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Single-source shortest paths
■ Given a road map of some locations on which the 

distance between each pair of adjacent intersections 
is marked, how can one determine the shortest route 
from one location to (an)other(s)?

■ Enumerating all the routes from a source to a 
destination results in examination of an enormous 
number of possibilities.
❑ Besides, when going from Ankara to Istanbul, passing through 

Izmir is an obviously bad choice.
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Single-source shortest paths
■ In a shortest-path problem, we are given a weighted 

directed graph G=(V,E) with a weight function w, 
mapping edges to real valued weights:

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



4

Single-source shortest paths (SP)
❑ The weight w(p) of a path p=<v1,v2,…,vk> is the sum of its 

constituent edges:

❑ The shortest path weight from u to v is defined as:

❑ A shortest path from u to v is defined as any path p with weight:
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Shortest paths, variants
■ Single-destination shortest-paths problem 
❑ Find a shortest path to a given destination vertex t from each 

vertex v (same as single-source)

■ Single-pair shortest-path problem
❑ Find a shortest path from u to v for given vertices u and v (same 

as single-source asymptotically)

■ All-pairs shortest-paths problem
❑ Find a shortest path from u to v for every pair of vertices u and v 

(running single-source algorithm repeatedly is slower)
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Shortest paths, optimal substructure
■ Lemma 24.1 (Subpaths of shortest paths are shortest 

paths) Given a weighted, directed graph G=(V,E) with 
weight function w:E→R, let p=<v0,v1,…,vk> be a shortest 
path from vertex v0 to vertex vk and, for any i and j such 
that 0 ≤ i ≤ j ≤ k, let pij=<vi,vi+1,…,vj> be the sub-path of p 
from vertex vi to vertex vj. Then, pij is a shortest path 
from vi to vj. 
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Shortest paths, negative-weight edges
■ Negative weights OK but not negative cycles

❑ Some algorithms handle negative weights
❑ Others don’t
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Shortest paths, cycles, length
■ A shortest path never has to include a cycle
❑ Negative cycle makes shortest path undefined
❑ Positive cycles are never on shortest path
❑ Zero-weight cycles can be removed

■ Thus shortest paths are simple paths
❑ Length of a shortest path is at most |V|-1
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Shortest paths, weight vs actual path
■ Maintain a predecessor v.π for each vertex v to 

record shortest path
■ Predecessor subgraph Gπ=(Vπ,Eπ) will have correct 

values at the end of calculation
❑ In fact, a shortest path tree
❑ Shortest paths and shortest path trees are not necessarily unique

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



10

Shortest paths, relaxation
■ Use the technique of relaxation
■ For each vertex v, maintain an attribute v.d 
❑ an upper bound on the weight of a shortest path from source s to 

v; a shortest path estimate

■ Process of relaxing an edge (u,v) consists of 
❑ testing whether we can improve the shortest path to v found so 

far by going through u and, if so, updating v.d.
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Shortest paths, relaxation
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Shortest paths properties
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Shortest paths, algorithms
■ The algorithms described from here on differ in
❑ how many times they relax each edge and 
❑ the order in which they relax edges. 

■ Dijkstra’s algorithm and the shortest-paths algorithm 
for directed acyclic graphs relax each edge exactly 
once. 

■ The Bellman-Ford algorithm relaxes each edge |V|-1 
times.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



14

Bellman-Ford algorithm 
■ Solves general case (negative weights are ok)
■ Returns FALSE if no solution exists (i.e. negative cycle)
■ Runs in O(V E) time
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Bellman-Ford algorithm 
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Bellman-Ford algorithm 
■ Lemma 24.2 Let G=(V,E) be a weighted, directed graph 

with source s and weight function w:E→R, and assume 
that G contains no negative-weight cycles that are 
reachable from s. Then, after the |V|-1 iterations of the 
for loop of lines 2–4 of Bellman-Ford, we have v.d=δ(s,v) 
for all vertices v that are reachable from s.
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Bellman-Ford algorithm 
■ Proof Consider any vertex v reachable from s, and let 

p=<v0,v1,…,vk>, where v0=s and vk=v, be any shortest path 
from s to v. Since |p|=k≤|V|-1, each of the |V|-1 iterations 
of the for loop of lines 2–4 relaxes all |E| edges. Among 
the edges relaxed in the ith iteration, for i=1,2,…,k, is 
(vi-1,vi). By the path-relaxation property, therefore, 
v.d=vk.d=δ(s,vk)=δ(s,v).
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Bellman-Ford algorithm 
■ Corollary 24.3 Let G=(V,E) be a weighted, directed 

graph with source vertex s and weight function 
w:E→R, and assume that G contains no 
negative-weight cycles that are reachable from s. 
Then, for each vertex vϵV, there is a path from s to v if 
and only if Bellman-Ford terminates with v.d < ∞ when 
it is run on G.
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Bellman-Ford algorithm 
■ Theorem 24.4 (Correctness) Let Bellman-Ford be run on a 

weighted, directed graph G=(V,E) with source s and weight 
function w:E→R. If G contains no negative-weight cycles that 
are reachable from s, then the algorithm returns TRUE, we 
have v.d=δ(s,v) for all vertices vϵV, and the predecessor 
subgraph Gπ is a shortest-paths tree rooted at s. If G does 
contain a negative-weight cycle reachable from s, then the 
algorithm returns FALSE.
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Bellman-Ford algorithm 
■ Proof
❑ v.d=δ(s,v) for all v:

