$ amortized running time

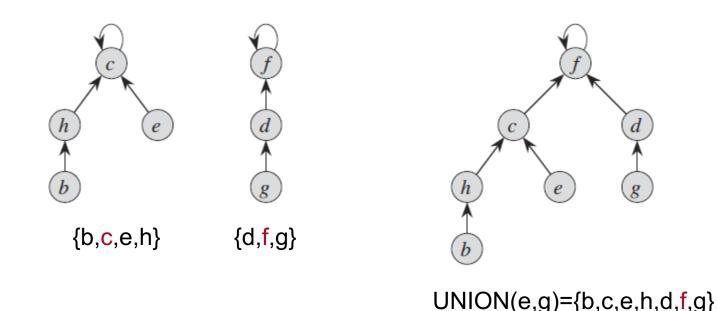
Weighted union heuristic:

- always append the shorter list onto the longer, breaking ties arbitrarily
- a single union will still take Ω(n) time if both sets have Ω(n) members

- Theorem Using linked-list representation of disjoint sets and weighted-union heuristic, a sequence of *m* MAKE-SET, UNION, and FIND-SET operations, *n* of which are MAKE-SET operations, takes O(*m* + *n* lg *n*) time
- Proof For k≤n, after x's pointer has been updated Llg k times, the resulting set must have at least k members.

Disjoint sets: forest representation

Sets by rooted trees, with each node containing one member and each tree representing one set



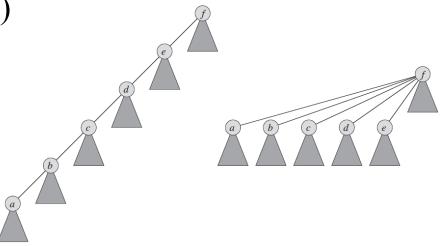
Heuristics: union by rank

- Make root with smaller rank point to root with larger rank during a UNION operation
 - rank: an upper bound on height of a node
 - only the rank of the roots may change:
 - if both roots have same rank, rank of new root increases by 1
 - otherwise, no change
 - \Box O(*m* log *n*) (every node has rank at most $\lfloor \lg n \rfloor$)

Heuristics: path compression

- make each node on the find path point directly to root (during FIND-SET)
 - path compression does not change any ranks
 - □ for a sequence of *n* MAKE-SET operations and *f* FIND-SET operations, worst-case running time is

 $\Theta(n + f(1 + \log_{2+f/n} n))$



Disjoint set forests: operations

MAKE-SET(x)

- $1 \quad x.p = x$
- 2 x.rank = 0

UNION(x, y)1 LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)

if x.rank > y.rank2 y.p = x**else** x.p = y**if** x.rank == y.ranky.rank = y.rank + 1 FIND-SET(x) 1 if $x \neq x.p$ 2 x.p = FIND-SET(x.p)3 return x.p

Disjoint set forests, both heuristics

□Worst case running time is $O(m \alpha(n))$

where $\alpha(n)$ is a very slowly growing function (inverse of very fast growing function called Ackermann function $A_k(n)$)

$$\alpha(n) = \begin{cases} 0, \text{ for } 0 \le n \le 2, \\ 1, \text{ for } n = 3, \\ 2, \text{ for } 4 \le n \le 7, \\ 3, \text{ for } 8 \le n \le 2047, \\ 4, \text{ for } 2048 \le n \le A_4(1) \ [A_4(1) \ge 10^{80}], \end{cases}$$