Algorithms II, CS 502
 All-Pairs Shortest Paths

Ugur Dogrusoz
Computer Eng Dept, Bilkent Univ

All-pairs shortest paths

- Given a weighted, directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with a weight function $w: E \rightarrow R$ that maps edges to real-valued weights. We wish to find, for every pair of vertices $u, v \in V$, a shortest (least-weight) path from u to v, where the weight of a path is the sum of the weights of its constituent edges.

All-pairs shortest paths (SP)

- Running single-source SPs for each vertex as the source
\square No negative weights: Use Dijkstra's algorithm with Fibonacci heap, resulting in $\mathrm{O}\left(\mathrm{V}^{2} \lg \mathrm{~V}+\mathrm{V} \mathrm{E}\right)$ run time.
\square Negative weights: Use Bellman-Ford, resulting in $\mathrm{O}\left(\mathrm{V}^{2} \mathrm{E}\right)$ (=O $\left(\mathrm{V}^{4}\right)$ for dense graphs).

All-pairs shortest paths (SP)

- Unlike single-source SP algorithms, we use adjacency matrix representation for all-pairs SPs. Why?
\square Assume vertices are numbered $1,2, \ldots,|\mathrm{~V}|$, so that the input is an $n \times n$ matrix $W=\left(w_{i j}\right)$ representing the edge weights of an n-vertex directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

$$
w_{i j}=\left\{\begin{array}{cl}
0 & \text { if } i=j \\
\text { weight of directed edge }(i, j) & \text { if } i \neq j \text { and }(i, j) \in E \\
\infty & \text { if } i \neq j \text { and }(i, j) \notin E
\end{array}\right.
$$

All-pairs shortest paths (SP)

\square A predecessor matrix $\Pi=\left(\pi_{\mathrm{ij}}\right)$ maintains actual paths

```
Print-All-Pairs-Shortest-Path ( }\Pi,i,j
1 if }i==
2 print i
elseif }\mp@subsup{\pi}{ij}{}==\mathrm{ NIL
print "no path from" i "to" j "exists"
5 \text { else Print-All-Pairs-Shortest-Path( } \Pi , i , \pi _ { i j } )
6 print j
```


Shortest paths \& matrix multiplication

- A dynamic programming (DP) solution to all-pairs SPs problem is similar to matrix multiplication
Each major loop of the dynamic program will invoke an operation that is very similar to matrix multiplication
\square The algorithm will look like repeated matrix multiplication

Shortest paths

- Steps for developing a DP solution:
\square Characterize the structure of an optimal solution.
- Recursively define the value of an optimal solution.
- Compute the value of an optimal solution in a bottom-up fashion.
- Construct an optimal solution from computed information

Shortest paths

- Characterize the structure of an optimal solution
- Already proved all subpaths of a shortest path are shortest paths
\square Recursively define the value of an optimal solution
- $l_{i j}^{(m)}$: the minimum weight of any path from vertex i to vertex j that contains at most m edges

$$
l_{i j}^{(0)}=\left\{\begin{array}{llll}
0 & \text { if } i=j, & l_{i j}^{(m)} & =\min \left(l_{i j}^{(m-1)}, \min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}\right) \\
\infty & \text { if } i \neq j . & & \min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}
\end{array}\right.
$$

Shortest paths

- Compute the value of an optimal solution in a bottom-up fashion

```
Extend-Shortest-Paths (L,W)
n= L.rows
2 let }\mp@subsup{L}{}{\prime}=(\mp@subsup{l}{ij}{\prime})\mathrm{ be a new }n\timesn\mathrm{ matrix
3 for }i=1\mathrm{ to n
4 for }j=1\mathrm{ to }
5 l lij}=
6 for }k=1\mathrm{ to }
7 l l}\mp@subsup{l}{ij}{\prime}=\operatorname{min}(\mp@subsup{l}{ij}{\prime},\mp@subsup{l}{ik}{}+\mp@subsup{w}{kj}{}
return L'
```

- $\Theta\left(n^{3}\right)$ due to three nested loops

Shortest paths \& matrix multiplication

- Very similar to computing the product $C=A x B$ for $n x n$ matrices A and B.

