
860 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 5, SEPTEMBER 2007

Real-Time Edge Follow: A Real-Time
Path Search Approach

Cagatay Undeger and Faruk Polat

Abstract—Real-time path search is the problem of searching a
path from a starting point to a goal point in real-time. In dynamic
and partially observable environments, agents need to observe the
environment to track changes, explore to learn unknowns, and
search suitable routes to reach the goal rapidly. These tasks fre-
quently require real-time search. In this paper, we address the
problem of real-time path search for grid-type environments; we
propose an effective heuristic method, namely a real-time edge
follow alternative reduction method (RTEF-ARM), which makes
use of perceptual information in a real-time search. We developed
several heuristics powered by the proposed method. Finally, we
generated various grids (random-, maze-, and U-type), and com-
pared our proposal with real-time A*, and its extended version
real-time A* with n-look-ahead depth; we obtained very signifi-
cant improvements in the solution quality.

Index Terms—Path planning, real-time heuristic search.

I. INTRODUCTION

PATH planning can be described as either finding a path (a
sequence of moves) from an initial state (starting point) to

a goal state (target point), or finding out that no such sequence
exists. Path planning algorithms are divided into two broad cat-
egories: off-line and on-line. Off-line path planning algorithms
find the whole solution in advance, before starting execution. In
other words, an agent plans a complete path and then follows
it until the goal state is reached or the plan becomes infeasible.
If the plan is infeasible, the agent needs to replan and con-
tinue execution. Dijkstra’s algorithm [7], [8], [23] and A* [18]
are typical off-line search algorithms, which are complete and
optimal. There are also off-line techniques based on genetic al-
gorithms [13], [17], [22] and random trees [1], [2], [15], [16].
In dynamic environments, the need for replanning emerges fre-
quently and off-line algorithms are not suitable. On-line search
algorithms require the planning and execution phases to be
coupled, such that the agent repeatedly plans and executes the
next move. Real-time path planning algorithms such as Real-
Time A* (RTA*), Learning Real-Time A* (LRTA*) [6], [14],
Moving Target Search (MTS) [4], and Bidirectional Real-Time
Search [5] are typical on-line algorithms that are not designed to
be optimal. Furthermore, there are some hybrid solutions such
as incremental heuristic search algorithms D* [20], Focused
D* [21], and D*Lite [9], [10], which are optimal and more ef-
ficient than off-line path planning algorithms. A comparison of
D*Lite and LRTA* can be found in [11].

Manuscript received April 12, 2005; revised October 21, 2005. This paper
was recommended by Associate Editor E. Trucco.

The authors are with the Department of Computer Engineering, Middle
East Technical University, 06531 Ankara, Turkey (e-mail: cundeger@ceng.
metu.edu.tr; polat@ceng.metu.edu.tr).

Digital Object Identifier 10.1109/TSMCC.2007.900663

In dynamic or partially observable environments, off-line
path planning algorithms suffer from execution/response time,
whereas on-line algorithms yield low quality solutions in terms
of path length. Incremental heuristic search algorithms try to
merge advantages of both approaches to obtain better execu-
tion/response time without sacrificing optimality. However, they
are still slow for some real-time applications. Furthermore, al-
most none of these algorithms can be applied to moving target
search problems. Only few are capable of handling moving tar-
gets, but their performance is, in general, not acceptable. Our
motivation is to develop an on-line path search algorithm that
offers lower total execution time and shorter paths, and is ap-
plicable to moving targets. To achieve this objective, we have
focused on the most critical problem of on-line path search in
complex girds, namely revisiting the same locations (states) too
many times, which causes unacceptably long paths.

We propose an effective heuristic method called the real-
time edge follow alternative reduction method (RTEF-ARM).
We have also developed several algorithms that we call RTEF
algorithms; they are based on RTEF-ARM for real-time path
planning in grid environments. Unlike many real-time search
algorithms, RTEF algorithms are able to make use of global
environmental information. The basic idea is to analyze the
perceptual information and known parts of the environment to
eliminate the closed directions that do not lead the target point;
this helps to determine which way to move. Environmental in-
formation is effectively used, resulting in much shorter paths
and lower execution times. We have compared the RTEF al-
gorithms with a well-known algorithm, namely RTA* and its
extended version (RTA* with n-look-ahead depth) introduced
by Richard Korf [14], and obtained significant improvements
over both.

