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A data structure for maintaining relational
information

A graph G=(V,E)
V: discrete set of vertices / nodes
E: set of edges linking some pairs of vertices
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For a graph G=(V,E),
an edge e=(u,v) links / joins vertices u and v

edges (hence graphs) may be directed or undirected

e is incident upon vertices u and v
# of edges incident upon a vertex defines its degree
in- and out-degree for directed graphs

two edges incident upon a vertex are adjacent
u and v are neighboring vertices

a path from u to v is an incident sequence of edges
without any repetition

distance between u and v is the length of a shortest path
between u and v
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Adjacency list
more popular (will be assumed)
much more efficient when |E|<<|V|? (sparse)
easy to add weights for edges
size is O(|V|+|E])
Adjacency matrix
could be preferred when |E| = |V|? (dense)
size is B(|V|?)
Access efficiency vs memory requirements

to determine whether (u,v) € G is not O(1) with
adjacency lists

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



‘ Representation of graphs
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Normally need to store per node/edge
attributes

v.d : an attribute d of vertex v

(u,v).f: an attribute f of edge (u,v)

associating them with graph objects might be tricky
use of separate data structures: d[1...|V|]
instance variables (e.g. of class Vertex)
others?

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



A simple algorithm to search a graph and

basis for many useful graph algorithms
Starts from a distinguished source vertex s

Systematically explores edges to discover vertices by

expanding the frontier between discovered and undiscovered
vertices uniformly across breadth of the frontier

vertices at distance k from source discovered before those at
distance k+1 from source
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BES(G.y)

for each vertex u € G.V — {s}

. . 1
Assumes adjacency lists 2 u.color = WHITE
Has per vertex attributes i

4 U.7w = NIL
u.color : color of u 5 s.color = GRAY
white, gray, and black 6 s.d=0
17 8.7t = NIL
u.rT : predecessor of u 2 oy
u.d : distance from source 9 ENQUEUE(Q.s)
10 while O # 0
Uses a FIFO queue Q 1 i = DEGUHE)
12 for ecach v € G.Adj[u]
13 if v.color == WHITE
14 v.color = GRAY
15 v.d = u.d + 1
16 Vgt = U
17 ENQUEUE(Q,v)
18 u.color = BLACK
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‘ Breadth-first search
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‘ Breadth-first search
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O(|V|+|E]|) since
Initialization is B(|V])

Each vertex enqueued and dequeued only once:
O([VI)
Each edge visited only once: O(|E|)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

12



Lemma 22.1 Let G=(V,E) be directed or

undirected graph, and let s € V be an arbitrary

vertex. Then, for any edge (u,v) € E,
o0(s,v)<o(s,u)+1

Proof Consider both cases:

u is reachable from s,
otherwise
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Lemma 22.2 Let G=(V,E) be directed or undirected
graph, and suppose that BFS is run on G from a given
source vertex s € V. Then, upon termination, for each
vertex v € V, the value of v.d computed by BFS satisfies

v.d 2 0(s,V)
Proof Use induction on the number of Enqueue

operations.

Inductive step: Consider a white vertex v that is discovered
during search from a vertex u

vd =ud+1
> 0(s,u)+1 (by Inductive Hypotheses)

v is enqueued only once. > §(s,v) (by previous Lemma)
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Lemma 22.3 Suppose that during BFS on a graph
G=(V,E), the queue Q contains vertices <v,,v,,...,v >
where v_ is the head of Q and v _is the tail. Then

vd<v.d+landv,.d<v,  dfori=12,..,r-1

Proof Use induction on # of queue operations
On dequeue

v,.d<v,d..<v.d Dbythel.H.
v..d <v,.d+1 by thel.H.
=>v.d<v.d+1<v,d+1

= v,..d<v,d+1 LS.satistied for new head
Enqueue is similar
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Corollary 22.4 Suppose that vertex v. is
enqueued before vertex v, during BFS. Then,
v.d < V- d at the time v, IS enqueued

