Algorithms 11, C§ 502
FElementary Graph

Algorithms

Ugur Dogrusoz
Computer Eng Dept, Bilkent Univ

Ugur Dogrusoz CS 502, Algorithms 11, Bilkent Univ

A data structure for maintaining relational
information

A graph G=(V,E)
V: discrete set of vertices / nodes
E: set of edges linking some pairs of vertices

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

For a graph G=(V,E),
an edge e=(u,v) links / joins vertices u and v

edges (hence graphs) may be directed or undirected

e is incident upon vertices u and v
of edges incident upon a vertex defines its degree
in- and out-degree for directed graphs

two edges incident upon a vertex are adjacent
u and v are neighboring vertices

a path from u to v is an incident sequence of edges
without any repetition

distance between u and v is the length of a shortest path
between u and v

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

Adjacency list
more popular (will be assumed)
much more efficient when |E|<<|V|? (sparse)
easy to add weights for edges
size is O(|V|+|E])
Adjacency matrix
could be preferred when |E| = |V|? (dense)
size is B(|V|?)
Access efficiency vs memory requirements

to determine whether (u,v) € G is not O(1) with
adjacency lists

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

‘ Representation of graphs

2 3 4 3

1

0 0

0

£

> 3

Z

/

> 5

> 4

2 3 45 6

1

0

1
1

0 0 0 O

1

1

0

0

1

0

1

2(0 0 0 O

3(0 0 0 O

4

7

> 4 | /

> 5

50 0 O

60 0 0 0 O

i

/
/
/

> 5

>[2
>[4
> 6

CS 502, Algorithms II, Bilkent Univ

Ugur Dogrusoz

Normally need to store per node/edge
attributes

v.d : an attribute d of vertex v

(u,v).f: an attribute f of edge (u,v)

associating them with graph objects might be tricky
use of separate data structures: d[1...|V|]
instance variables (e.g. of class Vertex)
others?

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

A simple algorithm to search a graph and

basis for many useful graph algorithms
Starts from a distinguished source vertex s

Systematically explores edges to discover vertices by

expanding the frontier between discovered and undiscovered
vertices uniformly across breadth of the frontier

vertices at distance k from source discovered before those at
distance k+1 from source

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

BES(G.y)

for each vertex u € G.V — {s}

. . 1
Assumes adjacency lists 2 u.color = WHITE
Has per vertex attributes i

4 U.7w = NIL
u.color : color of u 5 s.color = GRAY
white, gray, and black 6 s.d=0
17 8.7t = NIL
u.rT : predecessor of u 2 oy
u.d : distance from source 9 ENQUEUE(Q.s)
10 while O # 0
Uses a FIFO queue Q 1 i = DEGUHE)
12 for ecach v € G.Adj[u]
13 if v.color == WHITE
14 v.color = GRAY
15 v.d = u.d + 1
16 Vgt = U
17 ENQUEUE(Q,v)
18 u.color = BLACK

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

‘ Breadth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

‘ Breadth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

10

11

CS 502, Algorithms II, Bilkent Univ

Ugur Dogrusoz

O(|V|+|E]|) since
Initialization is B(|V])

Each vertex enqueued and dequeued only once:
O([VI)
Each edge visited only once: O(|E|)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

12

Lemma 22.1 Let G=(V,E) be directed or

undirected graph, and let s € V be an arbitrary

vertex. Then, for any edge (u,v) € E,
o0(s,v)<o(s,u)+1

Proof Consider both cases:

u is reachable from s,
otherwise

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 13

Lemma 22.2 Let G=(V,E) be directed or undirected
graph, and suppose that BFS is run on G from a given
source vertex s € V. Then, upon termination, for each
vertex v € V, the value of v.d computed by BFS satisfies

v.d 2 0(s,V)
Proof Use induction on the number of Enqueue

operations.

