
Algorithms II, CS 502

Single-Source Shortest Paths

Ugur Dogrusoz
Computer Eng Dept, Bilkent Univ

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 1

2

Single-source shortest paths
■ Given a road map of some locations on which the

distance between each pair of adjacent intersections
is marked, how can one determine the shortest route
from one location to (an)other(s)?

■ Enumerating all the routes from a source to a
destination results in examination of an enormous
number of possibilities.
❑ Besides, when going from Ankara to Istanbul, passing through

Izmir is an obviously bad choice.
Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

3

Single-source shortest paths
■ In a shortest-path problem, we are given a weighted

directed graph G=(V,E) with a weight function w,
mapping edges to real valued weights:

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

4

Single-source shortest paths (SP)
❑ The weight w(p) of a path p=<v1,v2,…,vk> is the sum of its

constituent edges:

❑ The shortest path weight from u to v is defined as:

❑ A shortest path from u to v is defined as any path p with weight:

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

5

Shortest paths, variants
■ Single-destination shortest-paths problem
❑ Find a shortest path to a given destination vertex t from each

vertex v (same as single-source)

■ Single-pair shortest-path problem
❑ Find a shortest path from u to v for given vertices u and v (same

as single-source asymptotically)

■ All-pairs shortest-paths problem
❑ Find a shortest path from u to v for every pair of vertices u and v

(running single-source algorithm repeatedly is slower)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

6

Shortest paths, optimal substructure
■ Lemma 24.1 (Subpaths of shortest paths are shortest

paths) Given a weighted, directed graph G=(V,E) with
weight function w:E→R, let p=<v0,v1,…,vk> be a shortest
path from vertex v0 to vertex vk and, for any i and j such
that 0 ≤ i ≤ j ≤ k, let pij=<vi,vi+1,…,vj> be the sub-path of p
from vertex vi to vertex vj. Then, pij is a shortest path
from vi to vj.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

7

Shortest paths, negative-weight edges
■ Negative weights OK but not negative cycles

❑ Some algorithms handle negative weights
❑ Others don’t

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

8

Shortest paths, cycles, length
■ A shortest path never has to include a cycle
❑ Negative cycle makes shortest path undefined
❑ Positive cycles are never on shortest path
❑ Zero-weight cycles can be removed

■ Thus shortest paths are simple paths
❑ Length of a shortest path is at most |V|-1

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

9

Shortest paths, weight vs actual path
■ Maintain a predecessor v.π for each vertex v to

record shortest path
■ Predecessor subgraph Gπ=(Vπ,Eπ) will have correct

values at the end of calculation
❑ In fact, a shortest path tree
❑ Shortest paths and shortest path trees are not necessarily unique

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

10

Shortest paths, relaxation
■ Use the technique of relaxation
■ For each vertex v, maintain an attribute v.d
❑ an upper bound on the weight of a shortest path from source s to

v; a shortest path estimate

■ Process of relaxing an edge (u,v) consists of
❑ testing whether we can improve the shortest path to v found so

far by going through u and, if so, updating v.d.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

11

Shortest paths, relaxation

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

12

Shortest paths properties

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

13

Shortest paths, algorithms
■ The algorithms described from here on differ in
❑ how many times they relax each edge and
❑ the order in which they relax edges.

■ Dijkstra’s algorithm and the shortest-paths algorithm
for directed acyclic graphs relax each edge exactly
once.

■ The Bellman-Ford algorithm relaxes each edge |V|-1
times.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

14

Bellman-Ford algorithm
■ Solves general case (negative weights are ok)
■ Returns FALSE if no solution exists (i.e. negative cycle)
■ Runs in O(V E) time

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

15

Bellman-Ford algorithm

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

16

Bellman-Ford algorithm
■ Lemma 24.2 Let G=(V,E) be a weighted, directed graph

with source s and weight function w:E→R, and assume
that G contains no negative-weight cycles that are
reachable from s. Then, after the |V|-1 iterations of the
for loop of lines 2–4 of Bellman-Ford, we have v.d=δ(s,v)
for all vertices v that are reachable from s.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

17

Bellman-Ford algorithm
■ Proof Consider any vertex v reachable from s, and let

p=<v0,v1,…,vk>, where v0=s and vk=v, be any shortest path
from s to v. Since |p|=k≤|V|-1, each of the |V|-1 iterations
of the for loop of lines 2–4 relaxes all |E| edges. Among
the edges relaxed in the ith iteration, for i=1,2,…,k, is
(vi-1,vi). By the path-relaxation property, therefore,
v.d=vk.d=δ(s,vk)=δ(s,v).

