CS 570 Graph Theory

Homework 2: Sample Solutions

Lecturer: Uğur Doğrusöz

CS Dept., Bilkent University

Remember that you are to use no sources other than <u>the textbook</u>, <u>lecture notes</u> provided by the instructor or taken by yourselves during the lectures, and <u>the instructor</u> when solving homework and exam questions unless stated otherwise.

Question 1: Let G be a 2-connected graph but not a triangle, and let e be an edge of G. Show that either G - e or G/e is again 2-connected.

Let e = xy be an arbitrary edge of a 2-connected graph G which is not a triangle. If G - e is 2-connected, we have no problem. Otherwise, x and y must be connected by only one path P_{xy} in G - e, hence by exactly two paths, P_{xy} and the trivial $\{xy\}$ path in G. Now we need to show that G/e is 2-connected when G - e is not 2-connected. Now take any two vertices u and v in G/e. If $v_{xy} = u \neq v$ (or $v_{xy} = v \neq u$), then since G is 2-connected, there must be at least two

paths, say P_1 and P_2 , between x and v in G, which remain intact and independent in G/e, forming two independent paths between u and v.

If $v_{xy} \neq u, v$, then there are three cases for the two independent paths P_1 and P_2 of G in regards to xy:

- (i) xy is edge and vertex-disjoint with both P_1 and P_2 . In this case, these paths remain intact and independent in G/e.
- (ii) xy is edge-disjoint but not vertex-disjoint. We have two subcases here:
 - (a) Exactly one of x and y is on P_1 or P_2 . Again, these two paths remain intact and independent in G/e.
 - (b) Both x and y are on P_1 and P_2 , respectively. This is not possible since then there would be more than two paths between x and y in G.
- (iii) xy is on (exactly) one of P_1 or P_2 . The two paths remain intact and independent in G/e.

Since there are at least two independent paths in between arbitrary vertices u and v in G/e, G/e must be 2-connected.

Question 2: Prove that any graph G with $\delta(G) \ge 1$ (i.e., without an isolated vertex) and with an Euler tour/circuit is connected.

Suppose G is disconnected with components G_1 through G_k , $k \ge 2$. Note that each such component will have at least one edge since G doesn't contain any isolated vertices. Let G_i , $1 \le i \le k$, be the component where an Euler tour starts. Since an Euler tour must visit all the edges in G and G has at least one component G_j , $j \ne i$, with at least one edge, the edges in G_j will never be reached by this tour; this creates a contradiction to the definition of an Euler tour. Thus G must be connected.

Question 3: Let G be 3-regular graph. Show that G has an even cycle.

Consider a maximal path $P = u_0 u_1 \dots u_l$. By maximality, all three neighbours of u_0 are on this path. Say, $u_0u_i, u_0u_j \in E(G)$ for 1 < i < j. If the cycles $u_0 \dots u_i \dots u_0$ and $u_0 \dots u_j \dots u_0$ have odd length, then the cycle $u_0 u_i \dots u_j u_0$ is even, since the paths $u_0 \dots u_i$ and $u_0 \dots u_j$ have even lengths (and hence so does $u_i \dots u_j$).

Question 4: A graph G is called *self-complementary*, if it is isomorphic with its complement.

- (a) Show that if G is self-complementary, then $|G| \equiv 0$ or $1 \mod 4$.
- (b) Show that the paths P^0 and P^3 are the only self-complementary paths.
- (c) Determine the values of k for which C^k is self-complementary.
- (a) Let n = |G|. When G and \overline{G} are superimposed, we obtain K^n ; that is, $E(K^n) = E(G) \cup E(\overline{G})$. Therefore $||G|| + ||\overline{G}|| = n(n-1)/2$. Suppose that G and \overline{G} are isomorphic. Then $||G|| = ||\overline{G}||$ and so $n(n-1) = 4 \cdot ||G|| \equiv 0 \mod 4$. It follows that $n \equiv 0$ or $1 \mod 4$.
- (b) P^3 is the only self-complementary path other than the trivial path P^0 , since P_1 , P_2 are not, and for $n \ge 4$, P^n has a leaf v, and hence $d_{\overline{G}}(v) = n 1 \ge 3$.
- (c) C^5 is self-complementary. It is the only one, since C^3 and C^4 are not self-complementary, and for $n \ge 6$, $d_{\overline{C^n}}(v) > 2$, but $d_{C^n}(v) = 2$ for all v.

Question 5: Find an infinite counterexample to the statement of the marriage theorem.

Let G = (V, E) be an infinite graph with bipartitions A and B where $A = \{a_0, a_1, a_2, \ldots\}$ and $B = \{b_0, b_1, b_2, \ldots\}$. Also suppose $E = \{a_i b_j \mid i = 0 \text{ or } i = j + 1, j \ge 0\}$. This bipartite graph satisfies the marriage condition as the number of neighbors of any vertex set A' in Awill be at least |A'|. However, it does not contain a matching of A as either a_0 will remain unmatched or the only neighbor in A of the vertex matched to a_0 will remain unmatched.