Inductive step: Consider a white vertex v that is discovered
during search from a vertex u

vd =ud+1
> 0(s,u)+1 (by Inductive Hypotheses)

v is enqueued only once. > §(s,v) (by previous Lemma)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 14

Lemma 22.3 Suppose that during BFS on a graph
G=(V,E), the queue Q contains vertices <v,,v,,...,v >
where v_ is the head of Q and v _is the tail. Then

vd<v.d+landv,.d<v, dfori=12,..,r-1

Proof Use induction on # of queue operations
On dequeue

v,.d<v,d..<v.d Dbythel.H.
v..d <v,.d+1 by thel.H.
=>v.d<v.d+1<v,d+1

= v,..d<v,d+1 LS.satistied for new head
Enqueue is similar

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 15

Corollary 22.4 Suppose that vertex v. is
enqueued before vertex v, during BFS. Then,
v.d < V- d at the time v, IS enqueued

Proof Immedlate from previous Lemma and
the property that each vertex receives a finite
d value at most once during BFS

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 16

Theorem 22.5 During execution of BFS on
G=(V,E) from source s € V, every vertex ve V
that is reachable from s is discovered, and
upon termination, v.d=06(s,v) for all v e V.
Moreover, for any v # s that is reachable from
S, one of the shortest paths fromstovis a
shortest path from s to v.mr followed by the
edge (v.m,v).

Ugur Dogtusoz CS 502, Algorithms II, Bilkent Univ 17

Proof Let v.d # d(s,v) where 0 is minimum
v.d > 0(s,v) Lemma 22.2
O(s,v) # « (v.d > ~ not possible)
u is predecessor on a shortest path P from s to v
O(s,u)+1=0(s,v) = 0(s,u)<d(s,v) and u.d=0(s,u) (min)
v.d > 90(s,v)= 0(s,u)+1=u.d+1 (Eq. 22.1)
At the time u is dequeued from Q, v is:
white: line v.d = u.d+1, contradiction
black: v already from from Q, v.d < u.d (Cor 22.4), contradiction

gray: w removed earlier than u from Q:
v.d=w.d+1, w.d < u.d (Cor 22.4) = v.d < u.d+1, contradiction

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 18

Lemma 22.6 \When applied to a directed or
undirected graph G=(V,E), procedure BFS
constructs 1T so that predecessor subgraph
G _=(V_,E_)is a breadth-first tree.

Proof Apply previous theorem inductively

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 19

Print out vertices on a shortest path from s to
v (already computed breadth-first tree)

PRINT-PATH(G. 5. V)

1. N ==8

2 print §

3 elseif v.7 ==NIL

4 print “no path from™ s “to™ v “exists”
5 else PRINT-PATH(G, s, v.7)

6 print v

Runs in time linear in the length of the path

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 20

Search deeper in the graph whenever possible
Explore edges out of the most recently discovered vertex
v that still has unexplored edges leaving it

Once all of v's edges have been explored, backtrack to
explore edges leaving the vertex from which v was
discovered

Predecessor subgraph of DFS forms a depth-first forest

Records when it discovers and finishes a vertex u in
attributes u.d and u.f
u: white before u.d, gray between u.d & u.f, and black thereafter
u.d < u.ffor each vertex u

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 21

‘ Depth-tirst search

DFS(G)

1 for each vertex u € G.V
2 u.color = WHITE
3 U.w = NIL

4 time = 0

5 foreach vertex u € G.V

6 if u.color == WHITE

7 DFS-VISIT(G. u)

DFS-VISIT(G . u)

I time = time + 1 // white vertex u has just been discovered
2 Wi = tine

3 u.color = GRAY

4 for each v € G.Adj[u] // explore edge (u,v)

5 if v.color == WHITE

6 V.0 =i

7 DFS-VISIT(G, v)

8 u.color = BLACK // blacken u; it is finished

9 time = time + 1
10 u.f = time

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 22

‘ Depth-tirst search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 23

24

CS 502, Algorithms II, Bilkent Univ

Ugur Dogrusoz

Depth-first forest mirrors the structure of
recursive calls of Dfs-Visit
O(|V|+|E]|) since

Dfs-Visit IS called exactly once per vertex

lines 4-7 executes |Adj[v]| times and | 4dj[v]|=O(E)

vel

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 25

Theorem 22.7 (Parenthesis theorem) In any
DFS of a graph G=(V,E), for any two vertices u
and v, exactly one of following holds:

intervals [u.d,u.f] and [v.d,v.f] are entirely disjoint, and
neither u nor v is a descendant of the other in the
depth-first forest,

interval [u.d,u.f] is contained entirely within interval
[v.d,v.f], and u is a descendant of v in a depth-first tree,
or vice versa.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 26