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

18

Bellman-Ford algorithm
■ Corollary 24.3 Let G=(V,E) be a weighted, directed

graph with source vertex s and weight function
w:E→R, and assume that G contains no
negative-weight cycles that are reachable from s.
Then, for each vertex vϵV, there is a path from s to v if
and only if Bellman-Ford terminates with v.d < ∞ when
it is run on G.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

19

Bellman-Ford algorithm
■ Theorem 24.4 (Correctness) Let Bellman-Ford be run on a

weighted, directed graph G=(V,E) with source s and weight
function w:E→R. If G contains no negative-weight cycles that
are reachable from s, then the algorithm returns TRUE, we
have v.d=δ(s,v) for all vertices vϵV, and the predecessor
subgraph Gπ is a shortest-paths tree rooted at s. If G does
contain a negative-weight cycle reachable from s, then the
algorithm returns FALSE.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

20

Bellman-Ford algorithm
■ Proof
❑ v.d=δ(s,v) for all v:

■ if v is reachable from s, true by Lemma 24.2
■ if v is not reachable from s, true by no-path property

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

21

Bellman-Ford algorithm
■ Proof cntd
❑ Gπ is a shortest-paths tree rooted at s: true by the

predecessor-subgraph property

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

22

Bellman-Ford algorithm
■ Proof cntd
❑ G contains no negative cycles: we know v.d=δ(s,v) whether v is

reachable from s or not and the predecessor subgraph property
implies Gπ is a shortest paths tree. The algorithm returns true since
at termination for each edge (u,v), we have v.d = δ(s,v) ≤ δ
(s,u)+w(u,v) =u.d+w(u,v), so none of the tests in line 6 causes the
algorithm to return FALSE.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

23

Bellman-Ford algorithm
■ Proof cntd

❑ G contains a negative cycle c=<v0,v1,…,vk> with v0=vk: Assume it
returns TRUE. Thus, vi.d ≤ vi-1.d + w(vi-1, vi) for i=1,2,…,k (line 6).
Summing the inequalities around cycle c and the fact that vi.d is finite
(Cor. 24.3) gives us the following contradiction to our assumption:

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

24

Single-source SP in dags
■ Relax edges of a weighted dag G=(V,E) according to a

topological sort of its vertices in O(V+E) time.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

25

Single-source SP in dags

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

26

Single-source SP in dags
■ Theorem 24.5 If a weighted, directed graph G=(V,E)

has source vertex s and no cycles, then at the
termination of the Dag-Shortest-Paths procedure, v.d=δ
(s,v) for all vertices v∊V, and the predecessor
subgraph G is a shortest-paths tree.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

27

Single-source SP in dags
■ Proof
❑ If v is not reachable from s: v.d=δ(s,v)=∞ by the no-path property

❑ If v is reachable from s: let p=<v0,v1,…,vk> be a shortest path
from s to v, where v0=s and vk=v. Since we process edges in
topologically sorted order, we relax edges in the order: (v0,v1),
(v1,v2), … (vk-1,vk). The path relaxation property implies that vi.d=δ
(s,vi) at termination for i=0,1,…,k. By the predecessor subgraph
property, Gπ is a shortest path tree.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

28

Single-source SP in dags, critical paths
■ Critical (longest) paths in PERT charts is an application
❑ negate edge weights and run Dag-Shortest-Paths, or
❑ modify Dag-Shortest-Paths:

■ replace ∞ with -∞,
■ replace > with < in line 2 of Relax

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

29

Dijkstra’s algorithm
■ Solves single-source shortest-paths problem on a

weighted, directed graph with nonnegative edge weights
■ A greedy algorithm that maintains a set of vertices

whose final shortest-path weights from source s have
already been determined
❑ Selects vertex u ϵ V-S with minimum shortest-path estimate, adds u

to S, and relaxes all edges leaving u

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

30

Dijkstra’s algorithm

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

31

Dijkstra’s algorithm

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

32

Dijkstra’s algorithm
■ Theorem 24.6 (Correctness of Dijkstra’s algorithm)

Dijkstra’s algorithm, run on a weighted, directed graph
G=(V,E) with nonnegative weight function w and source s,
terminates with u.d=δ(s,u) for all vertices u ϵ V.

■ Proof Use the following loop invariant:
❑ At the start of each iteration of the while loop of lines 4–8,

v.d = δ(s,v) for each vertex v ϵ S
❑ Show u.d = δ(s,u) at the time

when u is added to set S

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

33

Dijkstra’s algorithm
■ Corollary 24.7 If we run Dijkstra’s algorithm on a

weighted, directed graph G=(V,E) with nonnegative
weight function w and source s, then at termination,
the predecessor subgraph Gπ is a shortest-paths tree
rooted at s.

■ Proof Immediate from Theorem 24.6 and the
predecessor-subgraph property.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

34

Dijkstra’s algorithm, analysis
■ Store v.d in vth entry of an array
❑ Insert and Decrease-Key in O(1), Extract-Min in O(V) time,

results in O(V2 + E)=O(V2) time

■ Use a binary min-heap
❑ O((V + E) lg V)=O(E lg V) [assuming all vertices reachable]
❑ Better than array implementation if E=o(V2 / lg V).

