CS 570 Graph Theory

Final Exam: Sample Solutions

Lecturer: Uğur Doğrusöz

CS Dept., Bilkent University

This is an in-class examination. You may use your notes and textbook. Clearly show your work, being as formal as possible.

Question 1: [20pts] Show that a graph G is connected iff, for any decomposition $V = V_1 \cup V_2$ (and $V_1 \cap V_2 = \emptyset$) of the vertex set of G, there exists an edge e = vw such that $v \in V_1$ and $w \in V_2$.

 \Rightarrow : Trivial.

 \Leftarrow : Choose some vertex s in a component V_1 of G. Suppose $V_2 = V \setminus V_1$ is non-empty. Then, there would exist an edge vw with $v \in V_1$ and $w \in V_2$. But then w would be contained in the same component as s, creating a contradiction. Therefore, G must be connected.

Question 2: [25pts] Let $\delta(G) > 0$, and assume G has no induced subgraphs with exactly two edges. Prove that G is complete.

Assume that G is not complete, and let $uv \notin E(G)$. We have easily that $|G| \ge 4$, and thus there are edges uu_1 , $vv_1 \in E(G)$, since $\delta(G) > 0$. By the assumption, $u_1 \neq v_1$, and uv_1 , $vu_1 \notin E(G)$, and so also $u_1v_1 \notin E(G)$. But now $\{u, u_1, v, v_1\}$ induces a subgraph with exactly two edges. This contradition shows that G is complete.

Question 3: [25pts] Show that every cubic 3-edge-connected graph is 3-connected.

By Theorem 3.3.5 of the textbook, every 3-edge-connected graph contains 3 edge-disjoint paths between any pair of vertices. This implies 3 independent paths between arbitrary pair of vertices for cubic graphs (a vertex of degree less than 4 cannot be shared by two edge-disjoint paths). By the same theorem, when every pair of vertices are joined by 3 independent paths the graph is 3-connected.

Question 4: [25pts] A graph G is critically k-chromatic if $\chi(G) = k$ and $\chi(G-x) = k-1$ for every $x \in V(G)$. Show that if G is a critically k-chromatic graph, then

(a) $\delta(G) \ge k - 1$,

Suppose $\delta(G) < k - 1$. Let v be a vertex of degree $\delta(G)$. Since G is critically k-chromatic, G-v is (k-1)-colorable. Color the vertices of G-v with k-1 colors, and let $V_1, V_2, \ldots, V_{k-1}$ be the corresponding color classes. Since $d_G(v) = \delta(G) < k - 1$, there must exist a color class V_i with the property that v is non-adjacent with every vertex in V_i . Thus, v can be assigned color i, producing a k-1 coloring of G, and the desired contradiction.

(b) G has no cut-vertices.

Suppose G has a cut-vertex v. G - v will have w components G_1, \dots, G_w with $w \ge 2$. Let $G'_i := G[V(G_i) \cup v]$. Each G'_i is k - 1 colorable since G is critically k-chromatic and $|G'_i| < |G|$. By permuting colors of G'_2, \dots, G'_w , we can obtain a coloring of all G'_i , in which v is assigned the same color, resulting in a k - 1 coloring of G, which contradicts the fact that G is critically k-chromatic graph.

Name: *[5pts]* Ugur Dogrusoz