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All-pairs shortest paths
■ Given a weighted, directed graph G=(V,E) with a weight 

function w:E→R that maps edges to real-valued weights. 
We wish to find, for every pair of vertices u,v ϵ V, a 
shortest (least-weight) path from u to v, where the weight 
of a path is the sum of the weights of its constituent 
edges.
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All-pairs shortest paths (SP)
■ Running single-source SPs for each vertex as 

the source
❑ No negative weights: Use Dijkstra’s algorithm with 

Fibonacci heap, resulting in O(V2 lg V + V E) run time.
❑ Negative weights: Use Bellman-Ford, resulting in O(V2 E) 

(=O(V4) for dense graphs).
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All-pairs shortest paths (SP)
■ Unlike single-source SP algorithms, we use 

adjacency matrix representation for all-pairs SPs. 
Why?
❑ Assume vertices are numbered 1,2,…,|V|, so that the 

input is an nxn matrix W=(wij) representing the edge 
weights of an n-vertex directed graph G=(V,E).

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



5

All-pairs shortest paths (SP)
❑ A predecessor matrix π=(πij) maintains actual paths
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Shortest paths & matrix multiplication
■ A dynamic programming (DP) solution to 

all-pairs SPs problem is similar to matrix 
multiplication
❑ Each major loop of the dynamic program will invoke an 

operation that is very similar to matrix multiplication
❑ The algorithm will look like repeated matrix multiplication
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Shortest paths
■ Steps for developing a DP solution:
❑ Characterize the structure of an optimal solution.
❑ Recursively define the value of an optimal solution.
❑ Compute the value of an optimal solution in a bottom-up 

fashion.
❑ Construct an optimal solution from computed information
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Shortest paths
❑ Characterize the structure of an optimal solution

■ Already proved all subpaths of a shortest path are shortest paths

❑ Recursively define the value of an optimal solution
■ lij

(m): the minimum weight of any path from vertex i to vertex j that 
contains at most m edges
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Shortest paths
❑ Compute the value of an optimal solution in a bottom-up 

fashion

❑ Θ(n3) due to three nested loops
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Shortest paths & matrix multiplication
■ Very similar to computing the product C=AxB for nxn 

matrices A and B.

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



11

Shortest paths
■ Compute the shortest-path weights by extending 

shortest paths edge by edge in Θ(n4) time

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



12

Shortest paths, improving running time
■ Θ(n3 lg n) obtained by repeated squaring
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Shortest paths, improving running time
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Floyd-Warshall algorithm
■ Different DP formulation to solve all-pairs SPs 

on a directed graph G=(V,E)
❑ Negative edges OK but no negative cycles

■ The structure of a shortest path
❑ For any pair of vertices i, j ϵ V, consider all paths from i 

to j whose intermediate vertices are all drawn from 
{1,2,…,k}, and let p be a minimum-weight (simple) path 
from among them.
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Floyd-Warshall algorithm
■ Recursive solution
❑ dij

(k): weight of a shortest path from vertex i to vertex j for 
which all intermediate vertices are in the set {1,2,…,k}

❑ Final answer
❑ where

Ugur Dogrusoz CS 502, Algorithms II, Bilkent Univ



16

Floyd-Warshall algorithm
■ Computing SP weights bottom up

❑ Θ(n3) due to three nested loops
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Floyd-Warshall algorithm
■ Constructing a shortest path
❑ Compute predecessor matrix π while the algorithm computes 

the matrices D(k).
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Floyd-Warshall algorithm
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Floyd-Warshall algorithm
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Floyd-Warshall algorithm
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Transitive closure
■ Given a directed graph G=(V,E) with vertex set 

V={1,2,…,n}, we might wish to determine 
whether G contains a path from i to j for all 
vertex pairs (i,j) ϵ V. We define the transitive 
closure of G as the graph G*=(V,E*), where 
❑ E*={(i,j) : there is a path from vertex i to j in G}
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Transitive closure
■ Assign a weight of 1 to each edge and run 

Floyd-Warshall algorithm
❑ There is a path from vertex i to j, then dij<n (otherwise dij=∞)

■ Runs in Θ(n3) time
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Transitive closure
■ Similar way (save time & space in practice)
❑ Substitute OR for min and AND for + in Floyd-Warshall
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Transitive closure
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Transitive closure
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Johnson’s algorithm for sparse graphs
■ Uses both Dijkstra’s algorithm and the 

Bellman-Ford algorithm as sub-routines
■ Eliminates negative weights (assuming no negative 

cycles) by reweighting
■ Runs Dijkstra’s algorithm once from each vertex
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Johnson’s algorithm for sparse graphs
■ Assuming a Fibonacci heap min-priority queue 

implementation, running time is O(V2 lg V + V E)
■ Asymptotically faster than either repeated squaring 

of matrices or the Floyd-Warshall algorithm for 
sparse graphs
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Johnson’s algorithm for sparse graphs
■ New set of edge weights w’ must satisfy:
❑ For all pairs of vertices u,v ϵ V, a path p is a shortest path from u 

to v using weight function w if and only if p is also a shortest path 
from u to  using weight function w’.

❑ For all edges (u,v), the new weight w’(u,v) is nonnegative.

■ We can preprocess G to determine the new weight 
function w’ in O(V E) time.
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Johnson’s algorithm for sparse graphs
■ Lemma 25.1 (Reweighting does not change shortest paths) Given a 

weighted, directed graph G=(V,E) with weight function w:E→R, let 
h:V→R be any function mapping vertices to real numbers. For each 
edge (u,v) ϵ E, define w’(u,v)=w(u,v)+h(u)-h(v).

■ Proof: Let p=<v0,v1,…,vk> be any path from vertex v0 to vertex vk. Then 
p is a shortest path from 0 to k with weight function w if and only if it is a 
shortest path with weight function w’. That is, w(p)=δ(v0,vk) if and only if 
w’(p)=δ’(v0,vk).
Furthermore, G has a negative-weight cycle using weight function w if 

and only if G has a negative-weight cycle using weight function w’.
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Johnson’s algorithm for sparse graphs
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Johnson’s algorithm for sparse graphs
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