Theorem 22.7 (Parenthesis theorem)

Proof

W.l.0.g. suppose u.d < v.d (< v.f). Then we have two
cases:

v.d < u.f: v was discovered while u was gray, thus v is a
descendant of u, thus v’'s interval entirely contained within u’s

u.f<v.d: means u.d < u.f < v.d < v.f, making two intervals disjoint

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 27

‘ Depth-first search

L 2 % 4 567 8 9 101 12 13 18 15'16
tC OO x)YyYywWwzs) ¢ @v)uuwi

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

28

‘ Depth-first search

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

29

Corollary 22.8 (Nesting of descendants’
intervals) Vertex v is a proper descendant of
vertex u in the depth-first forest for a graph G
if and only if u.d <v.d<v.f<u.f.

Proof Follows from Parenthesis theorem

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 30

Theorem 22.9 (White path theorem) In a
depth-first forest of a graph G=(V,E), vertex v is
a descendant of vertex u if and only if at the
time u.d that the search discovers u, there is a

path from u to v consisting entirely of white
vertices.

Proof

[: if v is a proper descendant of u, thenu.d <v.dand v is
white at time u.d (by previous Corollary)

Ugur Dogtusoz CS 502, Algorithms II, Bilkent Univ 31

Theorem 22.9 (White path theorem)

Proof

[: Suppose on the white path fromutov, wis a
descendant of u but not v. Then, u.d < v.d. Also, w.f < u.f
(by Cor. 22.8) and v.d < w.f. Hence: u.d <v.d <w.f < u.lf.

By Th. 22.7 then, [v.d,v.f] is completely contained within
[u.d,u.f]. Hence, by Cor. 22.8 v is a descendant of u in
DFS forest, which is not possible (would form a cycle).

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 32

Tree edges: edges (u,v) in depth-first forest; v was first
discovered by exploring edge (u,v).
Back edges: edges (u,v) connecting a vertex u to an

ancestor v in a depth-first tree. Self-loops of directed
graphs are back edges.

Forward edges: non-tree edges (u,v) connecting a vertex
u to a descendant v in a depth-first tree.

Cross edges: all other edges; they go between vertices
in the same depth-first tree, as long as one vertex is not
an ancestor of the other, or they can go between vertices
In different depth-first trees.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 33

When we first explore an edge (u,v), the color of

vertex v tells us something about the edge:
WHITE indicates a tree edge,
GRAY indicates a back edge, and
BLACK indicates a forward or cross edge. For an edge (u,v):
u.d < v.d: forward edge (v’s lifetime contained within u’s)
u.d > v.d: cross edge (u & Vv’s lifetimes are disjoint)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 34

Theorem 22.10 In a depth-first search of an
undirected graph G, every edge of G is either a
tree edge or a back edge.

Proof Suppose w.l.o.g. u.d < v.d for an edge
(u,v). Search must discover and finish v before it

finishes u (since v is on u’'s adjacency list)

First time (u,v) is explored from u to v: v is undiscovered (white),
hence a tree edge

First time (u,v) is explored from v to u: u is gray, hence a back
edge

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 35

A linear ordering of all vertices of a directed acyclic graph

(dag) G=(V,E) such that if (u,v) in V, then u appears before
v in the ordering

Not unique

. 11/16 (undershorts .socks 17/18
(partial vs. total order) -) oo
12/15 (‘pants } 13/14

2/5 3/4

17/18 11/16 12/15 13/14 9/10 1/8 6/7

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 36

Takes O(V+E) since a straightforward DFS with O(V)
(O(1) per vertex) extra processing performed

TOPOLOGICAL-SORT(G)

1 call DFS(G) to compute finishing times v.f for each vertex v
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

37

Lemma 22.11 A directed graph G is acyclic if and only if a
depth-first search of G yields no back edges

Proof

[: A back edge (u,v) produced by a DFS implies v is an ancestor of vertex
u in the depth-first forest, resulting in a path from v to u, and the back
edge (u,v) completes a cycle, contradiction

[0: Suppose G contains a cycle ¢ and let v be the first vertex discovered in
c. Let (u,v) be the preceding edge in c. At time v.d, the vertices of ¢c form a
path of white vertices from v to u. By the white-path theorem, vertex u
becomes a descendant of v in the depth-first forest; hence (u,v) is a back
edge.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 38

Theorem 22.12 Topological-Sort produces a topological
sort of the directed acyclic graph provided as its input.

