Lecture 15

Graph Searching:
Depth-First Search and Topological Sort
DFS: Parenthesis Theorem

Thm: In any DFS of $G=(V,E)$, let $\text{int}[v] = [d[v], f[v]]$ then exactly one of the following holds for any u and $v \in V$

- $\text{int}[u]$ and $\text{int}[v]$ are entirely disjoint
- $\text{int}[v]$ is entirely contained in $\text{int}[u]$ and v is a descendant of u in a DFT
- $\text{int}[u]$ is entirely contained in $\text{int}[v]$ and u is a descendant of v in a DFT
Parenthesis Thm
(proof for the case $d[u] < d[v]$)

Subcase $d[v] < f[u]$ ($\text{int}[u]$ and $\text{int}[v]$ are overlapping)
- v was discovered while u was still GRAY
- This implies that v is a descendant of u
- So search returns back to u and finishes u after finishing v
- i.e., $d[v] < f[u] \Rightarrow \text{int}[v]$ is entirely contained in $\text{int}[u]$

Subcase $d[v] > f[u] \Rightarrow \text{int}[v]$ and $\text{int}[u]$ are entirely disjoint

Proof for the case $d[v] < d[u]$ is similar (dual)

QED
Nesting of Descendents’ Intervals

Corollary 1 (Nesting of Descendents’ Intervals): v is a descendant of u if and only if
\[d[u] < d[v] < f[v] < f[u] \]

Proof: immediate from the Parenthesis Thrm

QED
Parenthesis Theorem
Edge Classification in a DFF

Tree Edge: discover a new *(WHITE)* vertex
▷ GRAY to WHITE ◁

Back Edge: from a descendent to an ancestor in DFT
▷ GRAY to GRAY ◁

Forward Edge: from ancestor to descendent in DFT
▷ GRAY to BLACK ◁

Cross Edge: remaining edges (btwn trees and subtrees)
▷ GRAY to BLACK ◁

Note: ancestor/descendent is wrt *Tree Edges*
Edge Classification in a DFF

• How to decide which GRAY to BLACK edges are forward, which are cross

Let BLACK vertex $v \in \text{Adj}[u]$ is encountered while processing GRAY vertex u

– (u, v) is a forward edge if $d[u] < d[v]$

– (u, v) is a cross edge if $d[u] > d[v]$
Depth-First Search: Example

[Diagram showing a graph with nodes labeled 1, 2, 3, 4, x, y, z, w, v, u, t, s, and edges connecting them in various directions.]
Depth-First Search: Example

Diagram showing a graph with nodes labeled X, Y, Z, S, T, B, F, C, and arrows indicating the paths.
Depth-First Search: Example

The image shows a graph with nodes labeled from 1 to 14. The nodes are connected by directed edges labeled with letters (T, F, C, B). The graph starts at node 1 and ends at node 14.
Depth-First Search: Example
DFS on Undirected Graphs

- Ambiguity in edge classification, since \((u, v)\) and \((v, u)\) are the same edge
 - First classification is valid (whichever of \((u, v)\) or \((v, u)\) is explored first)

Lemma 1: any DFS on an undirected graph produces only Tree and Back edges
Lemma 1: Proof

Assume \((x, z)\) is a F (F?). But \((x, z)\) must be a B, since DFS must finish \(z\) before resuming \(x\).

Assume \((u, v)\) is a C (C?) btw subtrees. But \((y, u)\) & \((y, v)\) cannot be both T; one must be a B and \((u, v)\) must be a T. If \((u, v)\) is first explored while processing \(u/v\), \((y, v)\) / \((y, u)\) must be a B.
DFS on Undirected Graphs

Lemma 2: an undirected graph is acyclic (i.e. a forest) iff DFS yields no Back edges

Proof

(acyclic \Rightarrow no Back edges; by contradiction):

Let (u, v) be a B then $\text{color}[u] = \text{color}[v] = \text{GRAY}$

\Rightarrow there exists a path between u and v

So, (u, v) will complete a cycle (Back edge \Rightarrow cycle)

(no Back edges \Rightarrow acyclic):

If there are no Back edges then there are only T edges

by Lemma 1 \Rightarrow forest \Rightarrow acyclic

QED
DFS on Undirected Graphs

How to determine whether an undirected graph $G=(V,E)$ is acyclic

• Run a DFS on G: if a Back edge is found then there is a cycle

• Running time: $O(V)$, not $O(V + E)$
 – If ever seen $|V|$ distinct edges, must have seen a back edge ($|E| \leq |V| - 1$ in a forest)
DFS: White Path Theorem

WPT: In a DFS of G, v is a descendent of u iff at time $d[u]$, v can be reached from u along a **white** path.