The rest of this paper is organized as follows. Related work
on path planning is given in Section II. In Section III, RTEF and
RTEF-ARM are described in detail. The complexity analysis of
RTEF-ARM is given in Section IV, and its proof of correctness is
presented in Section V. The performance analysis of our method
is presented in Section VI. Section VII is the conclusion.

II. RELATED WORK

Off-line path planning algorithms are hard to use for large dy-
namic environments because of their time requirements. One so-
lution is the incremental heuristic search algorithms [12], which
are continual planning techniques that make use of information
from previous search results to find solutions to the problems,
potentially faster than those possible by solving the problems
from scratch. D* [20], focused D* [21], and D* Lite [9], [10]
are some of the well-known optimal incremental heuristic search

1094-6977/$25.00 © 2007 IEEE



UNDEGER AND POLAT: REAL-TIME EDGE FOLLOW: A REAL-TIME PATH SEARCH APPROACH 861

algorithms applied to path planning. In D*, an agent plans an
optimum path off-line, and then follows this path until a change
in the environment occurs that triggers replanning. Sometimes,
a small change in the environment may cause replanning of al-
most a complete path which surely takes a considerable time.
Therefore, these algorithms can be considered as efficient off-
line path planning algorithms because they do not plan the next
step regularly, but partially replan the whole path on every en-
vironmental change.

Because of the efficiency problems of off-line planning tech-
niques, a number of approaches that can work on-line without
having any precomputed solutions are proposed. LRTA* [14]
introduced by Korf is one of the real-time heuristic search algo-
rithms for fixed goals. It builds and updates a table containing
admissible heuristic estimates of goal distances of all the states.
The initial table values are set to zero and the agent is made to
explore the search space and learn exact goal distances through
a finite number of trials. It was proven that the algorithm is
complete and the table values converge to optimal values after
a fixed number of trials, which can be quite large. Although
LRTA* is capable of learning in real-time, the quality of solu-
tions for the first trial is generally poor. To control the amount of
effort required to achieve a short-term goal (to safely arrive at a
location in the current trial) and a long-term goal (to find better
solutions through repeated trials), Shimbo and Ishida introduced
two techniques known as weighted LRTA* and upper-bounded
LRTA* [19]. Korf also proposed another heuristic search algo-
rithm called RTA*, which gives better performance in the first
run but does not guarantee optimal solutions [14]. It repeats the
following steps until reaching a goal state:

Step 1) Let x be the current state of the problem solver. Cal-
culate f(x′) = h(x′) + k(x, x′) for each neighbor x′

of the current state, where h(x′) is the current heuris-
tic estimate of the distance from x′ to a goal state, and
k(x, x′) is the cost of the move from x to x′.

Step 2) Move to a neighbor with the minimum f(x′) value.
Ties are broken randomly.

Step 3) Update the value of h(x) to the second best f(x′)
value.

For real-time path search in regular grid environments,
LRTA* and RTA* are usually guided with Euclidian or Manhat-
tan distance heuristics, and they are effective. However, if the
grid is too large and there are many semi-closed regions with
large open areas inside, the agent may get stuck in these regions
for a long time due to the heuristic depression. A heuristic de-
pression [4] is a set of states, which do not contain the goal state
and have heuristic values less than or equal to those of a set of
immediately and completely surrounding states. It is actually
a local maximum, whose heuristic values have to be filled up
before the agent can escape. A heuristic depression is illustrated
on an example in Fig. 1.

The original RTA* uses 1-depth look-ahead heuristic func-
tion, which is too poor to estimate the real cost of neighboring
states. The algorithm can be improved by using heuristic func-
tion with n-look-ahead depth [14]. The structure of the algo-
rithm is the same as RTA* except for the computation of h(x′).
Instead of computing the h(x′) of a neighbor cell x′ only from

Fig. 1. Agent, directed by LRTA* and RTA*, will get stuck in the semiclosed
region shown in the figure for a long time searching the same region hopelessly
until the heuristic depression is filled.

the cell itself, (n − 1) level neighbors of x′ are used; thus, the
search space is expanded up to a predefined look-ahead depth
(n). When the look-ahead depth is set to 1, the effect is the same
as the original RTA*. Although tests show that this improvement
reduces the number of moves to reach the goal significantly, it
requires exponential time in the look-ahead depth. Therefore,
large look-ahead depths are not preferred in practice.