$$
l_{i j}^{(m)}=\min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}
$$

$$
\begin{aligned}
l^{(m-1)} & \rightarrow a, \\
w & \rightarrow b, \\
l^{(m)} & \rightarrow c, \\
\min & \rightarrow+,
\end{aligned} \quad c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
$$

Shortest paths

- Compute the shortest-path weights by extending shortest paths edge by edge in $\Theta\left(n^{4}\right)$ time

$$
\begin{aligned}
L^{(1)} & =L^{(0)} \cdot W \\
L^{(2)} & =L^{(1)} \cdot W=W \\
L^{(3)} & =L^{(2)} \cdot W=W^{2}, \\
\vdots & \\
L^{(n-1)} & =L^{(n-2)} \cdot W
\end{aligned}=W^{n-1}, ~ \$
$$

```
Slow-All-Pairs-Shortest-PathS ( W)
n=W.rows
L(1)}=
for }m=2\mathrm{ to }n-
    let }\mp@subsup{L}{}{(m)}\mathrm{ be a new }n\timesn\mathrm{ matrix
    L (m) = Extend-Shortest-PathS ( }\mp@subsup{L}{}{(m-1)},W
return }\mp@subsup{L}{}{(n-1)
```


Shortest paths, improving running time

 - $\Theta\left(\mathrm{n}^{3} \lg \mathrm{n}\right)$ obtained by repeated squaring$$
\begin{array}{rlll}
L^{(1)} & =W & \\
L^{(2)} & =W^{2} & =W \cdot W, \\
L^{(4)} & = & W^{4} & =W^{2} \cdot W^{2} \\
L^{(8)} & = & W^{8} & =W^{4} \cdot W^{4}, \\
& & \vdots \\
L^{\left(2^{\lceil\lg (n-1)\rceil}\right)} & =W^{2 \lg (n-1)\rceil} & =W^{2^{\lceil\lg (n-1)\rceil-1}} \cdot W^{2^{\lceil\lg (n-1)\rceil-1}}
\end{array}
$$

```
FAStER-AlL-PAIRS-SHORTEST-PATHS ( \(W\) )
\(1 \quad n=W . r o w s\)
\(2 L^{(1)}=W\)
\(3 m=1\)
4 while \(m<n-1\)
\(5 \quad\) let \(L^{(2 m)}\) be a new \(n \times n\) matrix
\(6 \quad L^{(2 m)}=\) EXTEND-SHORTEST-PATHS \(\left(L^{(m)}, L^{(m)}\right)\)
\(7 \quad m=2 m\)
8 return \(L^{(m)}\)
```


Shortest paths, improving running time

$$
\begin{array}{ll}
L^{(1)} & =\left(\begin{array}{rrrrr}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad L^{(2)}=\left(\begin{array}{rrrrrr}
0 & 3 & 8 & 2 & -4 \\
3 & 0 & -4 & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & \infty & 1 & 6 & 0
\end{array}\right) \\
L^{(3)}=\left(\begin{array}{rrrrr}
0 & 3 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \quad L^{(4)}=\left(\begin{array}{rrrrr}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right)
\end{array}
$$

Floyd-Warshall algorithm

- Different DP formulation to solve all-pairs SPs on a directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
\square Negative edges OK but no negative cycles
- The structure of a shortest path
\square For any pair of vertices $i, j \in V$, consider all paths from i to j whose intermediate vertices are all drawn from $\{1,2, \ldots, k\}$, and let p be a minimum-weight (simple) path from among them.

Floyd-Warshall algorithm

- Recursive solution
$\square d_{i j}^{(k)}$: weight of a shortest path from vertex i to vertex j for which all intermediate vertices are in the set $\{1,2, \ldots, k\}$

$$
d_{i j}^{(k)}= \begin{cases}w_{i j} & \text { if } k=0, \\ \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right) & \text { if } k \geq 1\end{cases}
$$

- Final answer $\quad D^{(n)}=\left(d_{i j}^{(i)}\right)$
\square where $d_{i j}^{(i)}=\delta(i, j)$ for all $i, j \in V$

