
Algorithms II, CS 502

Elementary Graph
Algorithms

Ugur Dogrusoz
Computer Eng Dept, Bilkent Univ

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 1

2

Graphs

■ A data structure for maintaining relational
information

■ A graph G=(V,E)
❑ V: discrete set of vertices / nodes
❑ E: set of edges linking some pairs of vertices

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

3

Graphs

■ For a graph G=(V,E),
❑ an edge e=(u,v) links / joins vertices u and v

■ edges (hence graphs) may be directed or undirected
❑ e is incident upon vertices u and v

■ # of edges incident upon a vertex defines its degree
■ in- and out-degree for directed graphs

❑ two edges incident upon a vertex are adjacent
❑ u and v are neighboring vertices
❑ a path from u to v is an incident sequence of edges

without any repetition
■ distance between u and v is the length of a shortest path

between u and v

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

4

Representation of graphs

■ Adjacency list
❑ more popular (will be assumed)
❑ much more efficient when |E|<<|V|2 (sparse)
❑ easy to add weights for edges
❑ size is θ(|V|+|E|)

■ Adjacency matrix
❑ could be preferred when |E| ≈ |V|2 (dense)
❑ size is θ(|V|2)

■ Access efficiency vs memory requirements
❑ to determine whether (u,v) ϵ G is not O(1) with

adjacency lists
Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

5

Representation of graphs

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

6

Representing attributes

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Normally need to store per node/edge
attributes
❑ v.d : an attribute d of vertex v
❑ (u,v).f : an attribute f of edge (u,v)
❑ associating them with graph objects might be tricky

■ use of separate data structures: d[1…|V|]
■ instance variables (e.g. of class Vertex)
■ others?

7

Breadth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ A simple algorithm to search a graph and
basis for many useful graph algorithms
❑ Starts from a distinguished source vertex s
❑ Systematically explores edges to discover vertices by

■ expanding the frontier between discovered and undiscovered
vertices uniformly across breadth of the frontier

■ vertices at distance k from source discovered before those at
distance k+1 from source

8

Breadth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

❑ Assumes adjacency lists
❑ Has per vertex attributes

■ u.color : color of u
❑ white, gray, and black

■ u.π : predecessor of u
■ u.d : distance from source

❑ Uses a FIFO queue Q

9

Breadth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

10

Breadth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

11

Breadth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

12

Breadth-first search: analysis

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ O(|V|+|E|) since
❑ Initialization is θ(|V|)
❑ Each vertex enqueued and dequeued only once:

O(|V|)
❑ Each edge visited only once: θ(|E|)

13

Breadth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Lemma 22.1 Let G=(V,E) be directed or
undirected graph, and let s ϵ V be an arbitrary
vertex. Then, for any edge (u,v) ϵ E,

■ Proof Consider both cases:
❑ u is reachable from s,
❑ otherwise

14

Breadth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Lemma 22.2 Let G=(V,E) be directed or undirected
graph, and suppose that BFS is run on G from a given
source vertex s ϵ V. Then, upon termination, for each
vertex v ϵ V, the value of v.d computed by BFS satisfies

■ Proof Use induction on the number of Enqueue
operations.
❑ Inductive step: Consider a white vertex v that is discovered

during search from a vertex u

❑ v is enqueued only once.

15

Breadth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Lemma 22.3 Suppose that during BFS on a graph
G=(V,E), the queue Q contains vertices <v1,v2,…,vr>
where v1 is the head of Q and vr is the tail. Then

■ Proof Use induction on # of queue operations
❑ On dequeue

❑ Enqueue is similar

16

Breadth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Corollary 22.4 Suppose that vertex vi is
enqueued before vertex vj during BFS. Then,
vi.d ≤ vj.d at the time vj is enqueued.

■ Proof Immediate from previous Lemma and
the property that each vertex receives a finite
d value at most once during BFS

17

Breadth-first search: correctness

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Theorem 22.5 During execution of BFS on
G=(V,E) from source s ϵ V, every vertex v ϵ V
that is reachable from s is discovered, and
upon termination, v.d=δ(s,v) for all v ϵ V.
Moreover, for any v ≠ s that is reachable from
s, one of the shortest paths from s to v is a
shortest path from s to v.π followed by the
edge (v.π,v).

18

Breadth-first search: correctness

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Proof Let v.d ≠ δ(s,v) where δ is minimum
❑ v.d > δ(s,v) Lemma 22.2
❑ δ(s,v) ≠ ∞ (v.d > ∞ not possible)
❑ u is predecessor on a shortest path P from s to v
❑ δ(s,u)+1=δ(s,v) ⇒ δ(s,u)<δ(s,v) and u.d=δ(s,u) (min)
❑ v.d > δ(s,v)= δ(s,u)+1= u.d+1 (Eq. 22.1)
❑ At the time u is dequeued from Q, v is:

■ white: line v.d = u.d+1, contradiction
■ black: v already from from Q, v.d ≤ u.d (Cor 22.4), contradiction
■ gray: w removed earlier than u from Q:
❑ v.d= w.d+1, w.d < u.d (Cor 22.4) ⇒ v.d ≤ u.d+1, contradiction

19

Breadth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Lemma 22.6 When applied to a directed or
undirected graph G=(V,E), procedure BFS
constructs π so that predecessor subgraph
Gπ=(Vπ,Eπ) is a breadth-first tree.