LRTA*, RTA*, and their variations are all limited to fixed
goal states. Ishida and Korf proposed an algorithm for moving
targets called MTS [4]. MTS maintains a table of size N2 that
consists of heuristic values h(x, y) for all x, y where h(x, y) is
the estimated distance between the problem solver location x
and the target position y. MTS suffers from poor performance in
case the target moves require the learning process to be started
from scratch. This is even worse when the agent gets into a
heuristic depression. To solve this problem, they introduced
two methods called commitment to goals and deliberation. An
interested reader can find more about these improvements in [4].

III. RTEF

In this section, we will describe a new real-time path search
algorithm called RTEF for grid environments. We defined the
environment as a rectangular planar grid. Each cell of the grid
may be empty or may contain an agent, a target, or an obstacle.
Although there is no restriction to have dynamic targets, we
assumed that the target is static and its location is always known
by the agent.

RTEF aims to find a path from an initial location to a fixed or
moving target in real-time. The basic idea is to eliminate closed
directions (the directions that cannot reach the target point) in
order to determine which way to go (open directions). For in-
stance, if the agent is able to realize that moving north and
east will not lead to the target, he/she will prefer moving south
or west. RTEF uses RTEF-ARM to find out open and closed
directions and, hence, to eliminate nonbeneficial movement al-
ternatives using perceptual information and uncovered tentative
map. Initially, the agent is at a starting point and the goal is to
reach a static or a dynamic target. The agent can move north,
south, east, or west. Before each move, the RTEF-ARM algo-
rithm is executed to detect the closed directions from the current
cell. Then RTEF-ARM sets the heuristic values of the closed
alternatives to infinity. The cost of moving to the next cell plus



862 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 5, SEPTEMBER 2007

the distance to the target is used as the heuristic function to se-
lect the move from the open alternatives. After performing the
move, the previous cell is marked as an obstacle in the original
RTEF [24]. This ensures that every cell is visited at most once
in fully known environments and loops are prevented.

Definition 1 (History): The set of previously marked/visited
cells is called the History of the agent. Cells in the history are
assumed to be obstacles. Sometimes, the history might need to
be cleared when it blocks the agent.

This definition assumes that the target is static. For moving
targets, a simple check should be added to the algorithm to
clear the history when the target touches any cell included in
the history. The RTEF-ARM is based on the idea that every
obstacle has a boundary, which is actually formed from a set
of connected edges shaping the obstacle. RTEF-ARM splits
the moving directions (north, south, east, and west) by a set
of rays sent away from the agent, and analyzes each region to
understand whether it is closed or open. Algorithm 1 sketches the
RTEF algorithm which uses history to prevent loops and clears
the whole history when necessary. In this paper, we separate
RTEF-ARM from RTEF and generalize it. In addition, several
new variations of the RTEF algorithm are proposed and tested.

Before going into details of the algorithm, it is better to clar-
ify the concept of an obstacle. An obstacle in the mind of an
agent is a set of neighboring grid cells that shape an object with
a boundary. Note that each such cell can be a real-world ob-
stacle cell or a history cell. A single cell might also form an
obstacle. Due to the limited sensor capability, the agent may
only perceive part of the real obstacle; in such a case, the known
part will be considered as an obstacle. Furthermore, sometimes
two or more real-world obstacles can be merged to give rise to
a single obstacle because of the history cells that neighbor the
real objects. These cases are illustrated in Fig. 2.

A. Edge-Following Alternative Reduction Method

RTEF-ARM finds out open directions that possibly reach
the target location. RTEF-ARM executes the following steps:
initialization, ray-sending, edge-following, and edge-analyzing
as given in Algorithm 2. The details of these steps are given in
the following sections.

Fig. 2. Obstacle samples.

Fig. 3. Sending grays to split north, south, east, and west directions.