Proof Need to show v.f < u.f for any edge (u,v) discovered

by DFS. v cannot be gray since (u,v) cannot be a back
edge (by previous Lemma):
v is white: v is a descendant of u, so v.f < u.f

v is black: v has been finished and v.f has been set; still exploring from u,
yet to assign a timestamp to u, thus we will have v.f < u.f

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 39

Another application of DFS to decompose a directed
graph into strongly connected components, a maximal set
of vertices C in V such that for every vertex pair u and v
are reachable from each other in C.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 40

‘ Strongly connected components

a b c d
The transpose of a graph G is G'=(V,E"),
where E"={(u,v) | (v,u) in E}, edges of
G with their directions reversed.
e y g h

Acyclic component graph GS¢C obtained
by contracting all edges within each
strongly connected component of G
so that only a single vertex remains in
each component.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 41

‘ Strongly connected components

STRONGLY-CONNECTED-COMPONENTS (G)

1 call DFS(G) to compute finishing times u.f for each vertex u

2 compute GT
3 call DFS(G?"), but in the main loop of DFS, consider the vertices

in order of decreasing u.f (as computed in line 1)
4 output the vertices of each tree in the depth-first forest formed in line 3 as a

separate strongly connected component

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 42

Lemma 22.13 Let C and C’ be distinct strongly connected
components in directed graph G=(V,E), withuand vin C
and u’and v’ in C’. Suppose G contains a path u -> u’.
Then G cannot also contain a path v’ -> v.

Proof If G contains a path v’ -> v, then it contains paths u
->Uu' ->v and v ->v ->u. Thus, u and v’ are reachable
from each other, thereby contradicting the assumption
that C and C’ are distinct strongly connected components.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 43

Lemma 22.14 Let C and C’ be distinct strongly connected
components in directed graph G=(V,E). Suppose that
there is an edge (u,v) in E, where uin Cand vin C'. Then
f(C) > (C).

Proof

d(C) < d(C’): Let x be the first vertex discovered in C. At time x.d, all ver-
tices in C and C’ are white. At that time, G contains a path from x to each
vertex in C consisting only of white vertices. Because (u,v) in E, for any
vertex w in C’, there is also a path in G at time x.d from x to w consisting
only of white vertices: x -> u -> v -> w. By the white-path theorem, all
vertices in C and C’ become descendants of x in the depth-first tree. By
previous corollary, x has the latest finishing time of any of its descendants,
and so x.f =f(C) > f(C’) .

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 44

Proof cntd

d(C) > d(C’): Lety be the first vertex discovered in C'. At time y.d, all
vertices in C’ are white and G contains a path from y to each vertex in C’
consisting only of white vertices. By the white-path theorem, all vertices in
C’ become descendants of y in the depth-first tree, and by previous
corollary (nesting of descendants’ intervals), y,f = f(C’). At time y.d, all
vertices in C are white. Since there is an edge (u,v) from C to C’, Lemma
22.13 implies that there cannot be a path from C’ to C. Hence, no vertex in
C is reachable from y. At time y.f, therefore, all vertices in C are still white.
Thus, for any vertex w in C, we have w.f > y.f, which implies that f(C) >
f(C’).

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 45

Corollary 22.15 Let C and C’ be distinct strongly
connected components in directed graph G=(V,E).
Suppose that there is an edge (u,v) in ET, where uin C
and vin C'. Then f(C) < {(C’).

Proof Since (u,v) in ET, we have (v,u) in E (the strongly
connected components of G and G' are the same),
Lemma 22.14 implies that f (C) < f(C’).

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 46

Theorem 22.16 The Strongly-Connected-Components
procedure correctly computes the strongly connected
components of the directed graph G provided as its input.

Proof Use induction on the number of depth-first trees
found in the depth-first search of G' in line 3:

I.H.: First k trees produced in line 3 are strongly connected components
Basis: k=0 is trivial
1.S.: Consider the (k+1) tree produced

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 47