Proof (\Rightarrow): assume v is a descendent of u

Let w be any vertex on the path from u to v in the DFT.

So, w is a descendent of u \Rightarrow $d[u] < d[w]$

(by Corollary 1 nesting of descendents’ intervals)

Hence, w is white at time $d[u]$.
DFS: White Path Theorem

Proof \((\Leftarrow)\) assume a white path \(p(u,v)\) at time \(d[u]\) but \(v\) does not become a descendent of \(u\) in the DFT (contradiction):

Assume every other vertex along \(p\) becomes a descendent of \(u\) in the DFT

\[p(u,v) \] at time \(d[u]\)
DFS: White Path Theorem

otherwise let \(v \) be the closest vertex to \(u \) along \(p \) that does not become a descendent

Let \(w \) be predecessor of \(v \) along \(p(u,v) \):

(1) \(d[u] < d[w] < f[w] < f[u] \) by Corollary 1

(2) Since, \(v \) was \text{WHITE} at time \(d[u] \) (\(u \) was \text{GRAY}) \(d[u] < d[v] \)

Since, \(w \) is a descendent of \(u \) but \(v \) is not

(3) \(d[w] < d[v] \Rightarrow d[v] < f[w] \)

So by Parenthesis Thm \(\text{int}[v] \) is within \(\text{int}[u] \), \(v \) is descendent of \(u \)

QED
Directed Acyclic Graphs (DAG)

No directed cycles

Example:
Directed Acyclic Graphs (DAG)

Theorem: a directed graph G is acyclic iff DFS on G yields no Back edges.

Proof (acyclic \Rightarrow no Back edges; by contradiction):

Let (v,u) be a Back edge visited during scanning $\text{Adj}[v]$

\Rightarrow color$[v] = \text{color}[u] = \text{GRAY}$ and $d[u] < d[v]$

\Rightarrow int$[v]$ is contained in int$[u] \Rightarrow v$ is descendent of u

$\Rightarrow \exists$ a path from u to v in a DFT and hence in G

\therefore edge (v,u) will create a cycle (Back edge \Rightarrow cycle)

path from u to v in a DFT and hence in G
acyclic iff no Back edges

Proof (no Back edges \Rightarrow acyclic):

Suppose G contains a cycle C (Show that a DFS on G yields a Back edge; proof by contradiction)

Let v be the first vertex discovered in C and let (u, v) be proceeding edge in C

At time $d[v]$: \exists a white path from v to u along C

By White Path Thrm u becomes a descendent of v in a DFT

Therefore (u, v) is a Back edge (descendent to ancestor)
Topological Sort of a DAG

- Linear ordering ‘<’ of V such that
 \[(u, v) \in E \Rightarrow u < v \text{ in ordering}\]
 - Ordering may not be unique
 - i.e., mapping the partial ordering to total ordering may yield more than one orderings
Topological Sort of a DAG

Example: Getting dressed

Diagram of a Directed Acyclic Graph (DAG) showing the order in which items need to be put on when getting dressed.
Topological Sort of a DAG

Algorithm

run DFS(G)
when a vertex finished, output it
vertices output in reverse topologically sorted order

Runs in $O(V+E)$ time
Correctness of the Algorithm

Claim: \((u,v) \in E \Rightarrow f[u] > f[v]\)

Proof: consider any edge \((u,v)\) explored by DFS

when \((u,v)\) is explored, \(u\) is GRAY

- if \(v\) is GRAY, \((u,v)\) is a Back edge (contradicting acyclic theorem)
- if \(v\) is WHITE, \(v\) becomes a descendent of \(u\) (by WPT)
 \[\Rightarrow f[v] < f[u] \]
- if \(v\) is BLACK, \(f[v] < d[u] \Rightarrow f[v] < f[u] \)

QED