■ if v is reachable from s, true by Lemma 24.2
■ if v is not reachable from s, true by no-path property
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Bellman-Ford algorithm 
■ Proof cntd
❑ Gπ is a shortest-paths tree rooted at s: true by the 

predecessor-subgraph property
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Bellman-Ford algorithm 
■ Proof cntd
❑ G contains no negative cycles: we know v.d=δ(s,v) whether v is 

reachable from s or not and the predecessor subgraph property 
implies Gπ is a shortest paths tree. The algorithm returns true since 
at termination for each edge (u,v), we have v.d = δ(s,v) ≤ δ
(s,u)+w(u,v) =u.d+w(u,v), so none of the tests in line 6 causes the 
algorithm to return FALSE.
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Bellman-Ford algorithm 
■ Proof cntd

❑ G contains a negative cycle c=<v0,v1,…,vk> with v0=vk: Assume it 
returns TRUE. Thus, vi.d ≤ vi-1.d + w(vi-1, vi) for i=1,2,…,k (line 6). 
Summing the inequalities around cycle c and the fact that vi.d is finite 
(Cor. 24.3) gives us the following contradiction to our assumption: 
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Single-source SP in dags
■ Relax edges of a weighted dag G=(V,E) according to a 

topological sort of its vertices in O(V+E) time.
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Single-source SP in dags
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Single-source SP in dags
■ Theorem 24.5 If a weighted, directed graph G=(V,E) 

has source vertex s and no cycles, then at the 
termination of the Dag-Shortest-Paths procedure, v.d=δ
(s,v) for all vertices v∊V, and the predecessor 
subgraph G is a shortest-paths tree.
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Single-source SP in dags
■ Proof 
❑ If v is not reachable from s: v.d=δ(s,v)=∞ by the no-path property

❑ If v is reachable from s: let p=<v0,v1,…,vk> be a shortest path 
from s to v, where v0=s and vk=v. Since we process edges in 
topologically sorted order, we relax edges in the order: (v0,v1), 
(v1,v2), … (vk-1,vk). The path relaxation property implies that vi.d=δ
(s,vi) at termination for i=0,1,…,k. By the predecessor subgraph 
property, Gπ is a shortest path tree.
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Single-source SP in dags, critical paths
■ Critical (longest) paths in PERT charts is an application
❑ negate edge weights and run Dag-Shortest-Paths, or
❑ modify Dag-Shortest-Paths:

■ replace ∞ with -∞,
■ replace > with < in line 2 of Relax
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Dijkstra’s algorithm
■ Solves single-source shortest-paths problem on a 

weighted, directed graph with nonnegative edge weights
■ A greedy algorithm that maintains a set of vertices 

whose final shortest-path weights from source s have 
already been determined
❑ Selects vertex u ϵ V-S with minimum shortest-path estimate, adds u 

to S, and relaxes all edges leaving u
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Dijkstra’s algorithm
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Dijkstra’s algorithm
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Dijkstra’s algorithm
■ Theorem 24.6 (Correctness of Dijkstra’s algorithm) 

Dijkstra’s algorithm, run on a weighted, directed graph 
G=(V,E) with nonnegative weight function w and source s, 
terminates with u.d=δ(s,u) for all vertices u ϵ V.

■ Proof Use the following loop invariant:
❑ At the start of each iteration of the while loop of lines 4–8,

v.d = δ(s,v) for each vertex v ϵ S
❑ Show u.d = δ(s,u) at the time 

when u is added to set S
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Dijkstra’s algorithm
■ Corollary 24.7 If we run Dijkstra’s algorithm on a 

weighted, directed graph G=(V,E) with nonnegative 
weight function w and source s, then at termination, 
the predecessor subgraph Gπ is a shortest-paths tree 
rooted at s.

■ Proof Immediate from Theorem 24.6 and the 
predecessor-subgraph property.
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Dijkstra’s algorithm, analysis
■ Store v.d in vth entry of an array
❑ Insert and Decrease-Key in O(1), Extract-Min in O(V) time, 

results in O(V2 + E)=O(V2) time

■ Use a binary min-heap
❑ O((V + E) lg V)=O(E lg V) [assuming all vertices reachable]
❑ Better than array implementation if E=o(V2 / lg V).