Floyd-Warshall algorithm

- Computing SP weights bottom up

```
Floyd-Warshall ( \(W\) )
\(n=W\).rows
\(D^{(0)}=W\)
for \(k=1\) to \(n\)
    let \(D^{(k)}=\left(d_{i j}^{(k)}\right)\) be a new \(n \times n\) matrix
    for \(i=1\) to \(n\)
            for \(j=1\) to \(n\)
                \(d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)\)
return \(D^{(n)}\)
```

- $\Theta\left(n^{3}\right)$ due to three nested loops

Floyd-Warshall algorithm

- Constructing a shortest path
\square Compute predecessor matrix π while the algorithm computes the matrices $D^{(k)}$.

$$
\pi_{i j}^{(0)}= \begin{cases}\text { NIL } & \text { if } i=j \text { or } w_{i j}=\infty, \\ i & \text { if } i \neq j \text { and } w_{i j}<\infty .\end{cases}
$$

$$
\pi_{i j}^{(k)}= \begin{cases}\pi_{i j}^{(k-1)} & \text { if } d_{i j}^{(k-1)} \leq d_{k}^{(k-1)}+d_{k}^{(k-1)}, \\ \pi_{k j}^{(k-1)} & \text { if } d_{i j}^{(k-1)}>d_{i k}^{(k-1)}+d_{k j}^{(k-1)} .\end{cases}
$$

Floyd-Warshall algorithm

Floyd-Warshall algorithm

$$
\begin{array}{ll}
D^{(0)} & =\left(\begin{array}{rrrrr}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(0)}=\left(\begin{array}{cccccc}
\mathrm{NIL} & 1 & 1 & \mathrm{NIL} & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 2 & 2 \\
\mathrm{NIL} & 3 & \mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} \\
4 & \mathrm{NIL} & 4 & \mathrm{NIL} & \mathrm{NIL} \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 5 & \mathrm{NIL}
\end{array}\right) \\
D^{(1)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(1)}=\left(\begin{array}{ccccc}
\mathrm{NIL} & 1 & 1 & \mathrm{NIL} & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 2 & 2 \\
\mathrm{NIL} & 3 & \mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} \\
4 & 1 & 4 & \mathrm{NIL} & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 5 & \mathrm{NIL}
\end{array}\right) \\
D^{(2)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(2)}=\left(\begin{array}{ccccc}
\mathrm{NIL} & 1 & 1 & 2 & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 2 & 2 \\
\mathrm{NIL} & 3 & \mathrm{NIL} & 2 & 2 \\
4 & 1 & 4 & \mathrm{NIL} & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 5 & \mathrm{NIL}
\end{array}\right)
\end{array}
$$

Floyd-Warshall algorithm

$$
\begin{aligned}
& D^{(3)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \\
& D^{(4)}=\left(\begin{array}{rrrrr}
0 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \quad \Pi^{(3)}=\left(\begin{array}{ccccc}
\mathrm{NIL} & 1 & 1 & 2 & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 2 & 2 \\
\mathrm{NIL} & 3 & \mathrm{NIL} & 2 & 2 \\
4 & 3 & 4 & \mathrm{NIL} & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 5 & \mathrm{NIL}
\end{array}\right) \\
& D^{(5)}=\left(\begin{array}{rrrrr}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \quad \Pi^{(5)}=\left(\begin{array}{ccccc}
\mathrm{NIL} & 1 & 4 & 2 & 1 \\
4 & \mathrm{NIL} & 4 & 2 & 1 \\
4 & 3 & \mathrm{NIL} & 2 & 1 \\
4 & 3 & 4 & \mathrm{NIL} & 1 \\
4 & 3 & 4 & 5 & \mathrm{NIL}
\end{array}\right) \\
&
\end{aligned}
$$

Transitive closure

- Given a directed graph $G=(V, E)$ with vertex set $V=\{1,2, \ldots, n\}$, we might wish to determine whether G contains a path from i to j for all vertex pairs $(i, j) \in V$. We define the transitive closure of G as the graph $\mathrm{G}^{*}=\left(\mathrm{V}, \mathrm{E}^{*}\right)$, where
$\square E^{*}=\{(i, j)$: there is a path from vertex i to j in $G\}$