Proof Immedlate from previous Lemma and
the property that each vertex receives a finite
d value at most once during BFS
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Theorem 22.5 During execution of BFS on
G=(V,E) from source s € V, every vertex ve V
that is reachable from s is discovered, and
upon termination, v.d=06(s,v) for all v e V.
Moreover, for any v # s that is reachable from
S, one of the shortest paths fromstovis a
shortest path from s to v.mr followed by the
edge (v.m,v).
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Proof Let v.d # d(s,v) where 0 is minimum
v.d > 0(s,v) Lemma 22.2
O(s,v) # « (v.d > ~ not possible)
u is predecessor on a shortest path P from s to v
O(s,u)+1=0(s,v) = 0(s,u)<d(s,v) and u.d=0(s,u) (min)
v.d > 90(s,v)= 0(s,u)+1=u.d+1 (Eq. 22.1)
At the time u is dequeued from Q, v is:
white: line v.d = u.d+1, contradiction
black: v already from from Q, v.d < u.d (Cor 22.4), contradiction

gray: w removed earlier than u from Q:
v.d=w.d+1, w.d < u.d (Cor 22.4) = v.d < u.d+1, contradiction
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Lemma 22.6 \When applied to a directed or
undirected graph G=(V,E), procedure BFS
constructs 1T so that predecessor subgraph
G _=(V_,E_)is a breadth-first tree.

Proof Apply previous theorem inductively
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Print out vertices on a shortest path from s to
v (already computed breadth-first tree)

PRINT-PATH(G. 5. V)

1. N ==8

2 print §

3 elseif v.7 ==NIL

4 print “no path from™ s “to™ v “exists”
5 else PRINT-PATH(G, s, v.7)

6 print v

Runs in time linear in the length of the path
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Search deeper in the graph whenever possible
Explore edges out of the most recently discovered vertex
v that still has unexplored edges leaving it

Once all of v's edges have been explored, backtrack to
explore edges leaving the vertex from which v was
discovered

Predecessor subgraph of DFS forms a depth-first forest

Records when it discovers and finishes a vertex u in
attributes u.d and u.f
u: white before u.d, gray between u.d & u.f, and black thereafter
u.d < u.ffor each vertex u
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‘ Depth-tirst search

DFS(G)

1 for each vertex u € G.V
2 u.color = WHITE
3 U.w = NIL

4 time = 0

5 foreach vertex u € G.V

6 if u.color == WHITE

7 DFS-VISIT(G. u)

DFS-VISIT(G . u)

I time = time + 1 // white vertex u has just been discovered
2 Wi = tine

3 u.color = GRAY

4 for each v € G.Adj[u] // explore edge (u,v)

5 if v.color == WHITE

6 V.0 =i

7 DFS-VISIT(G, v)

8 u.color = BLACK // blacken u; it is finished

9 time = time + 1
10 u.f = time
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‘ Depth-tirst search
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Depth-first forest mirrors the structure of
recursive calls of Dfs-Visit
O(|V|+|E]|) since

Dfs-Visit IS called exactly once per vertex

lines 4-7 executes |Adj[v]| times and | 4dj[v]|=O( E )

vel

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 25



Theorem 22.7 (Parenthesis theorem) In any
DFS of a graph G=(V,E), for any two vertices u
and v, exactly one of following holds:

intervals [u.d,u.f] and [v.d,v.f] are entirely disjoint, and
neither u nor v is a descendant of the other in the
depth-first forest,

interval [u.d,u.f] is contained entirely within interval
[v.d,v.f], and u is a descendant of v in a depth-first tree,
or vice versa.
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Theorem 22.7 (Parenthesis theorem)

Proof

W.l.0.g. suppose u.d < v.d (< v.f). Then we have two
cases:

v.d < u.f: v was discovered while u was gray, thus v is a
descendant of u, thus v’'s interval entirely contained within u’s

u.f<v.d: means u.d < u.f < v.d < v.f, making two intervals disjoint
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‘ Depth-first search
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‘ Depth-first search
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Corollary 22.8 (Nesting of descendants’
intervals) Vertex v is a proper descendant of
vertex u in the depth-first forest for a graph G
if and only if u.d <v.d<v.f<u.f.

