Algorithms II, CS 502
Elementary Graph
Algorithms

Ugur Dogrusoz
Computer Eng Dept, Bilkent Univ

Graphs

- A data structure for maintaining relational information
- A graph $G=(V, E)$
$\square \mathrm{V}$: discrete set of vertices / nodes
\square E: set of edges linking some pairs of vertices
- For a graph $G=(V, E)$,
\square an edge $e=(u, v)$ links / joins vertices u and v
- edges (hence graphs) may be directed or undirected
$\square e$ is incident upon vertices u and v
- \# of edges incident upon a vertex defines its degree
- in- and out-degree for directed graphs
\square two edges incident upon a vertex are adjacent
$\square u$ and v are neighboring vertices
\square a path from u to v is an incident sequence of edges without any repetition
- distance between u and v is the length of a shortest path between u and v

Representation of graphs

- Adjacency list
\square more popular (will be assumed)
\square much more efficient when $|\mathrm{E}| \ll|\mathrm{V}|^{2}$ (sparse)
\square easy to add weights for edges
- size is $\theta(|\mathrm{V}|+|E|)$
- Adjacency matrix
- could be preferred when $|\mathrm{E}| \approx|\mathrm{V}|^{2}$ (dense)
\square size is $\theta\left(|V|^{2}\right)$
- Access efficiency vs memory requirements
\square to determine whether $(u, v) \in G$ is not $O(1)$ with adjacency lists

Representation of graphs

\[

\]

	1	1	2	3	4	5
1	6					
	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Representing attributes

Normally need to store per node/edge attributes

v.d : an attribute d of vertex v

- (u,v).f: an attribute f of edge (u,v)
\square associating them with graph objects might be tricky
- use of separate data structures: $d[1 \ldots|\mathrm{~V}|]$
- instance variables (e.g. of class Vertex)
- others?

Breadth-first search

- A simple algorithm to search a graph and basis for many useful graph algorithms
\square Starts from a distinguished source vertex s
\square Systematically explores edges to discover vertices by
- expanding the frontier between discovered and undiscovered vertices uniformly across breadth of the frontier
- vertices at distance k from source discovered before those at distance $k+1$ from source

Breadth-first search

- Assumes adjacency lists
- Has per vertex attributes
- u.color : color of u
\square white, gray, and black
- u.ा : predecessor of u
- u.d : distance from source
\square Uses a FIFO queue Q
$\operatorname{BFS}(G, s)$

```
for each vertex }u\inG.V-{s
    u.color = WHITE
    u.d=\infty
    u.\pi= NIL
s.color = GRAY
s.d = 0
s.\pi = NIL
Q=\emptyset
ENQUEUE (Q,s)
while }Q\not=
    u= DEQUEUE (Q)
    for each v}\inG.Adj[u
        if v.color == WHITE
            v.color = GRAY
            v.d = u.d + 1
            v.\pi = u
            ENQUEUE (Q,v)
    u.color = BLACK
```


Breadth-first search

Breadth-first search

Breadth-first search

Breadth-first search: analysis

$\mathrm{O}(|\mathrm{V}|+\mid$ E|) since

- Initialization is $\theta(|\mathrm{V}|)$
- Each vertex enqueued and dequeued only once: O(|V|)
\square Each edge visited only once: $\theta(|E|)$

Breadth-first search

- Lemma 22.1 Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be directed or undirected graph, and let $\mathrm{s} \in \mathrm{V}$ be an arbitrary vertex. Then, for any edge (u,v) $\in \mathrm{E}$,

$$
\delta(s, v) \leq \delta(s, u)+1
$$

- Proof Consider both cases:
$\square \mathrm{u}$ is reachable from s ,
\square otherwise

Breadth-first search

- Lemma 22.2 Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be directed or undirected graph, and suppose that BFS is run on G from a given source vertex $s \in V$. Then, upon termination, for each vertex $\mathrm{v} \in \mathrm{V}$, the value of $\mathrm{v} . d$ computed by BFS satisfies

$$
v . d \geq \delta(s, v)
$$

- Proof Use induction on the number of Enqueue operations.

