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Minimum spanning trees
■ Given a connected undirected graph G=(V,E), find 

an acyclic subset T of E that connects all the 
vertices and its total weight is minimized.

■ The problem of determining the tree T is called the 
minimum-spanning-tree problem
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Minimum spanning trees
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Minimum spanning trees
■ The invariant here is that A is a subset of some 

minimum-spanning-tree using a greedy approach.
■ An edge is called a safe edge for A, since we can 

add it safely to A while maintaining the invariant.
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Minimum spanning trees
■ A cut (S,V-S) of an undirected graph G=(V,E) is a 

partition of V. 
■ An edge (u,v) in E crosses the cut (S,V-S) if one of its 

endpoints is in S and the other is in V-S. 
■ A cut respects a set A of edges if no edge in A crosses 

the cut. 
■ An edge is a light edge crossing a cut if its weight is 

the minimum of any edge crossing the cut. 
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Minimum spanning trees
Two ways of viewing the same cut
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Minimum spanning trees
■ Theorem 23.1 Let G=(V,E) be a connected, 

undirected graph with a real-valued weight function 
w defined on E. Let A be a subset of E that is 
included in some minimum spanning tree for G, let 
(S,V-S) be any cut of G that respects A, and let (u,v) 
be a light edge crossing (S,V-S).Then, edge (u,v) is 
safe for A.
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Minimum spanning trees
■ Proof Use a cut-and-paste argument to construct 

another minimum spanning tree that includes A U 
{(u,v)}
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Minimum spanning trees
■ Corollary 23.2 Let G=(V,E) be a connected, undirected 

graph with a real-valued weight function w defined on E. 
Let A be a subset of E that is included in some minimum 
spanning tree for G, and let C=(VC,EC) be a connected 
component (tree) in the forest GA=(V,A). If (u,v) is a light 
edge connecting C to some other component in GA, then 
(u,v) is safe for A.

■ Proof The cut (VC,V-VC) respects A, and (u,v) is a light edge 
for this cut. Thus, (u,v) is safe for A.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



10

MST, Kruskal’s algorithm
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■ Use a disjoint set data structure
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MST, Kruskal’s algorithm
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MST, Kruskal’s algorithm
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MST, Kruskal’s algorithm
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MST, Kruskal’s algorithm
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MST, Kruskal’s algorithm
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■ Running time is
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MST, Prim’s algorithm
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■ Use a min-priority queue
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MST, Prim’s algorithm
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MST, Prim’s algorithm

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



19

MST, Prim’s algorithm
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MST, Prim’s algorithm
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■ When using a binary min-heap, running time is:
○ V Extract-Min operations of O(lg V)
○ E Decrease-Key operations of O(lg V)
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MST, Prim’s algorithm

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

■ When using a  Fibonacci heap, (amortized) running time is
○ V Extract-Min operations of O(log V) amortized
○ E Decrease-Key operations of O(1) amortized


