CS 570 Graph Theory

Homework 3: Sample Solutions

Lecturer: Uğur Doğrusöz

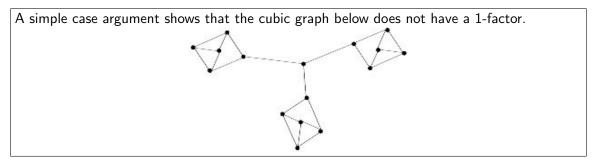
CS Dept., Bilkent University

Remember that you are to use no sources other than <u>the textbook</u>, <u>lecture notes</u> provided by the instructor or taken by yourselves during the lectures, and <u>the instructor</u> when solving homework and exam questions unless stated otherwise.

Question 1: Let G be a connected graph that has no induced subgraphs P^3 nor C^4 . Show that G has a vertex of degree |G| - 1.

Suppose $\Delta(G) < |G| - 1$. Let v be a vertex of degree $\Delta(G)$. Then there exists a vertex $w \notin N_G(v)$, but $wu \in E(G)$ for some $u \in N_G(v)$ (since G is connected). Let $x \in N_G(v)$ be such that $x \neq u$ and $x \notin N_G(u)$. Such a vertex exists, because, otherwise, $d_G(u) > d_G(v)$. The subgraph induced by $\{v, u, w, x\}$ has a path $w \to u \to v \to x$ such that $wv, ux \notin E(G)$. Hence, to avoid a P^3 , we have to have $wx \in E(G)$. But then the subgraph is an induced C^4 . This contradiction proves the claim.

Question 2: Find a cubic graph of order no more than 16 without a 1-factor.



Question 3: Show that any graph G of order 2n with $\delta(G) \ge n$ has a perfect matching.

Let M be a maximum matching of G = (V, E), and suppose that M is not perferct. Hence there are at least two unmatched vertices, say x and y. By maximality, $xy \notin E$. If there exists an edge $uv \in M$ such that $xu, yv \in E$, then $(M \setminus \{uv\}) \cup \{xu, yv\}$ is a larger matching than M; a contradiction. Therefore, for all $uv \in M$, at most two of the pairs xu, xv, yu, yv are in E. Hence the number of edges from the vertices of M to $\{x, y\}$ is less than $2n \leq d_G(x) + d_G(y)$.

Consequently, there exists an edge $xz \in E$ or $yz \in E$ with z unmatched in M. This contradicts our assumption.

The result may also be proven using Theorem 2.2.1 (show that $q(G-S) \leq |S|$ for all $S \subseteq V(G)$) or Theorem 2.2.3 (show that $|S| = |\mathcal{C}_{G-S}|$ for a vertex set S satisfying the two properties stated in the theorem).

Question 4: Show that any acyclic graph on n vertices has at most n - 1 edges using induction on n.

- Base: For n = 1, we have a graph with a single isolated vertex, which has 0 edges.
- Inductive Hypothesis: Assume that any acyclic graph G with $n \le k$ vertices, contains at most n-1 edges.
- Inductive Step: We need to prove that any acyclic graph G with n = k + 1 vertices contains at most k edges. Let G' = G e, where e is an arbitrary edge of G. Since G is acyclic, e must be a bridge, and G' will be disconnected with components G'_1 and G'_2 . Since each component G'_i , i = 1, 2, contains at most k vertices, by the Inductive Hypothesis, $||G'_i|| \le k_i 1$. Then, $||G|| 1 = ||G'|| = ||G'_1|| + ||G'_2|| \le k + 1 2$. Thus, $||G|| \le k$.

Question 5: Let G be a 3-connected graph, and let xy be an edge of G. Show that G/xy is 3-connected iff $G - \{x, y\}$ is 2-connected.

- ⇒: Given a 3-connected graph G with $xy \in E(G)$ and G/xy is 3-connected, assume $G \{x, y\}$ is not 2-connected. Then a vertex z in $G \{x, y\}$ separates it. This implies that the set $\{v_{xy}, z\}$ separates G/xy, which is a contradiction. \Box
- \Leftarrow : Given a 3-connected graph G with $xy \in E(G)$ and $G \{x, y\}$ as 2-connected, assume G/xy is not 3-connected. Then at least one vertex pair $\{u, v\}$ separates G/xy. Either u or v must be v_{xy} since otherwise $\{x, y\}$ would separate G, which is not possible (G is 3-connected). Suppose $v = v_{x,y}$. Then u separates $G \{x, y\}$, which is a contradiction.