■ Proof Apply previous theorem inductively

20

Breadth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Print out vertices on a shortest path from s to
v (already computed breadth-first tree)

■ Runs in time linear in the length of the path

21

Depth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Search deeper in the graph whenever possible
❑ Explore edges out of the most recently discovered vertex

v that still has unexplored edges leaving it
❑ Once all of v’s edges have been explored, backtrack to

explore edges leaving the vertex from which v was
discovered

❑ Predecessor subgraph of DFS forms a depth-first forest
❑ Records when it discovers and finishes a vertex u in

attributes u.d and u.f
■ u: white before u.d, gray between u.d & u.f, and black thereafter
■ u.d < u.f for each vertex u

22

Depth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

23

Depth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

24

Depth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

25

Depth-first search: analysis

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Depth-first forest mirrors the structure of
recursive calls of Dfs-Visit

■ O(|V|+|E|) since
❑ Dfs-Visit is called exactly once per vertex
❑ lines 4-7 executes |Adj[v]| times and

26

Depth-first search: analysis

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Theorem 22.7 (Parenthesis theorem) In any
DFS of a graph G=(V,E), for any two vertices u
and v, exactly one of following holds:
❑ intervals [u.d,u.f] and [v.d,v.f] are entirely disjoint, and

neither u nor v is a descendant of the other in the
depth-first forest,

❑ interval [u.d,u.f] is contained entirely within interval
[v.d,v.f], and u is a descendant of v in a depth-first tree,
or vice versa.

27

Depth-first search: analysis

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Theorem 22.7 (Parenthesis theorem)
■ Proof
❑ W.l.o.g. suppose u.d < v.d (< v.f). Then we have two

cases:
■ v.d < u.f : v was discovered while u was gray, thus v is a

descendant of u, thus v’s interval entirely contained within u’s
■ u.f < v.d : means u.d < u.f < v.d < v.f, making two intervals disjoint

28

Depth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

29

Depth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

30

Depth-first search: analysis

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Corollary 22.8 (Nesting of descendants’
intervals) Vertex v is a proper descendant of
vertex u in the depth-first forest for a graph G
if and only if u.d < v.d < v.f < u.f.

■ Proof Follows from Parenthesis theorem

31

Depth-first search: analysis

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Theorem 22.9 (White path theorem) In a
depth-first forest of a graph G=(V,E), vertex v is
a descendant of vertex u if and only if at the
time u.d that the search discovers u, there is a
path from u to v consisting entirely of white
vertices.

■ Proof
❑ 🡸: if v is a proper descendant of u, then u.d < v.d and v is

white at time u.d (by previous Corollary)

32

Depth-first search: analysis

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Theorem 22.9 (White path theorem)
■ Proof
❑ 🡸: Suppose on the white path from u to v, w is a

descendant of u but not v. Then, u.d < v.d. Also, w.f ≤ u.f
(by Cor. 22.8) and v.d < w.f. Hence: u.d < v.d < w.f ≤ u.f.
By Th. 22.7 then, [v.d,v.f] is completely contained within
[u.d,u.f]. Hence, by Cor. 22.8 v is a descendant of u in
DFS forest, which is not possible (would form a cycle).

33

Depth-first search: analysis

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

1. Tree edges: edges (u,v) in depth-first forest; v was first
discovered by exploring edge (u,v).

2. Back edges: edges (u,v) connecting a vertex u to an
ancestor v in a depth-first tree. Self-loops of directed
graphs are back edges.

3. Forward edges: non-tree edges (u,v) connecting a vertex
u to a descendant v in a depth-first tree.

4. Cross edges: all other edges; they go between vertices
in the same depth-first tree, as long as one vertex is not
an ancestor of the other, or they can go between vertices
in different depth-first trees.

34

Depth-first search: analysis

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ When we first explore an edge (u,v), the color of
vertex v tells us something about the edge:

❑ WHITE indicates a tree edge,
❑ GRAY indicates a back edge, and
❑ BLACK indicates a forward or cross edge. For an edge (u,v):

■ u.d < v.d: forward edge (v’s lifetime contained within u’s)
■ u.d > v.d: cross edge (u & v’s lifetimes are disjoint)

35

Depth-first search: analysis

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Theorem 22.10 In a depth-first search of an
undirected graph G, every edge of G is either a
tree edge or a back edge.