Inductive step: Consider a white vertex v that is discovered during search from a vertex u

$$
\begin{aligned}
& v . d=u . d+1 \\
& \geq \delta(s, u)+1 \text { (by Inductive Hypotheses) }
\end{aligned}
$$

$\square \mathrm{v}$ is enqueued only once. $\geq \delta(s, v)$ (by previous Lemma)

Breadth-first search

- Lemma 22.3 Suppose that during BFS on a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, the queue Q contains vertices $\left\langle v_{1}, v_{2}, \ldots, v_{r}\right\rangle$ where v_{1} is the head of Q and v_{r} is the tail. Then

$$
v_{r} \cdot d \leq v_{1} \cdot d+1 \text { and } v_{i} \cdot d \leq v_{i+1} \cdot d \text { for } i=1,2, \ldots, r-1
$$

- Proof Use induction on \# of queue operations
- On dequeue

$$
\begin{aligned}
& v_{1} \cdot d \leq v_{2} \cdot d \ldots \leq v_{r} \cdot d \quad \text { by the I.H. } \\
& v_{r} \cdot d \leq v_{1} \cdot d+1 \quad \text { by the I.H. } \\
& \Rightarrow v_{r} \cdot d \leq v_{1} \cdot d+1 \leq v_{2} \cdot d+1 \\
& \Rightarrow v_{r} \cdot d \leq v_{2} \cdot d+1 \quad \text { I.S. satisfied for new head }
\end{aligned}
$$

- Enqueue is similar

Breadth-first search

- Corollary 22.4 Suppose that vertex v_{i} is enqueued before vertex v_{j} during BFS. Then, $v_{i j} d \leq v_{j} d$ at the time v_{j} is enqueued.
Proof Immediate from previous Lemma and the property that each vertex receives a finite d value at most once during BFS

Breadth-first search: correctness

Theorem 22.5 During execution of BFS on $G=(V, E)$ from source $s \in V$, every vertex $V \in V$ that is reachable from s is discovered, and upon termination, v. $d=\delta(\mathrm{s}, \mathrm{v})$ for all $\mathrm{v} \in \mathrm{V}$. Moreover, for any $v \neq s$ that is reachable from s, one of the shortest paths from s to v is a shortest path from s to v.m followed by the edge (v.ा, v).

Breadth-first search: correctness

\square Proof Let v.d $\neq \delta(\mathrm{s}, \mathrm{v})$ where δ is minimum
$\square \mathrm{v} . \mathrm{d}>\delta(\mathrm{s}, \mathrm{v})$ Lemma 22.2
$\square \delta(\mathrm{s}, \mathrm{v}) \neq \infty(\mathrm{v} . d>\infty$ not possible)
$\square \mathrm{u}$ is predecessor on a shortest path P from s to v
$\square(\mathrm{s}, \mathrm{u})+1=\delta(\mathrm{s}, \mathrm{v}) \Rightarrow \delta(\mathrm{s}, \mathrm{u})<\delta(\mathrm{s}, \mathrm{v})$ and $\mathrm{u} . d=\delta(\mathrm{s}, \mathrm{u})(\mathrm{min})$
$\square \mathrm{v} . d>\delta(\mathrm{s}, \mathrm{v})=\delta(\mathrm{s}, \mathrm{u})+1=\mathrm{u} . d+1$ (Eq. 22.1)

- At the time u is dequeued from Q, v is:
- white: line v. $d=u . d+1$, contradiction
- black: v already from from Q, v.d \leq u.d (Cor 22.4), contradiction
- gray: w removed earlier than u from Q:
$\square \mathrm{v} . d=\mathrm{w} . d+1$, w. $d<\mathrm{u} . d($ Cor 22.4$) \Rightarrow \mathrm{v} . d \leq \mathrm{u} . d+1$, contradiction

Breadth-first search

- Lemma 22.6 When applied to a directed or undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, procedure BFS constructs π so that predecessor subgraph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ is a breadth-first tree.
- Proof Apply previous theorem inductively