1) Ray-Sending: In this phase of RTEF-ARM, four diagonal
rays splitting north, south, east, and west are propagated away
from the agent as shown in Fig. 3. The known environment
is split by the rays into four regions. The rays go away from
the agent until hitting an obstacle or maximum ray distance is
achieved. Types of ray-hitting are exemplified in Fig. 4. The
reason for choosing only four diagonal rays is due to the nature
of the grid world and movement alternatives. However, the idea
can easily be generalized to n rays in different environment rep-
resentations such as hexagonal grid worlds, polygonal worlds,
etc.

2) Edge-Following: Four rays split the area around the agent
into four regions. A region is said to be closed if the target is
inaccessible from any cell in that region. If all the regions are
closed, then the target is unreachable from the current location.
To detect closed regions, the boundaries of obstacles that the rays
hit are analyzed. If the edges on the boundary of an obstacle are



UNDEGER AND POLAT: REAL-TIME EDGE FOLLOW: A REAL-TIME PATH SEARCH APPROACH 863

Fig. 4. Ray propagation and hitting.

Fig. 5. Identifying the obstacle boundary.

Fig. 6. Island types: outward-facing (left), inward-facing (right).

Fig. 7. Two rays hitting the same obstacle at two different points form a
hit-point island.

followed in a fixed direction (to left or right) starting from a
hit-point, we always return to the same point as illustrated in
Fig. 5.

Definition 2 (Island): By following the edges to the left and
returning to the same starting point, a polygonal area is formed
as the boundary of the obstacle. We call this polygonal area
an island (stored as a list of vertices forming the boundary
of the obstacle). As shown in Fig. 6, there are two kinds of
islands: outward-facing and inward-facing islands. The target
is unreachable from current location if it is inside an outward-
facing island or outside an inward-facing island.

Definition 3 (Hit-point island): More than two rays can hit
the same obstacle. As illustrated in Fig. 7, an additional virtual
polygonal area called hit-point island is formed when we reach
the hit-point of another ray on the same obstacle while following
the edges.

A hit-point island borders one or more agent moving direc-
tions. If the target point is not inside the hit-point island, all the
directions that are bordered by the hit-point island are closed;
otherwise (the target is outside the hit-point island) all the di-

Fig. 8. Analyzing hit-point islands and eliminating moving directions.

Fig. 9. Finding next left edge: The figure on the left shows four possible
current edges. The figures on the right illustrate all possible next states for the
current edge.

Fig. 10. After following right edges of two neighbor cells shown in figure,
three vertex points are generated, but the middle one is unnecessary since
removal of it will not change the resulting shape.

rections not bordered by the hit-point island are closed; this is
illustrated in Fig. 8.

The current implementation of RTEF-ARM uses left direction
in edge following. Alternative cases in edge following in the grid
world are illustrated with some typical examples in Fig. 9.

Islands and hit-point islands are stored as vertex lists and
passed to the edge-analyzing phase described in the next section.
A vertex is identified unnecessary if its removal does not change
the shape of the island or hit-point-island polygons (Fig. 10
contains a simple example). Note that we eliminate unneces-
sary vertices during the edge-following phase to decrease the
workload of the edge-analyzing phase.

3) Edge-Analyzing: The edge-following and edge-
analyzing phases are highly coupled. The edge-analyzing
phase is performed after each edge-following phase in order
to find out closed directions in the light of newly discovered
edge information. The edge-analyzing phase for each ray
is performed as given in Algorithm 3. Note that function
isInside(x, y, p) returns true if coordinates (x, y) are inside
polygon p and function isClockwise(p) returns true if the
vertices of polygon p are ordered in clockwise direction (i.e., if
polygon p is outward-facing with respect to the agent).

4) Integration of RTEF-ARM to Real-Time Path Search:
RTEF-ARM is a general method for evaluating moving
directions; it can be integrated into various grid-type algo-
rithms. In our study, we applied RTEF-ARM to real-time path
search and developed RTEF algorithms. In general, RTEF uses
RTEF-ARM to find out open directions that possibly reach the
target location. Later on, one of the open directions is selected



864 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 5, SEPTEMBER 2007

for the next move. After performing the move, agent informa-
tion is updated in order to prevent infinite loops. We used sev-
eral techniques for selecting from open directions and updating
agent information. Table I describes several variations of RTEF
algorithms.