■ Proof Suppose w.l.o.g. u.d < v.d for an edge
(u,v). Search must discover and finish v before it
finishes u (since v is on u’s adjacency list)

❑ First time (u,v) is explored from u to v: v is undiscovered (white),
hence a tree edge

❑ First time (u,v) is explored from v to u: u is gray, hence a back
edge

36

Topological sort

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ A linear ordering of all vertices of a directed acyclic graph
(dag) G=(V,E) such that if (u,v) in V, then u appears before
v in the ordering

■ Not unique
(partial vs. total order)

37

Topological sort

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Takes O(V+E) since a straightforward DFS with O(V)
(O(1) per vertex) extra processing performed

38

Topological sort

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Lemma 22.11 A directed graph G is acyclic if and only if a
depth-first search of G yields no back edges

■ Proof
❑ 🡸: A back edge (u,v) produced by a DFS implies v is an ancestor of vertex

u in the depth-first forest, resulting in a path from v to u, and the back
edge (u,v) completes a cycle, contradiction

❑ 🡸: Suppose G contains a cycle c and let v be the first vertex discovered in
c. Let (u,v) be the preceding edge in c. At time v.d, the vertices of c form a
path of white vertices from v to u. By the white-path theorem, vertex u
becomes a descendant of v in the depth-first forest; hence (u,v) is a back
edge.

39

Topological sort

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Theorem 22.12 Topological-Sort produces a topological
sort of the directed acyclic graph provided as its input.

■ Proof Need to show v.f < u.f for any edge (u,v) discovered
by DFS. v cannot be gray since (u,v) cannot be a back
edge (by previous Lemma):

❑ v is white: v is a descendant of u, so v.f < u.f
❑ v is black: v has been finished and v.f has been set; still exploring from u,

yet to assign a timestamp to u, thus we will have v.f < u.f

40

Strongly connected components

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Another application of DFS to decompose a directed
graph into strongly connected components, a maximal set
of vertices C in V such that for every vertex pair u and v
are reachable from each other in C.

41

Strongly connected components

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

The transpose of a graph G is GT=(V,ET),
where ET={(u,v) | (v,u) in E}, edges of
G with their directions reversed.

Acyclic component graph GSCC obtained
by contracting all edges within each
strongly connected component of G
so that only a single vertex remains in
each component.

42

Strongly connected components

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

43

Strongly connected components

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Lemma 22.13 Let C and C’ be distinct strongly connected
components in directed graph G=(V,E), with u and v in C
and u’ and v’ in C’. Suppose G contains a path u -> u’.
Then G cannot also contain a path v’ -> v.

■ Proof If G contains a path v’ -> v, then it contains paths u
-> u’ -> v’ and v’ -> v -> u. Thus, u and v’ are reachable
from each other, thereby contradicting the assumption
that C and C’ are distinct strongly connected components.

44

Strongly connected components

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Lemma 22.14 Let C and C’ be distinct strongly connected
components in directed graph G=(V,E). Suppose that
there is an edge (u,v) in E, where u in C and v in C’. Then
f(C) > f(C’).

■ Proof
■ d(C) < d(C’): Let x be the first vertex discovered in C. At time x.d, all ver-

tices in C and C’ are white. At that time, G contains a path from x to each
vertex in C consisting only of white vertices. Because (u,v) in E, for any
vertex w in C’, there is also a path in G at time x.d from x to w consisting
only of white vertices: x -> u -> v -> w. By the white-path theorem, all
vertices in C and C’ become descendants of x in the depth-first tree. By
previous corollary, x has the latest finishing time of any of its descendants,
and so x.f = f(C) > f(C’) .

45

Strongly connected components

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Proof cntd
❑ d(C) > d(C’): Let y be the first vertex discovered in C’. At time y.d, all

vertices in C’ are white and G contains a path from y to each vertex in C’
consisting only of white vertices. By the white-path theorem, all vertices in
C’ become descendants of y in the depth-first tree, and by previous
corollary (nesting of descendants’ intervals), y,f = f(C’). At time y.d, all
vertices in C are white. Since there is an edge (u,v) from C to C’, Lemma
22.13 implies that there cannot be a path from C’ to C. Hence, no vertex in
C is reachable from y. At time y.f , therefore, all vertices in C are still white.
Thus, for any vertex w in C, we have w.f > y.f, which implies that f(C) >
f(C’).

46

Strongly connected components

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Corollary 22.15 Let C and C’ be distinct strongly
connected components in directed graph G=(V,E).
Suppose that there is an edge (u,v) in ET, where u in C
and v in C’. Then f(C) < f(C’).

■ Proof Since (u,v) in ET, we have (v,u) in E (the strongly
connected components of G and GT are the same),
Lemma 22.14 implies that f (C) < f(C’).

47

Strongly connected components

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ Theorem 22.16 The Strongly-Connected-Components
procedure correctly computes the strongly connected
components of the directed graph G provided as its input.

■ Proof Use induction on the number of depth-first trees
found in the depth-first search of GT in line 3:

❑ I.H.: First k trees produced in line 3 are strongly connected components
❑ Basis: k=0 is trivial
❑ I.S.: Consider the (k+1)st tree produced