■ Use a Fibonacci heap
❑ O(V lg V + E)
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Dijkstra’s algorithm
■ Resembles
❑ BFS in that set S corresponds to set of black vertices in a 

BFS; just as vertices in S have their final shortest-path 
weights, so do black vertices in a breadth-first search have 
their correct breadth-first distances,

❑ Prim’s algorithm in that both algorithms use a min-priority 
queue to find the “lightest” vertex outside a given set, add this 
vertex into the set, and adjust weights of remaining vertices 
outside the set accordingly.
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Basics, the triangle inequality
■ Lemma 24.10 (Triangle inequality) Let G=(V,E) be a 

weighted, directed graph with weight function w:E→R, 
and source vertex s. Then, for all edges (u,v) ϵ E, we 
have δ(s,v)≤δ(s,u)+w(u,v).
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Basics, upper-bound property
■ Lemma 24.11 (Upper-bound property) Let G=(V,E) be a 

weighted, directed graph with weight function w:E→R. Let 
s ϵ V be the source vertex, and let the graph be initialized 
by Initialize-Single-Source(G,s). Then, v.d ≥ δ(s,v) for all v ϵ 
V, and this invariant is maintained over any sequence of 
relaxation steps on the edges of G. Moreover, once v.d 
achieves its lower bound δ(s,v), it never changes.

■ Proof Prove the invariant v.d ≥ δ(s,v) for all vertices v ϵ V by induction 
on the number of relaxation steps
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Basics, no-path property
■ Corollary 24.12 (No-path property) Suppose that in a 

weighted, directed graph G=(V,E) with weight function w 
w:E→R, no path connects a source vertex s ϵ V to a given 
vertex v ϵ V . Then, after the graph is initialized by 
Initialize-Single-Source(G,s), we have v.d=δ(s,v)=∞, and this 
equality is maintained as an invariant over any sequence 
of relaxation steps on the edges of G.

■ Proof By the upper-bound property, we always have ∞=δ
(s,v)≤v.d, and thus v.d=∞=δ(s,v).
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Basics
■ Lemma 24.13 Let G=(V,E) be a weighted, directed graph 

with weight function w:E→R, and let (u,v) ϵ E. Then, 
immediately after relaxing edge (u,v) by executing 
Relax(u,v,w), we have v.d ≤ u.d+w(u,v).

■ Proof If, just prior to relaxing edge (u,v), we have 
v.d>u.d+w(u,v), then v.d=u.d+w(u,v) afterward. If, instead, 
v.d≤u.d+w(u,v) just before the relaxation, then neither u.d 
nor v.d changes, and so v.d≤u.d+w(u,v) afterward.
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Basics, convergence property
■ Lemma 24.14 (Convergence property) Let G=(V,E) be a 

weighted, directed graph with weight function w:E→R, let s 
ϵ V be a source vertex, and let s→u→v  be a shortest path 
in G for some vertices u,v ϵ V . Suppose that G is 
initialized by Initialize-Single-Source(G,s), and then a 
sequence of relaxation steps that includes the call 
RELAX(u,v,w) is executed on the edges of G. If u.d=δ(s,u) 
at any time prior to the call, then v.d=δ(s,v) at all times 
after the call.
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Basics, convergence property
■ Proof By the upper-bound property, if u.d=δ(s,u) at some 

point prior to relaxing edge (u,v), then this equality holds 
thereafter. In particular, after relaxing edge (u,v), we have
❑ v.d ≤ u.d + w(u,v) (by Lemma 24.13)
❑ = δ(s,u) + w(u,v)
❑ = δ(s,v) (by Lemma 24.1) .

By the upper-bound property, v.d ≥ δ(s,v), from which we 
conclude that v.d = δ(s,v), and this equality is maintained 
thereafter.
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Basics, path relaxation property
■ Lemma 24.15 (Path-relaxation property) Let G=(V,E) be a 

weighted, directed graph with weight function w:E→R, and let s 
ϵ V be a source vertex. Consider any shortest path 
p=<v0,v1,…,vk> from s=v0 to vk. If G is initialized by 
Initialize-Single-Source(G,s) and then a sequence of relaxation 
steps occurs that includes, in order, relaxing the edges 
(v0,v1),(v1,v2),…,(vk-1,vk), then vk.d=δ(s,vk) after these 
relaxations and at all times afterward. This property holds no 
matter what other edge relaxations occur, including relaxations 
that are intermixed with relaxations of the edges of p.
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Basics, path relaxation property
■ Proof by induction that after the ith edge of path p is relaxed, 

we have vi.d=δ(s,vi). For the basis, i=0, and we have from the 
initialization that v0.d=s.d=0=δ(s,s). By the upper-bound 
property, the value of s.d never changes after initialization.
For the inductive step, we assume that

vi-1.d=δ(s,vi-1), and we examine what happens when we relax 
edge (vi-1,vi). By the convergence property, after relaxing this 
edge, we have vi.d=δ(s,vi), and this equality is maintained at 
all times thereafter.
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Basics, pred-subgraph property
■ Lemma 24.17 (Predecessor-subgraph property) Let 

G=(V,E) be a weighted, directed graph with weight function 
w:E→R, let s ϵ V be a source vertex, and assume that G 
contains no negative-weight cycles that are reachable from s. 
Let us call INITIALIZE-SINGLE-SOURCE(G,s) and then 
execute any sequence of relaxation steps on edges of G that 
produces v.d=δ(v,s) for all  v ϵ V. Then, the predecessor 
subgraph Gπ is a shortest-paths tree rooted at s.
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