Breadth-first search

Print out vertices on a shortest path from s to v (already computed breadth-first tree)

```
Print-Path(G,s,v)
1f }v==
2 prints
3 elseif }v.\pi==\mathrm{ NIL
4 print "no path from" s "to" v "exists"
5 \text { else Print-Path( } G , s , v . \pi )
6 print v
```

Runs in time linear in the length of the path

Depth-first search

- Search deeper in the graph whenever possible
- Explore edges out of the most recently discovered vertex v that still has unexplored edges leaving it
\square Once all of v's edges have been explored, backtrack to explore edges leaving the vertex from which v was discovered
\square Predecessor subgraph of DFS forms a depth-first forest
\square Records when it discovers and finishes a vertex u in attributes u.d and u.f
- u: white before u.d, gray between u.d \& u.f, and black thereafter
- u.d < u.f for each vertex u

Depth-first search

```
DFS(G)
1 for each vertex }u\inG.
2 u.color = WHITE
3 u.\pi = NIL
time = 0
for each vertex }u\inG.
if if color == WHITE
7
            DFS-VISIT (G,u)
DFS-VISIT (G,u)
```

```
time \(=\) time +1
```

time $=$ time +1
u.d $=$ time
u.d $=$ time
u.color $=$ GRAY
u.color $=$ GRAY
for each $v \in G . \operatorname{Adj}[u] \quad / /$ explore edge (u, v)
for each $v \in G . \operatorname{Adj}[u] \quad / /$ explore edge (u, v)
if v. color $==$ WHITE
if v. color $==$ WHITE
$\nu . \pi=u$
$\nu . \pi=u$
$\operatorname{DFS}-\operatorname{VISIT}(G, v)$
$\operatorname{DFS}-\operatorname{VISIT}(G, v)$
u.color $=$ BLACK
u.color $=$ BLACK
// blacken u; it is finished
// blacken u; it is finished
time $=$ time +1
time $=$ time +1
u. $f=$ time

```
    u. \(f=\) time
```


Depth-first search

Depth-first search

Depth-first search: analysis

- Depth-first forest mirrors the structure of recursive calls of Dfs-Visit
$\mathrm{O}(|\mathrm{V}|+\mid$ ㅌ|) since
\square Dfs-Visit is called exactly once per vertex
\square lines 4-7 executes $|\operatorname{Adj}[\mathrm{v}]|$ times and $\sum_{v \in V}|\operatorname{Adj}[v]|=\Theta(|E|)$

Depth-first search: analysis

- Theorem 22.7 (Parenthesis theorem) In any DFS of a graph $G=(V, E)$, for any two vertices u and v, exactly one of following holds:
\square intervals [u.d,u.f] and [v.d,v.f] are entirely disjoint, and neither u nor v is a descendant of the other in the depth-first forest,
- interval [u.d,u.f] is contained entirely within interval [$\mathrm{v} . \mathrm{d}, \mathrm{v} . f$], and u is a descendant of v in a depth-first tree, or vice versa.

Depth-first search: analysis

■ Theorem 22.7 (Parenthesis theorem)

- Proof
W.I.o.g. suppose u.d < v.d (< v.f). Then we have two cases:
- v.d<u.f: v was discovered while u was gray, thus v is a descendant of u, thus v's interval entirely contained within u's
- u.f < v.d : means u. $d<$ u. $f<$ v. $d<$ v.f, making two intervals disjoint

Depth-first search

Depth-first search

Depth-first search: analysis

- Corollary 22.8 (Nesting of descendants' intervals) Vertex v is a proper descendant of vertex u in the depth-first forest for a graph G if and only if u. $d<\mathrm{v} . d<\mathrm{v} . f<\mathrm{u} . f$.
- Proof Follows from Parenthesis theorem