Proof Follows from Parenthesis theorem
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Theorem 22.9 (White path theorem) In a
depth-first forest of a graph G=(V,E), vertex v is
a descendant of vertex u if and only if at the
time u.d that the search discovers u, there is a

path from u to v consisting entirely of white
vertices.

Proof

[: if v is a proper descendant of u, thenu.d <v.dand v is
white at time u.d (by previous Corollary)
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Theorem 22.9 (White path theorem)

Proof

[: Suppose on the white path fromutov, wis a
descendant of u but not v. Then, u.d < v.d. Also, w.f < u.f
(by Cor. 22.8) and v.d < w.f. Hence: u.d <v.d <w.f < u.lf.

By Th. 22.7 then, [v.d,v.f] is completely contained within
[u.d,u.f]. Hence, by Cor. 22.8 v is a descendant of u in
DFS forest, which is not possible (would form a cycle).
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Tree edges: edges (u,v) in depth-first forest; v was first
discovered by exploring edge (u,v).
Back edges: edges (u,v) connecting a vertex u to an

ancestor v in a depth-first tree. Self-loops of directed
graphs are back edges.

Forward edges: non-tree edges (u,v) connecting a vertex
u to a descendant v in a depth-first tree.

Cross edges: all other edges; they go between vertices
in the same depth-first tree, as long as one vertex is not
an ancestor of the other, or they can go between vertices
In different depth-first trees.
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When we first explore an edge (u,v), the color of

vertex v tells us something about the edge:
WHITE indicates a tree edge,
GRAY indicates a back edge, and
BLACK indicates a forward or cross edge. For an edge (u,v):
u.d < v.d: forward edge (v’s lifetime contained within u’s)
u.d > v.d: cross edge (u & Vv’s lifetimes are disjoint)
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Theorem 22.10 In a depth-first search of an
undirected graph G, every edge of G is either a
tree edge or a back edge.

Proof Suppose w.l.o.g. u.d < v.d for an edge
(u,v). Search must discover and finish v before it

finishes u (since v is on u’'s adjacency list)

First time (u,v) is explored from u to v: v is undiscovered (white),
hence a tree edge

First time (u,v) is explored from v to u: u is gray, hence a back
edge
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A linear ordering of all vertices of a directed acyclic graph

(dag) G=(V,E) such that if (u,v) in V, then u appears before
v in the ordering

Not unique

. 11/16 (undershorts .socks 17/18
(partial vs. total order) - ) oo
12/15 (‘pants } 13/14

2/5 3/4

17/18 11/16 12/15 13/14 9/10 1/8 6/7
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Takes O(V+E) since a straightforward DFS with O(V)
(O(1) per vertex) extra processing performed

TOPOLOGICAL-SORT(G)

1 call DFS(G) to compute finishing times v.f for each vertex v
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices
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Lemma 22.11 A directed graph G is acyclic if and only if a
depth-first search of G yields no back edges

Proof

[: A back edge (u,v) produced by a DFS implies v is an ancestor of vertex
u in the depth-first forest, resulting in a path from v to u, and the back
edge (u,v) completes a cycle, contradiction

[0: Suppose G contains a cycle ¢ and let v be the first vertex discovered in
c. Let (u,v) be the preceding edge in c. At time v.d, the vertices of ¢c form a
path of white vertices from v to u. By the white-path theorem, vertex u
becomes a descendant of v in the depth-first forest; hence (u,v) is a back
edge.
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Theorem 22.12 Topological-Sort produces a topological
sort of the directed acyclic graph provided as its input.

