Question 1: Let \(t_1, t_2, t_3 \) be vertices of a tree \(T \). Prove that there is a unique vertex \(t \) of \(T \) such that for every \(i, j = 1, 2, 3 \) with \(i \neq j \) the vertex \(t \) lies on the unique path between \(t_i \) and \(t_j \) in \(T \).

Use \(P_{12} \) to denote the path from \(t_1 \) to \(t_2 \). Then let \(P_{12} \cap P_{13} = P_a \), \(P_{12} \cap P_{23} = P_b \). If \(a \neq b \), then \(a \to t_3 \to b \to a \) must be a closed trail, which contains a cycle, contradicting with the fact that \(T \) is a tree. So \(a = b = t \).

Question 2: Show that a \(k \)-connected graph with at least \(2k \) vertices contains a matching of size \(k \). Is this best possible? Hint: Use Theorem 2.2.3 of the textbook.

Let \(G \) be a \(k \)-connected graph with at least \(2k \) vertices. \(G \) contains a vertex set \(S \) satisfying the two properties given in Theorem 2.2.3; thus, \(S \) is matchable to \(G - S \). Then we have the following possible cases:

- \(|S| = 1 \): Then \(G - S \) will be connected. Suppose the single vertex \(v \in S \) is matched to \(w \) of \(G - S \) (using Theorem 2.2.3). Also since \(G - S \) is factor critical by Theorem 2.2.3, \(G - S - w \) contains a 1-factor of size at least \(\frac{2k-2}{2} = k - 1 \) ((\(G - S - w \) \geq 2k - 2)), combined with edge \(vw \), we have a matching of size at least \(k \) in \(G \).

- \(2 \leq |S| \leq k - 1 \): This case is not possible since separation of less than \(k \) vertices will leave \(G - S \) connected, making it impossible to satisfy one of the properties of Theorem 2.2.3: \(S \) is matchable to \(G - S \).

- \(|S| \geq k \): This gives us a matching of size of at least \(k \) by Theorem 2.2.3.

This is the most we can guarantee but there sure are some graphs with a larger matching.

Question 3: Prove that any two edges of a 2-connected graph lie on a common cycle.

Let \(e_1 = x_1y_1 \) and \(e_2 = x_2y_2 \) be two arbitrary edges of a 2-connected graph \(G \). By Menger’s theorem (Theorem 3.3.1 of the textbook with \(A = \{x_1, y_1\} \) and \(B = \{x_2, y_2\} \)), we have 2 independent \(A - B \) paths, which, together with edges \(e_1 \) and \(e_2 \), form a cycle.

Question 4: Assume that both \(G \) and \(\overline{G} \) are connected. Show that \(G \) contains an induced
We use induction on $|G| = n$. For $|G| \leq 4$, the claim holds. Let then $|G| > 4$, and let $v \in G$ be a chosen vertex.

There are vertices u, u' such that $vu', uu' \in E(G)$, but $vu \notin E(G)$. Indeed, since \overline{G} is connected, there is u_0 such that $vu_0 \notin E(G)$. Let $u_0 u_1 \ldots u_k v$ be a shortest path from u_0 to v in G. Then $u = u_{k-1}$ and $u' = u_k$ will do.

If $G - v$ is disconnected, then G contains an induced P^3. For, otherwise, let x be in a different component of $G - v$ than u and u', and let $x \ldots w v$ be a shortest path in G from x to v. Then u, u', v, w form an induced P^3.

Similarly, when we replace G by \overline{G} in the above, we have that $\overline{G} - v = \overline{G} - v$ is connected, or \overline{G} (and thus G) has an induced P^3.

On the other hand, if both $G - v$ and $\overline{G} - v$ are connected, then the induction hypothesis gives that $G - v$ and thus G has an induced $P^3.$