Ugur

Algorithms 1, CS 502
Data Structures for Disjoint
Sets

Ugur Dogrusoz
Computer Eng Dept, Bilkent Univ

Dogrusoz CS 502, Algorithms II, Bilkent Univ

Maintains a collection of disjoint dynamic sets
S=1{5.,5,,...5,}

|dentify each set with a representative, a member of
the set

Supported operations:
MAKE-SET(X) creates a new set with member x
UNIoN(X,Y) unites dynamic sets containing x and y
FIND-SET(X) returns a pointer to representative of set
containing x
Analyze running time using n: # of MAKE-SET
operations and m: # of total operations (MAKE-SET,
UNION, and FIND-SET)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 2

Construct and answer connected
components of an undirected graph

Collection of disjoint sets

ZO0Nre

Edge processed

mitial sets

Ugur Dogrusoz

(b.d)
(e,8)
(a,c)
(h,i)
(a,b)
(e,f)
(b,c)

{a}

{a}

{a}
{a,c}
{a,}
{a,b,c,d}
{a,b,c,d}
{a,b,c,d}

{by {c} {d} {e}
{bd}y {c} {e}
{bd}y {c} {e.g}

{b,d} {e.g}

{b,d} {e.g}
{e.g}
{e, f.8}
{e, 1.8}

CS 502, Algorithms II, Bilkent Univ

7 gk {h}

Y

SSSS

{g}

{h}
{h}
{h}
{h,i}
{h,i}
{h,i}
{h,i}

{7}
{i}
{7}
{i}

‘ An application: connected components

CONNECTED-COMPONENTS (G)
| foreach vertex v € G.V

2 MAKE-SET(v)

3 foreachedge (u.v) € G.E

4 if FIND-SET(u) # FIND-SET(v)
5 UNION(u.v)

SAME-COMPONENT (U, V)

1 if FIND-SET(u) == FIND-SET(v)
2 return TRUE
3 else return FALSE

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 4

‘ Disjoint sets: linked list representation

LA f g d YYY c h e b
¢ head > o~ >/ ¢ head > > > > J/
1 tail T ? tail T
YYYYYYVY f g d c h e b
head = > > > > > >/
Sl D T
tail D
MAKE-SET(X) O(1)
FIND-SET(X) O(1)
UNIoN(X,Y) O(n) B(n) amortized running time

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

‘ Disjoint sets: linked list representation

Operation Number of objects updated
MAKE-SET(xq) 1
MAKE-SET(x?2) 1

MAKE-SET(x,)
UNION(Xx2. X1)
UNION(x3.,X3)
UNION(x4. X3)

-uN—_--

UNION(Xp.Xp—1) n—1

B(n?) / n = 8(n) amortized running time

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

Ugur

Weighted union heuiristic:

always append the shorter list onto the longer,
breaking ties arbitrarily

a single union will still take Q(n) time if both sets
have Q(n) members

Dogrusoz CS 502, Algorithms II, Bilkent Univ

Theorem Using linked-list representation of

disjoint sets and weighted-union heuristic, a
sequence of m MAKE-SET, UNION, and FIND-

SeT operations, n of which are MAKE-SET
operations, takes O(m + n Ig n) time

Proof For k<n, after x's pointer has been

updated LlIg k] times, the resulting set must
have at least k members.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

Sets by rooted trees, with each node
containing one member and each tree
representing one set

SR
J o ¢ /“\.
S S AN

N\, (&)

{b,c,e,h} {d.f,g} (\:k
UNION(e,g)={b,c,e,h,d,f,g}

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

Make root with smaller rank point to root
with larger rank during a union operation

rank: an upper bound on height of a node

only the rank of the roots may change:

if both roots have same rank, rank of new root increases by 1
otherwise, no change

O(m log n) (every node has rank at most Llig n)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 10

make each node on the find path point
directly to root (during FIND-SET)

path compression does not change any ranks

for a sequence of n Make-seT operations and f
FIND-SET operations, worst-case running time is

O(n+ f(1+1log,,,,)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 11

‘ Disjoint set forests: operations

MAKE-SET(x)

Il x.p=x

2 x.rank = 0

UNION(x. y) FIND-SET(x)

I LINK(FIND-SET(x), FIND-SET(y)) I ifx #x.p
2 x.p = FIND-SET(x.p)

LINK(x,y) 3 return x.p

I if x.rank > y.rank

2 y.p =X

3 elsex.p=y

4 if x.rank == y.rank

5 v.rank = y.rank + 1

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 12

Worst case run

ning time is O(m a(n))

where a(n) is a very slowly growing function
(inverse of very fast growing function called
Ackermann function A,(n))

a(n) =1

(0,f0r0£n£2,

I, forn =3,

2, ford<n<7,

3, for8§<n<2047,

\4, for 2048 <n < A4(1) [A4(1) > 1080],

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

13