IV. COMPLEXITY OF RTEF-ARM

The most time-consuming phases of RTEF-ARM are the
edge-following and the edge-analyzing phases. In the edge-
following phase, the edges of at most four obstacles are followed
in just one pass. Each edge point is checked with the hit points
of three other rays in order to detect any other hit to the same
obstacle. This decreases the efficiency by a constant factor. The
point is then inserted into a list in constant time. Thus, the worst
case complexity of this phase is proportional to the number of
edges of the largest obstacle in the environment. In the edge-
analyzing phase, the edges on the islands and hit-point islands
are analyzed in several passes. Since the number of edges of
islands and hit-point islands can be at most one plus the number
of edges of the largest obstacle in the environment, the worst
case complexity of this phase is also proportional to the number
of edges of the largest obstacle in the environment. Thus, we
can formulate the RTEF-ARM complexity in a formal way if
we can describe the number of edges of the largest obstacle in
the environment. Having the assumption that the environment
is a rectangle grid world, the largest obstacle could have at most
(w − 1) × (h − 1) edges (exemplified in Fig. 11), where w and
h are the width and height of the rectangle, respectively. There-
fore, the worst case complexity of RTEF for each move becomes
O(w × h).

The worst case setting is rarely possible in practice. We set up
a test platform on an AMD 2500+ computer and conducted a
number of experiments on three types of grids: random-, maze-,
and U-type to measure the average number of moves per unit

TABLE I
VARIATIONS OF RTEF ALGORITHMS

Fig. 11. Worst case environment for a 17 × 9 sized grid: There is only one
obstacle, and it has the maximum number of edges that is possible.



UNDEGER AND POLAT: REAL-TIME EDGE FOLLOW: A REAL-TIME PATH SEARCH APPROACH 865

TABLE II
AVERAGE NUMBER OF MOVES PER SECOND FOR DIFFERENT SIZED GRIDS

TABLE III
PERFORMANCE DECREASE RATIO WITH RESPECT TO THE

PREVIOUS SIZE FOR DIFFERENT SIZED GRIDS

time and the performance decrease ratios for different sizes of
the grids. The results are given in Tables II and III.

In practice, the performance of the RTEF is quite high in
random- and U-type grids. Increasing the size does not drop the
performance very sharply because the average obstacle size is
not strictly dependent on the grid size. But, the performance in
mazes is low, since they are similar to the worst case grids; and
increasing the grid size by two drops the moves per second by
four on the average. The advantage of the algorithm in mazes is
that the agent reaches the target without visiting any previously
visited cells because the maze is known in advance, resulting in
almost optimal path lengths.

A. Depth-Limited RTEF-ARM: Setting Constant
Time Complexity

As can be seen from Table II, increasing the grid size de-
creases the efficiency. To solve this problem, a search depth limit
is introduced and the cells beyond the depth limit are treated as
free cells. The time complexity becomes O(d2), because the size
of the search rectangle will be 2 d in both dimensions, where d
is the search depth limit.

RTEF-Visited-Count, RTEF-Visited-Count-History, RTEF-
RTA*, and RTEF-RTA*-Penalty all work fine with this exten-
sion. However, RTEF-History and RTEF-History-BC that use
only History to prevent loops can go into an infinite loop. With-
out a depth limit, the history is only cleared when an unknown
obstacle is detected. But, when we include a depth limit, the
history may need to be cleared not just because of an unknown
obstacle but also a known obstacle that does not fit into the search
rectangle. Additionally, RTEF-Visited-Count-History-BC with
depth limit may not be able to clear all the history cells required
for backtracking. The search depth may prevent extracting the
entire border of a blocking obstacle, thus the border-clear tech-
nique may not be able to detect that it is stuck in the area due to
that obstacle. On the other hand, RTEF-Visited-Count-History
with depth limit works fine because the agent inserts every vis-
ited cell into the history. As a result, the agent will be able to
detect that he is blocked at a particular time and, hence, clear all
the history to open all the blocking cells.