Proof Need to show v.f < u.f for any edge (u,v) discovered

by DFS. v cannot be gray since (u,v) cannot be a back
edge (by previous Lemma):
v is white: v is a descendant of u, so v.f < u.f

v is black: v has been finished and v.f has been set; still exploring from u,
yet to assign a timestamp to u, thus we will have v.f < u.f
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Another application of DFS to decompose a directed
graph into strongly connected components, a maximal set
of vertices C in V such that for every vertex pair u and v
are reachable from each other in C.
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‘ Strongly connected components

a b c d
The transpose of a graph G is G'=(V,E"),
where E"={(u,v) | (v,u) in E}, edges of
G with their directions reversed.
e  y g h

Acyclic component graph GS¢C obtained
by contracting all edges within each
strongly connected component of G
so that only a single vertex remains in
each component.
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‘ Strongly connected components

STRONGLY-CONNECTED-COMPONENTS (G)

1 call DFS(G) to compute finishing times u.f for each vertex u

2 compute GT
3 call DFS(G?"), but in the main loop of DFS, consider the vertices

in order of decreasing u.f (as computed in line 1)
4 output the vertices of each tree in the depth-first forest formed in line 3 as a

separate strongly connected component
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Lemma 22.13 Let C and C’ be distinct strongly connected
components in directed graph G=(V,E), withuand vin C
and u’and v’ in C’. Suppose G contains a path u -> u’.
Then G cannot also contain a path v’ -> v.

Proof If G contains a path v’ -> v, then it contains paths u
->Uu' ->v and v ->v ->u. Thus, u and v’ are reachable
from each other, thereby contradicting the assumption
that C and C’ are distinct strongly connected components.
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Lemma 22.14 Let C and C’ be distinct strongly connected
components in directed graph G=(V,E). Suppose that
there is an edge (u,v) in E, where uin Cand vin C'. Then
f(C) > (C).

Proof

d(C) < d(C’): Let x be the first vertex discovered in C. At time x.d, all ver-
tices in C and C’ are white. At that time, G contains a path from x to each
vertex in C consisting only of white vertices. Because (u,v) in E, for any
vertex w in C’, there is also a path in G at time x.d from x to w consisting
only of white vertices: x -> u -> v -> w. By the white-path theorem, all
vertices in C and C’ become descendants of x in the depth-first tree. By
previous corollary, x has the latest finishing time of any of its descendants,
and so x.f =f(C) > f(C’) .
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Proof cntd

d(C) > d(C’): Lety be the first vertex discovered in C'. At time y.d, all
vertices in C’ are white and G contains a path from y to each vertex in C’
consisting only of white vertices. By the white-path theorem, all vertices in
C’ become descendants of y in the depth-first tree, and by previous
corollary (nesting of descendants’ intervals), y,f = f(C’). At time y.d, all
vertices in C are white. Since there is an edge (u,v) from C to C’, Lemma
22.13 implies that there cannot be a path from C’ to C. Hence, no vertex in
C is reachable from y. At time y.f, therefore, all vertices in C are still white.
Thus, for any vertex w in C, we have w.f > y.f, which implies that f(C) >
f(C’).
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Corollary 22.15 Let C and C’ be distinct strongly
connected components in directed graph G=(V,E).
Suppose that there is an edge (u,v) in ET, where uin C
and vin C'. Then f(C) < {(C’).

Proof Since (u,v) in ET, we have (v,u) in E (the strongly
connected components of G and G' are the same),
Lemma 22.14 implies that f (C) < f(C’).
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Theorem 22.16 The Strongly-Connected-Components
procedure correctly computes the strongly connected
components of the directed graph G provided as its input.

Proof Use induction on the number of depth-first trees
found in the depth-first search of G' in line 3:

I.H.: First k trees produced in line 3 are strongly connected components
Basis: k=0 is trivial
1.S.: Consider the (k+1) tree produced
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