CS224 -- Spring 2012
 Guide to intermediate-level Pseudocode
Pseudocode for intermediate level (i.e designed to go between HLL and assembly languages) is similar to the kind of pseudocode used at other levels in some aspects, but different in others.

General characteristics of all pseudocode:

· it shows the algorithm clearly

· it does not have any natural-language sentences or phrases

· it is independent from any particular programming language (i.e. its syntax is language-neutral)

· its syntax is not totally free, but it is more flexible and open than programming language syntax

· the actions of a single line of pseudocode must be executable in constant time k {i.e it must be O(1)}

· it is code, so it must be understandable, and self-documenting with headers and comments and meaningful identifiers (labels and variable names)

· it makes good use of spacing and alignment (rather than punctuation such as {, }, ; etc) to show statement termination and nested relations among statements

In addition to the above, there are additional characteristics of intermediate-level pseudocode:

· not much HLL syntax

· no built-in loop structures (i.e. do, while, until, for, etc)

· no switch/case structure

· call to subroutine and return from subroutines are explicit

· push (to stack) and pop (from stack) are used, rather than explicit use of stack pointer

· variables are located, either in registers or in memory. All variables must explicitly be in one or the other.

· variables in registers are differentiated from variables in memory.

· it naturally leads to easy implementation in assembly language (translation is nearly direct)

Based on the above, the following is a syntax guide for pseudocode used in CS224 Assembly Language Programming Projects.

Syntax Guide to Intermediate-Level Pseudocode
Assignment: use the = operator, to mean assignment from right-side to left-side.

Logical comparison: use the !=, ==, <, <=, > and >= operators.

Calls and Returns: use the "call" keyword followed by the label of the routine called, followed by the list of input arguments, to enter a called subroutine. Use the "return" keyword followed by the list of output values, to return to the caller. Parameters are explicitly passed by name of register containing them (e.g. “call Add (aReg, bReg)” or “return (totalReg)”)

Push and Pop: use of the “push” keyword followed parenthesis enclosing the register variable being pushed, and use of the “pop” keyword followed parenthesis enclosing the register variable being pushed, are allowed and the proper way to use stack. Parameters are explicitly passed to/from stack by name of register containing them (e.g. “push (totalReg)” or “pop (totalReg)”)

Direct Jumps: use the "goto" keyword followed by the label of the line jumped to, in order to change control when no call or return is needed.

Incrementing: use of the "++" operator is allowed

Decrementing: use of the "--" operator is allowed

Alignment: all statements of equal nesting depth should be aligned at the same left-indentation level

If/If Else: alignment of the "else" keyword should be slightly indented from the "if" keyword, the conditional relation should be in parentheses next to the "if" keyword, and included statements should be indented a matching amount in both if and else parts.

Variables: All variables must explicitly show in their reference name where they are located. For example, “n” is not allowed, but nReg and [nReg] are, for n held in register or a value it refers to in memory, respectively (see below).

Register Variables: use meaningful names for variables kept in register (e.g. total), with Reg as a suffix to the name (therefore, the name would be totalReg). Examples: currentReg, headReg, tempReg, maxReg, countReg, outputReg, etc Do not use machine-specific register names such $a0, $t1, etc.

Memory Variables: use the [] brackets to indicate that the value is in memory, with the name of the register holding the address of the memory variable (or the address of the start of the data structure of which the memory variable is one element) given inside the brackets. For example, [addressReg] means the memory value is referenced which is found at the memory address held in the addressReg. For arrays, 0[arraypointerReg] refers to the 1st element in the array, and 25[arraypointerReg] refers to the 26th element in the array (no matter what the size of an element is), where the base address of the array is held in arraypointerReg. Sometimes it is convenient to access an array using base plus indexing addressing. In this case indexReg[baseaddrReg] would refer to the memory value at the address which is the sum of the values in the base register + the index register. Thus, A[4] in high-level language becomes 4[A_Reg] at intermediate level, and B[n] would be represented as nReg[B_Reg], for example.

If the variable in memory is one part of one member of a data structure, in which the members are composed of several parts and the parts of that member occupy successive memory locations, then the particular part of the member of the structure which is referenced can be indicated by a prefix. Thus, data[addressReg] refers to the "data" part of the member of the structure found in memory, beginning at the address held in addressReg. The above means that references to memory variables such as 4($a0), MEM[a0 + 4], MEM[currrentReg + 4], currentReg.data, and currentReg-->data are not acceptable syntax for memory references.

Line comments: all line comments should be aligned, at a place about 50-60% of the way across the page, in the right-hand side of the page. There should be lots of line commenting to explain the program. DO NOT assume that the reader of your program understands it just from the pseudocode alone.

Headers: all pseudocode routines should be preceded by an explanatory header, which is in a “#ed box” above the pseudocode routine. The header should explain what the routine does and how it does it, explains the algorithm, and which names and describes the data structures and scalar variables used (such as names for input, output, temporary, memory pointers, stack, return, etc). There should be a list of all scalar variables and next to it, a list of any MIPS registers specified in the problem statement that they correspond to. Similarly for all data structures. See example below for these lists.

other parts of the header go here: explanations,algorithm used, etc. Be sure to explain well what your code will do, and how it will do it

List of scalar variables Equivalent MIPS register in specification
array_addrReg $a0
array_indexReg
countReg
outputReg $v0

List of data structures Equivalent name in specification
[array_addrReg] Input –array A

Examples of Conversion from HLL to intermediate-level Pseudocode

For loop conversion
C code: A = 1

 for (i=0; i < 100; i += 1) {

 A = A * i

 }

Pseudocode: A_Reg = 1 A_Reg = 1

(top tested) i_Reg = 0 i_Reg = 0

 Top: if i_Reg < 100 Top: if i_Reg >= 100

 A_Reg = A_Reg * i_Reg goto Next

 i_Reg ++ else

 goto Top A_Reg = A_Reg * i_Reg

 Next: . . . i_Reg ++

 goto Top

 Next: . . .

(bottom tested) A_Reg = 1

 i_Reg = 0

 goto Bottom

 Top: A_Reg = A_Reg * i_Reg

 i_Reg ++

 Bottom: if i_Reg < 100

 goto Top

 Next: . . .

While loop conversion
C code: x = delete_position

while (A[x] != 0) {

 A[x] = A[x+1]

 x + = 1

 }

Pseudocode: xReg = del_posReg xReg = del_posReg

(top tested) Top: if (xReg[AReg] != 0) Top: if (xReg[AReg] = 0)

 xReg [AReg] = (xReg+1)[AReg] goto Next

 xReg ++ else

 goto Top xReg[AReg] = (xReg+1)[AReg]

 Next: . . . xReg ++

 goto Top

 Next: . . .

(bottom tested) xReg = del_posReg

 goto Bottom

 Top: xReg[AReg] = (xReg+1)[AReg]

 xReg ++

 Bootom: if (xReg[AReg] != 0)

 goto Top

 Next: . . .

Function calls (higher level approach—code is closer to HLL, leaving more to interpret later into assembly)
C code: int top_level (int x, int y)

// 2 input arguments, both scalar
 {

 int A:

// local variable A
 scale (x, y);

// call scale with x and y as the input arguments
 modify (x, y);

// call modify with x and y as the input arguments
 A = x + y;

// create a new value in A, the sum of x and y
 return (A);

// return to caller, with A as the return value

 }

Pseudocode:

 call scale(xReg, yReg)

// call scale with xReg and yReg as the input arguments
 call modify (xReg, yReg)

// call modify with xReg and yReg as the input arguments
 A_Reg = xReg + yReg

// create new value in A_Reg, the sum of xReg and yReg
 return (A_Reg)

// return to caller, with A_Reg as the return value

Function calls (lower level approach— code is further from HLL and closer to assembly, leaving less to interpret later into assembly)
C code:

int calculate (int a, int b, int c); // 3 input arguments, all scalar
 {

 a = add2 (b, c);

// a call to add2, using b and c. Return value overwrites a
 a = a + 1

// increment the new a value
 return (a); // return to caller, with a as the return value
 }

Pseudocode:

 push (returnAddrReg) // to protect returnAddrReg, we stack it

 call add2 (bReg, cReg) // returnValueReg will contain add2 (b, c) at return from

 // this call

 aReg = returnValueReg

 aReg = aReg++

 returnValueReg = aReg // now returnValueReg contains the final value, to be

 // returned

 pop (returnAddrReg) // pop the original value back into returnAddrReg

 return (returnValueReg)