■ Use a Fibonacci heap
❑ O(V lg V + E)

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

35

Dijkstra’s algorithm
■ Resembles
❑ BFS in that set S corresponds to set of black vertices in a

BFS; just as vertices in S have their final shortest-path
weights, so do black vertices in a breadth-first search have
their correct breadth-first distances,

❑ Prim’s algorithm in that both algorithms use a min-priority
queue to find the “lightest” vertex outside a given set, add this
vertex into the set, and adjust weights of remaining vertices
outside the set accordingly.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

36

Basics, the triangle inequality
■ Lemma 24.10 (Triangle inequality) Let G=(V,E) be a

weighted, directed graph with weight function w:E→R,
and source vertex s. Then, for all edges (u,v) ϵ E, we
have δ(s,v)≤δ(s,u)+w(u,v).

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

37

Basics, upper-bound property
■ Lemma 24.11 (Upper-bound property) Let G=(V,E) be a

weighted, directed graph with weight function w:E→R. Let
s ϵ V be the source vertex, and let the graph be initialized
by Initialize-Single-Source(G,s). Then, v.d ≥ δ(s,v) for all v ϵ
V, and this invariant is maintained over any sequence of
relaxation steps on the edges of G. Moreover, once v.d
achieves its lower bound δ(s,v), it never changes.

■ Proof Prove the invariant v.d ≥ δ(s,v) for all vertices v ϵ V by induction
on the number of relaxation steps

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

38

Basics, no-path property
■ Corollary 24.12 (No-path property) Suppose that in a

weighted, directed graph G=(V,E) with weight function w
w:E→R, no path connects a source vertex s ϵ V to a given
vertex v ϵ V . Then, after the graph is initialized by
Initialize-Single-Source(G,s), we have v.d=δ(s,v)=∞, and this
equality is maintained as an invariant over any sequence
of relaxation steps on the edges of G.

■ Proof By the upper-bound property, we always have ∞=δ
(s,v)≤v.d, and thus v.d=∞=δ(s,v).

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

39

Basics
■ Lemma 24.13 Let G=(V,E) be a weighted, directed graph

with weight function w:E→R, and let (u,v) ϵ E. Then,
immediately after relaxing edge (u,v) by executing
Relax(u,v,w), we have v.d ≤ u.d+w(u,v).

■ Proof If, just prior to relaxing edge (u,v), we have
v.d>u.d+w(u,v), then v.d=u.d+w(u,v) afterward. If, instead,
v.d≤u.d+w(u,v) just before the relaxation, then neither u.d
nor v.d changes, and so v.d≤u.d+w(u,v) afterward.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

40

Basics, convergence property
■ Lemma 24.14 (Convergence property) Let G=(V,E) be a

weighted, directed graph with weight function w:E→R, let s
ϵ V be a source vertex, and let s→u→v be a shortest path
in G for some vertices u,v ϵ V . Suppose that G is
initialized by Initialize-Single-Source(G,s), and then a
sequence of relaxation steps that includes the call
RELAX(u,v,w) is executed on the edges of G. If u.d=δ(s,u)
at any time prior to the call, then v.d=δ(s,v) at all times
after the call.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

41

Basics, convergence property
■ Proof By the upper-bound property, if u.d=δ(s,u) at some

point prior to relaxing edge (u,v), then this equality holds
thereafter. In particular, after relaxing edge (u,v), we have
❑ v.d ≤ u.d + w(u,v) (by Lemma 24.13)
❑ = δ(s,u) + w(u,v)
❑ = δ(s,v) (by Lemma 24.1) .

By the upper-bound property, v.d ≥ δ(s,v), from which we
conclude that v.d = δ(s,v), and this equality is maintained
thereafter.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

42

Basics, path relaxation property
■ Lemma 24.15 (Path-relaxation property) Let G=(V,E) be a

weighted, directed graph with weight function w:E→R, and let s
ϵ V be a source vertex. Consider any shortest path
p=<v0,v1,…,vk> from s=v0 to vk. If G is initialized by
Initialize-Single-Source(G,s) and then a sequence of relaxation
steps occurs that includes, in order, relaxing the edges
(v0,v1),(v1,v2),…,(vk-1,vk), then vk.d=δ(s,vk) after these
relaxations and at all times afterward. This property holds no
matter what other edge relaxations occur, including relaxations
that are intermixed with relaxations of the edges of p.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

43

Basics, path relaxation property
■ Proof by induction that after the ith edge of path p is relaxed,

we have vi.d=δ(s,vi). For the basis, i=0, and we have from the
initialization that v0.d=s.d=0=δ(s,s). By the upper-bound
property, the value of s.d never changes after initialization.
For the inductive step, we assume that

vi-1.d=δ(s,vi-1), and we examine what happens when we relax
edge (vi-1,vi). By the convergence property, after relaxing this
edge, we have vi.d=δ(s,vi), and this equality is maintained at
all times thereafter.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

44

Basics, pred-subgraph property
■ Lemma 24.17 (Predecessor-subgraph property) Let

G=(V,E) be a weighted, directed graph with weight function
w:E→R, let s ϵ V be a source vertex, and assume that G
contains no negative-weight cycles that are reachable from s.
Let us call INITIALIZE-SINGLE-SOURCE(G,s) and then
execute any sequence of relaxation steps on edges of G that
produces v.d=δ(v,s) for all v ϵ V. Then, the predecessor
subgraph Gπ is a shortest-paths tree rooted at s.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