Depth-first search: analysis

- Theorem 22.9 (White path theorem) In a depth-first forest of a graph $G=(V, E)$, vertex v is a descendant of vertex u if and only if at the time u.d that the search discovers u, there is a path from u to v consisting entirely of white vertices.
- Proof
\square : if v is a proper descendant of u, then $u . d<v . d$ and v is white at time u.d (by previous Corollary)

Depth-first search: analysis

- Theorem 22.9 (White path theorem)
- Proof
- : Suppose on the white path from u to v, w is a descendant of u but not v. Then, u.d < v.d. Also, w.f $\leq u . f$ (by Cor. 22.8) and v.d < w.f. Hence: u.d < v.d < w.f \leq u.f. By Th. 22.7 then, [v.d,v.f] is completely contained within [u.d,u.f]. Hence, by Cor. 22.8 v is a descendant of u in DFS forest, which is not possible (would form a cycle).

Depth-first search: analysis

1. Tree edges: edges (u, v) in depth-first forest; v was first discovered by exploring edge (u, v).
2. Back edges: edges (u, v) connecting a vertex u to an ancestor v in a depth-first tree. Self-loops of directed graphs are back edges.
3. Forward edges: non-tree edges (u, v) connecting a vertex u to a descendant v in a depth-first tree.
4. Cross edges: all other edges; they go between vertices in the same depth-first tree, as long as one vertex is not an ancestor of the other, or they can go between vertices in different depth-first trees.

Depth-first search: analysis

- When we first explore an edge (u, v), the color of vertex v tells us something about the edge:
- WHITE indicates a tree edge,

GRAY indicates a back edge, and
BLACK indicates a forward or cross edge. For an edge (u, v):

- u.d < v.d: forward edge (v's lifetime contained within u's)
- u.d > v.d: cross edge (u \& v's lifetimes are disjoint)

Depth-first search: analysis

- Theorem 22.10 In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge.
- Proof Suppose w.l.o.g. u.d < v.d for an edge (u,v). Search must discover and finish v before it finishes u (since v is on u's adjacency list)

First time (u, v) is explored from u to v : v is undiscovered (white), hence a tree edge
First time (u, v) is explored from v to u : u is gray, hence a back edge

Topological sort

- A linear ordering of all vertices of a directed acyclic graph (dag) $G=(V, E)$ such that if (u, v) in V, then u appears before v in the ordering
- Not unique (partial vs. total order)

'Topological sort

Takes $\mathrm{O}(\mathrm{V}+\mathrm{E})$ since a straightforward DFS with $\mathrm{O}(\mathrm{V})$ (O(1) per vertex) extra processing performed

TOPOLOGICAL-SORT (G)
1 call $\operatorname{DFS}(G)$ to compute finishing times $v . f$ for each vertex v
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Topological sort

- Lemma 22.11 A directed graph G is acyclic if and only if a depth-first search of G yields no back edges
- Proof

D: A back edge (u, v) produced by a DFS implies v is an ancestor of vertex u in the depth-first forest, resulting in a path from v to u, and the back edge (u, v) completes a cycle, contradiction
$\square \quad \mathrm{D}$: Suppose G contains a cycle c and let v be the first vertex discovered in c. Let (u, v) be the preceding edge in c. At time v.d, the vertices of c form a path of white vertices from v to u. By the white-path theorem, vertex u becomes a descendant of v in the depth-first forest; hence (u, v) is a back edge.

'Topological sort

Theorem 22.12 Topological-Sort produces a topological sort of the directed acyclic graph provided as its input. Proof Need to show v. $f<u . f$ for any edge (u, v) discovered by DFS. v cannot be gray since (u, v) cannot be a back edge (by previous Lemma):
$\square \quad v$ is white: v is a descendant of u, so $v . f<u . f$
v is black: v has been finished and v.f has been set; still exploring from u, yet to assign a timestamp to u, thus we will have v.f<u.f

Strongly connected components

Another application of DFS to decompose a directed graph into strongly connected components, a maximal set of vertices C in V such that for every vertex pair u and v are reachable from each other in C.