Transitive closure

- Assign a weight of 1 to each edge and run Floyd-Warshall algorithm
\square There is a path from vertex i to j, then $d_{i j}<n$ (otherwise $d_{i j}=\infty$)
- Runs in $\Theta\left(n^{3}\right)$ time

Transitive closure

- Similar way (save time \& space in practice)
- Substitute OR for min and AND for + in Floyd-Warshall

$$
\begin{aligned}
& t_{i j}^{(0)}= \begin{cases}0 & \text { if } i \neq j \text { and }(i, j) \notin E, \\
1 & \text { if } i=j \text { or }(i, j) \in E,\end{cases} \\
& \text { and for } k \geq 1, \\
& t_{i j}^{(k)}=t_{i j}^{(k-1)} \vee\left(t_{i k}^{(k-1)} \wedge t_{k j}^{(k-1)}\right) .
\end{aligned}
$$

Transitive closure

```
Transitive-Closure \((G)\)
\(n=|G \cdot V|\)
let \(T^{(0)}=\left(t_{i j}^{(0)}\right)\) be a new \(n \times n\) matrix
for \(i=1\) to \(n\)
    for \(j=1\) to \(n\)
        if \(i==j\) or \((i, j) \in G . E\)
            \(t_{i j}^{(0)}=1\)
        else \(t_{i j}^{(0)}=0\)
    for \(k=1\) to \(n\)
    let \(T^{(k)}=\left(t_{i j}^{(k)}\right)\) be a new \(n \times n\) matrix
    for \(i=1\) to \(n\)
        for \(j=1\) to \(n\)
        \(t_{i j}^{(k)}=t_{i j}^{(k-1)} \vee\left(t_{i k}^{(k-1)} \wedge t_{k j}^{(k-1)}\right)\)
    return \(T^{(n)}\)
```


Transitive closure

$$
\begin{aligned}
& T^{(0)}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{array}\right) \quad T^{(1)}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{array}\right) \quad T^{(2)}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right) \\
& T^{(3)}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right) \quad T^{(4)}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Johnson's algorithm for sparse graphs

- Uses both Dijkstra's algorithm and the Bellman-Ford algorithm as sub-routines
- Eliminates negative weights (assuming no negative cycles) by reweighting
- Runs Dijkstra's algorithm once from each vertex

Johnson's algorithm for sparse graphs

- Assuming a Fibonacci heap min-priority queue implementation, running time is $\mathrm{O}\left(\mathrm{V}^{2} \lg \mathrm{~V}+\mathrm{V} \mathrm{E}\right)$
- Asymptotically faster than either repeated squaring of matrices or the Floyd-Warshall algorithm for sparse graphs

Johnson's algorithm for sparse graphs

- New set of edge weights w' must satisfy:
- For all pairs of vertices $u, v \in V$, a path p is a shortest path from u to v using weight function w if and only if p is also a shortest path from u to using weight function w'.
- For all edges (u, v), the new weight $w^{\prime}(u, v)$ is nonnegative.
- We can preprocess G to determine the new weight function w' in $\mathrm{O}(\mathrm{V} E)$ time.

Johnson's algorithm for sparse graphs

- Lemma 25.1 (Reweighting does not change shortest paths) Given a weighted, directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with weight function $\mathrm{w}: \mathrm{E} \rightarrow \mathrm{R}$, let $h: V \rightarrow R$ be any function mapping vertices to real numbers. For each edge $(u, v) \in E$, define $w^{\prime}(u, v)=w(u, v)+h(u)-h(v)$.
- Proof: Let $\mathrm{p}=<\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}>$ be any path from vertex v_{0} to vertex v_{k}. Then p is a shortest path from 0 to k with weight function w if and only if it is a shortest path with weight function w'. That is, $w(p)=\delta\left(v_{0}, v_{k}\right)$ if and only if $w^{\prime}(p)=\delta^{\prime}\left(v_{0}, v_{k}\right)$.
Furthermore, G has a negative-weight cycle using weight function wif and only if G has a negative-weight cycle using weight function w^{\prime}.

Johnson's algorithm for sparse graphs

Johnson's algorithm for sparse graphs

