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Disjoint-set data structure

nMaintains a collection of disjoint dynamic sets

q Identify each set with a representative, a member of 
the set

q Supported operations:
n Make-Set(x) creates a new set with member x
n Union(x,y) unites dynamic sets containing x and y
n Find-Set(x) returns a pointer to representative of set 

containing x
q Analyze running time using n: # of Make-Set

operations and m: # of total operations (Make-Set, 
Union, and Find-Set)
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An application: connected components

nConstruct and answer connected 
components of an undirected graph
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An application: connected components
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Disjoint sets: linked list representation
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Make-Set(x) O(1)
Find-Set(x) O(1)
Union(x,y) O(n) θ(n) amortized running time
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Disjoint sets: linked list representation
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θ(n2) / n = θ(n) amortized running time
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nWeighted union heuristic:
q always append the shorter list onto the longer, 

breaking ties arbitrarily
q a single union will still take Ω(n) time if both sets 

have Ω(n) members

Disjoint sets: linked list representation
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n Theorem Using linked-list representation of 
disjoint sets and weighted-union heuristic, a 
sequence of m Make-Set, Union, and Find-
Set operations, n of which are Make-Set
operations, takes O(m + n lg n) time

n Proof For k≤n, after x’s pointer has been 
updated └lg k┘ times, the resulting set must 
have at least k members.

Disjoint sets: linked list representation
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nSets by rooted trees, with each node 
containing one member and each tree 
representing one set

Disjoint sets: forest representation
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{b,c,e,h}           {d,f,g}

UNION(e,g)={b,c,e,h,d,f,g}
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nMake root with smaller rank point to root 
with larger rank during a Union operation
q rank: an upper bound on height of a node
qonly the rank of the roots may change:

n if both roots have same rank, rank of new root increases by 1
n otherwise, no change

q O(m log n) (every node has rank at most └lg n┘)

Heuristics: union by rank
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nmake each node on the find path point 
directly to root (during Find-Set)
q path compression does not change any ranks
q for a sequence of n Make-Set operations and f
Find-Set operations, worst-case running time is

Heuristics: path compression
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Disjoint set forests: operations
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Disjoint set forests, both heuristics
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qWorst case running time is O(m α(n))
n where α(n) is a very slowly growing function 

(inverse of very fast growing function called 
Ackermann function Ak(n))
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