
Algorithms II, CS 502

All-Pairs Shortest Paths

Ugur Dogrusoz
Computer Eng Dept, Bilkent Univ

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ 1

2

All-pairs shortest paths
■ Given a weighted, directed graph G=(V,E) with a weight

function w:E→R that maps edges to real-valued weights.
We wish to find, for every pair of vertices u,v ϵ V, a
shortest (least-weight) path from u to v, where the weight
of a path is the sum of the weights of its constituent
edges.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

3

All-pairs shortest paths (SP)
■ Running single-source SPs for each vertex as

the source
❑ No negative weights: Use Dijkstra’s algorithm with

Fibonacci heap, resulting in O(V2 lg V + V E) run time.
❑ Negative weights: Use Bellman-Ford, resulting in O(V2 E)

(=O(V4) for dense graphs).

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

4

All-pairs shortest paths (SP)
■ Unlike single-source SP algorithms, we use

adjacency matrix representation for all-pairs SPs.
Why?
❑ Assume vertices are numbered 1,2,…,|V|, so that the

input is an nxn matrix W=(wij) representing the edge
weights of an n-vertex directed graph G=(V,E).

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

5

All-pairs shortest paths (SP)
❑ A predecessor matrix π=(πij) maintains actual paths

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

6

Shortest paths & matrix multiplication
■ A dynamic programming (DP) solution to

all-pairs SPs problem is similar to matrix
multiplication
❑ Each major loop of the dynamic program will invoke an

operation that is very similar to matrix multiplication
❑ The algorithm will look like repeated matrix multiplication

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

7

Shortest paths
■ Steps for developing a DP solution:
❑ Characterize the structure of an optimal solution.
❑ Recursively define the value of an optimal solution.
❑ Compute the value of an optimal solution in a bottom-up

fashion.
❑ Construct an optimal solution from computed information

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

8

Shortest paths
❑ Characterize the structure of an optimal solution

■ Already proved all subpaths of a shortest path are shortest paths

❑ Recursively define the value of an optimal solution
■ lij

(m): the minimum weight of any path from vertex i to vertex j that
contains at most m edges

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

9

Shortest paths
❑ Compute the value of an optimal solution in a bottom-up

fashion

❑ Θ(n3) due to three nested loops

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

10

Shortest paths & matrix multiplication
■ Very similar to computing the product C=AxB for nxn

matrices A and B.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

11

Shortest paths
■ Compute the shortest-path weights by extending

shortest paths edge by edge in Θ(n4) time

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

12

Shortest paths, improving running time
■ Θ(n3 lg n) obtained by repeated squaring

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

13

Shortest paths, improving running time

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

14

Floyd-Warshall algorithm
■ Different DP formulation to solve all-pairs SPs

on a directed graph G=(V,E)
❑ Negative edges OK but no negative cycles

■ The structure of a shortest path
❑ For any pair of vertices i, j ϵ V, consider all paths from i

to j whose intermediate vertices are all drawn from
{1,2,…,k}, and let p be a minimum-weight (simple) path
from among them.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

15

Floyd-Warshall algorithm
■ Recursive solution
❑ dij

(k): weight of a shortest path from vertex i to vertex j for
which all intermediate vertices are in the set {1,2,…,k}

❑ Final answer
❑ where

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

16

Floyd-Warshall algorithm
■ Computing SP weights bottom up

❑ Θ(n3) due to three nested loops

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

17

Floyd-Warshall algorithm
■ Constructing a shortest path
❑ Compute predecessor matrix π while the algorithm computes

the matrices D(k).

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

18

Floyd-Warshall algorithm

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

19

Floyd-Warshall algorithm

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

20

Floyd-Warshall algorithm

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

21

Transitive closure
■ Given a directed graph G=(V,E) with vertex set

V={1,2,…,n}, we might wish to determine
whether G contains a path from i to j for all
vertex pairs (i,j) ϵ V. We define the transitive
closure of G as the graph G*=(V,E*), where
❑ E*={(i,j) : there is a path from vertex i to j in G}

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

22

Transitive closure
■ Assign a weight of 1 to each edge and run

Floyd-Warshall algorithm
❑ There is a path from vertex i to j, then dij<n (otherwise dij=∞)

■ Runs in Θ(n3) time

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

23

Transitive closure
■ Similar way (save time & space in practice)
❑ Substitute OR for min and AND for + in Floyd-Warshall

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

24

Transitive closure

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

25

Transitive closure

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

26

Johnson’s algorithm for sparse graphs
■ Uses both Dijkstra’s algorithm and the

Bellman-Ford algorithm as sub-routines
■ Eliminates negative weights (assuming no negative

cycles) by reweighting
■ Runs Dijkstra’s algorithm once from each vertex

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

27

Johnson’s algorithm for sparse graphs
■ Assuming a Fibonacci heap min-priority queue

implementation, running time is O(V2 lg V + V E)
■ Asymptotically faster than either repeated squaring

of matrices or the Floyd-Warshall algorithm for
sparse graphs

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

28

Johnson’s algorithm for sparse graphs
■ New set of edge weights w’ must satisfy:
❑ For all pairs of vertices u,v ϵ V, a path p is a shortest path from u

to v using weight function w if and only if p is also a shortest path
from u to using weight function w’.

❑ For all edges (u,v), the new weight w’(u,v) is nonnegative.

■ We can preprocess G to determine the new weight
function w’ in O(V E) time.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

29

Johnson’s algorithm for sparse graphs
■ Lemma 25.1 (Reweighting does not change shortest paths) Given a

weighted, directed graph G=(V,E) with weight function w:E→R, let
h:V→R be any function mapping vertices to real numbers. For each
edge (u,v) ϵ E, define w’(u,v)=w(u,v)+h(u)-h(v).

■ Proof: Let p=<v0,v1,…,vk> be any path from vertex v0 to vertex vk. Then
p is a shortest path from 0 to k with weight function w if and only if it is a
shortest path with weight function w’. That is, w(p)=δ(v0,vk) if and only if
w’(p)=δ’(v0,vk).
Furthermore, G has a negative-weight cycle using weight function w if

and only if G has a negative-weight cycle using weight function w’.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

30

Johnson’s algorithm for sparse graphs

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

31

Johnson’s algorithm for sparse graphs

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ

