CS224 – Spring 2012

Project #1: Assembly Language Programming

6 Utilities for Data Structure A or B

Project Assignment & Description

In this project, you and your group will write the code for 6 utility programs, to operate on one of the data structures (either max-heap implemented as an array, or binary search tree implemented with triple-linked elements), using MIPS assembly language.  Each of the utilities is to be callable sub-routine which upon return, delivers the required value(s) from the string of data structure, or makes the required changes or performs the required actions to the data structure.  After implementation, you will use the MARS simulator to test and debug your code.

Data Structure A:  The binary search tree structure will be implemented as a collection of triple-linked nodes, each containing the data value followed by pointers to 3 other nodes: one each to parent, left-child and right-child nodes. Each of the 4 parts in the node are implemented as 32-bit MIPS integers.  The structure of a node is as follows:

	Byte Address:
	Contents

	X:
	data value

	X + 4:
	ptr to l_child

	X + 8:
	ptr to r_child

	X + 12:
	ptr to parent


Whenever there is no left-child or right-child or parent, the corresponding pointer is NIL.  Obviously, the root node has no parent, the only such node. Operations that can be performed on a binary search tree include build, check, insert, delete, sort-to-array(named “in-order tree walk”), find, replace, etc

Fundamental Property:  For a binary search tree, the values are always stored in such as way as to satisfy the binary-search-tree property, which says that if x and y are nodes, and y is a node in the left subtree of x, then value[y] ≤ value[x]. If y is in the right subtree of x, then value[x] ≤ value[y].  

Data Structure B: The max-heap data structure (which has the logical structure of a nearly complete binary tree) will be implemented as an array A of 32-bit MIPS integers. The first element in the array A[0] is the size of the heap, i.e. the number of elements in the heap (i.e the integer “size”) is in A[0]. The rest of the elements in A (A[1] to A[size]) are the values in the nodes of the binary tree. Operations that can be performed on a heap include build, check, insert, delete, sort-in-place (appropriately named “heapsort”), find, replace, etc

Fundamental Property: For a max-heap, all the nodes satisfy the max-heap property, which says that for every node i other than the root, A[parent(i)] ≥ A[i], that is, the value of a node is at most the value of its parent. 

Your Task and Assumptions

Your group will implement six MIPS programs, as callable subroutines, for the following operations, for one of the above data structures (A or B, but not both). Your data structure will be assigned to you after the project teams are formed.

You may assume that only valid arguments are passed to your subroutines (including valid pointers to the data structures).  This means that the calling program or routine is responsible to see that the data structures (1) have zero or more elements, (2) are properly structured and meet the defining property (either max-heap property, or binary-search-tree property), (3) are exactly as big as the size item says they are, and (4) contains only the kind of data that they should.  Also, you may assume that the arguments given are valid, so this means that the calling program is responsible to see that the pointer given in $a0 to the data structure (1) is a valid address {i.e. is correctly aligned, and is not pointing to an illegal area of memory}, and (2) points to the location which contains the data structure’s first element.  Other arguments are also valid, so for example the integer parameter given (which should be 0 or 1) will have one of the valid integer values {it won't be 99, or -21.47}, etc.  In order for these assumptions to be true in practice, the responsibility for keeping these guarantees rests with the calling program, and the utility routines are not expected to detect, prevent, or fix such errors. 

Utilities for Binary Search Trees (A) and Heaps (B)

Build: Write a procedure build which creates a valid data structure (A or B) from a list of integers.  The values of the integers in the list are in no particular order, but they are located in successive memory locations, from first to last.  Your procedure should expect to receive the address of the first integer in the unordered list in register $a0, and the address of the place where it should create the data structure in $a1. [You may assume that there is enough free memory available starting at the address in $a1 to accommodate the data structure.] For purposes of the "build" procedure, you may assume that the given list of integers is terminated by a special end-of-list value, which indicates that the list is finished. The special value is -MAXINT (the negative integer with the largest possible absolute value), and it is not one of the integers in the list. Instead, it serves to terminate the list, in that same way that strings of ASCII characters are terminated by a special ASCII character (the NULL character)

Check: Write a procedure check which analyzes a given data structure and verifies that the data structure is correct and obeys its fundamental property. Your procedure should expect to receive the address of the first item of the data structure in register $a0, and it should give the result of the test in register $v0 (0 = fails the test, 1 = passes the test).  Upon return, the original data structure (A or B) should be unmodified, in its original location.

Sort2list: Write a procedure sort2list which creates a sorted integer list, in order from smallest to largest, of the values in the data structure.  Your procedure should expect to receive the address of the first item of the data structure in register $a0, and the address of the place where it should create the sorted list in $a1. The sorted list of integers produced by  sort2list should be terminated by the special end-of-list value: -MAXINT.  [You may assume that there is enough free memory available starting at the address in $a1 to accommodate the sorted list.]  Upon return, the original data structure (A or B) should be unmodified, in its original location.

Insert: Write a procedure insert which creates and puts a new element into the data structure, at an appropriate place, so that the fundamental property is maintained.  Your procedure should expect to receive the address of the first item of the data structure in register $a0, and the value of the new items to be added in $a1. It should give the address of the location where the item was inserted in register $v0. [Address is defined differently for each data structure: for max-heap, $v0 will contain the memory address of the new element; for binary search tree, $v0 will contain the position number in the heap array A (i.e the integer n, when A[n] is the location where the new value was inserted)]. For the binary search tree, insert will require new space in memory for the new tree node, which can be obtained with the MIPS system call sbrk.  For the heap, you can assume that the array size is bigger than the heap, and there is enough space to insert a new value into the heap without running out of space in the array.

Min_max: Write a procedure min_max which finds the minimum (or maximum) value in the data structure.   Your procedure should expect to receive the address of the first item of the data structure in register $a0, and the value of the choice parameter in $a1. When the choice parameter is 0, your procedure should find the node with the minimum value. When the choice parameter is 1, your procedure should find the node with the maximum value. The value of the node which is found to be minimum (o maximum) should be returned in register $v0. The address of the location of the minimum (or maximum) element/node should be returned in register $v1. Note: address is defined in the same way as it is for insert.  Upon return, the original data structure (A or B) should be unmodified, in its original location.

Find: Write a procedure find which looks for and tries to find a particular value in the data structure. Your procedure should expect to receive the address of the first item of the data structure in register $a0, and the integer value being searched for in register $a1. Upon return, the register $v0 contains the value for search result (0 = not found, 1 = found).  If the sought-for value is found (i.e $v0 = 1), then $v1 will contain its address, using the same definition as used for insert and min_max.  Upon return, the original data structure (A or B) should be unmodified, in its original location.

Further information

Groups should do the 6 utility programs for either A or B, not for both. Groups whose Bilkent student ID numbers total to an odd number should use the A data structure, and those whose ID numbers total to an even number, should use the B data structure. As an example:
ID #:  12345678

ID #:  23456789

Total: 35802467 which is an odd number, so this group should use A

The theoretical performance of the 6 tasks is given in the table below. In the design of the algorithms and in the code implementations, groups should aim to achieve these performances:

	Utility
	B.S.T. (A)
	Heap (B)

	build
	O(n log n)
	O(n)

	check
	O(n)
	O(n)

	sort2list
	O(n log n)
	O(n log n)

	insert
	O(log n)
	O(log n)

	min_max
	O(log n)
	O(1), O(n)

	find
	O(log n)
	O(n)


More information on the two data structures (heap and binary search tree) as well the 6 operations listed above, can be found in textbooks on algorithms and data structures. A good one to start with is Introduction to Algorithms, 2nd edition, by Cormen, Leiserson, Rivest, and Stein. Also, there is a wealth of information available about heaps and binary search trees, and various algorithms (esp. about sorting) on Wikipedia and other web sites. Just Google to see!