Strongly connected components

The transpose of a graph G is $\mathrm{G}^{\top}=\left(\mathrm{V}, \mathrm{E}^{\top}\right)$, where $E^{\top}=\{(u, v) \mid(v, u)$ in $E\}$, edges of G with their directions reversed.

Acyclic component graph $G^{S C C}$ obtained by contracting all edges within each strongly connected component of G so that only a single vertex remains in each component.

Strongly connected components

Strongly-Connected-Components (G)
1 call $\operatorname{DFS}(G)$ to compute finishing times u. f for each vertex u
2 compute G^{T}
3 call $\operatorname{DFS}\left(G^{\mathrm{T}}\right)$, but in the main loop of DFS, consider the vertices in order of decreasing u. f (as computed in line 1)
4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Strongly connected components

Lemma 22.13 Let C and C^{\prime} be distinct strongly connected components in directed graph $G=(V, E)$, with u and v in C and u^{\prime} and v^{\prime} in C'. Suppose G contains a path u-> u^{\prime}.
Then G cannot also contain a path $v^{\prime}->v$.

- Proof If G contains a path v ' -> v, then it contains paths u -> u' -> v' and v' -> v -> u. Thus, u and v' are reachable from each other, thereby contradicting the assumption that C and C ' are distinct strongly connected components.

Strongly connected components

 Lemma 22.14 Let C and C^{\prime} be distinct strongly connected components in directed graph $G=(V, E)$. Suppose that there is an edge (u, v) in E, where u in C and v in C^{\prime}. Then $f(C)>f\left(C^{\prime}\right)$.- Proof
$\mathrm{d}(\mathrm{C})<\mathrm{d}\left(\mathrm{C}^{\prime}\right)$: Let x be the first vertex discovered in C. At time $\mathrm{x} . \mathrm{d}$, all vertices in C and C^{\prime} are white. At that time, G contains a path from x to each vertex in C consisting only of white vertices. Because (u, v) in E, for any vertex w in C', there is also a path in G at time $x . d$ from x to w consisting only of white vertices: $x->u->v->w$. By the white-path theorem, all vertices in C and C' become descendants of x in the depth-first tree. By previous corollary, x has the latest finishing time of any of its descendants, and so x.f $=f(C)>f\left(C^{\prime}\right)$.

Strongly connected components

Proof cntd

$d(C)>d\left(C^{\prime}\right)$: Let y be the first vertex discovered in C'. At time y.d, all vertices in C' are white and G contains a path from y to each vertex in C' consisting only of white vertices. By the white-path theorem, all vertices in C' become descendants of y in the depth-first tree, and by previous corollary (nesting of descendants' intervals), $\mathrm{y}, \mathrm{f}=\mathrm{f}\left(\mathrm{C}^{\prime}\right)$. At time y.d, all vertices in C are white. Since there is an edge (u, v) from C to C', Lemma 22.13 implies that there cannot be a path from C' to C. Hence, no vertex in C is reachable from y . At time y.f, therefore, all vertices in C are still white. Thus, for any vertex w in C, we have w. $f>y . f$, which implies that $f(C)>$ $f\left(C^{\prime}\right)$.

Strongly connected components

Corollary 22.15 Let C and C^{\prime} be distinct strongly connected components in directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$. Suppose that there is an edge (u, v) in E^{\top}, where u in C and v in C^{\prime}. Then $f(C)<f\left(C^{\prime}\right)$.
Proof Since (u, v) in E^{\top}, we have (v, u) in E (the strongly connected components of G and G^{\top} are the same), Lemma 22.14 implies that $\mathrm{f}(\mathrm{C})<\mathrm{f}\left(\mathrm{C}^{\prime}\right)$.

Strongly connected components

Theorem 22.16 The Strongly-Connected-Components procedure correctly computes the strongly connected components of the directed graph G provided as its input. Proof Use induction on the number of depth-first trees found in the depth-first search of G^{\top} in line 3:
I.H.: First k trees produced in line 3 are strongly connected components Basis: $\mathrm{k}=0$ is trivial
I.S.: Consider the $(k+1)^{\text {st }}$ tree produced