V. PROOF OF CORRECTNESS OF RTEF-ARM

It will be enough to prove that RTEF-ARM only closes the
directions not leading to the target. RTEF-ARM has four phases:

Fig. 12. Case1—unreachable targets. Outward-facing island with a target in-
side (left), inward-facing island with a target outside (right).

Fig. 13. Illustration of Case 2 (left), an illustration seems to be Case 2 but
already covered by Case 1 (right).

initialization, ray-sending, edge-following, and edge-analyzing.
In the initialization phase, all the directions are set to open. In
the ray-sending phase, four rays are propagated in four diagonal
directions until hitting an obstacle or a maximum ray distance
is reached. If a ray does not hit an obstacle, it does not cause a
direction to be closed. Note that whether the ray hits something
or not, the agent can move along one of the two sides of the
ray until reaching the end point. In the edge-following phase,
the algorithm is able to determine islands, and hit-point islands.
Following the edges of an obstacle (partially or fully known)
starting from the hit-point of a ray in only one direction, we
always reach the same point we started at, or hit-point of another
ray.

In the edge-analyzing phase, the algorithm could find all
possible closed directions and never closes a direction that must
be open. Five cases (Case 1–5) to mark a direction as closed
are shown (as per Algorithm 3). For the remaining cases, no
conclusion can be made, which we name as Case 0.

Case 1: If the ray hits the outer border of an obstacle, the agent
must be outside the obstacle and the island must be outward-
facing. If the agent is outside the obstacle and the target is
inside the obstacle, then it is clear that the target cannot be
reached from any direction. If the ray hits the inner border of an
obstacle, the agent must be inside the obstacle. If the agent is
inside the obstacle and the target is outside the obstacle, then the
target cannot be reached from any direction. These two cases
are illustrated in Fig. 12.

Case 2: Case 2 is possible if Case 1 is not satisfied and there
exists a hit-point island and the target is inside the hit-point
island which is clockwise-oriented (cw). We figure out that the
agent must go into the region bordered by the hit-point island
and close directions outside the hit-point island as illustrated in
Fig. 13. Note that the example on the right side of Fig. 13 is not
an instance of Case 2 as it is already covered by Case 1, and it is
clear that the target cannot be reached from any of the directions
that are not inside the hit-point island.



866 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 5, SEPTEMBER 2007

Fig. 14. Illustrations of Case 3.

Fig. 15. Illustration of Case 4.

Fig. 16. Illustration of Case 5.

Case 3: Case 3 occurs when the target is inside the hit-point is-
land which is counterclockwise-oriented (ccw). The agent must
go into the region bordered by the hit-point island (see examples
in Fig. 14). In this case, we must close the directions between
the first and second hit points (encountered during the edge-
following) in clockwise direction. From the figure, it is clear
that the target cannot be reached from any of the directions that
are not inside the hit-point island.

Case 4: The algorithm considers this case only if Case 1 is
not satisfied and there is a hit-point island found. Case 4 is
possible if the target is outside the hit-point island which is cw.
We realize that the agent must leave the region bordered by
the hit-point island; this is exemplified in Fig. 15. In this case,
we must close the directions between the first and second hit
points in clockwise direction. It is clear that the target cannot be
reached from any of the directions that are inside the hit-point
island.

Case 5: Case 5 occurs when the target is outside the hit-
point island, which is ccw. The agent needs to leave the region
bordered by the hit-point island as illustrated in Fig. 16. In this
case, we must close the directions between the fist and second
hit points in counterclockwise direction. From the figure, it is
clear that the target cannot be reached from any of the directions

Fig. 17. Illustrations seem to be Case 5 but covered by Case 1.

TABLE IV
CASES WHERE NO HIT-POINT ISLAND IS FOUND

TABLE V
CASES WHERE THERE IS A HIT-POINT ISLAND

that are inside the hit-point island. There are three other cases
that look like Case 5, but, in fact, covered by Case 1. These
cases are illustrated in Fig. 17.

We have demonstrated that all directions that are closed by
the algorithm are feasible. Furthermore, we must also show that
the algorithm could find all the possible closed directions. We
enumerated all possible situations and mapped them to the cases
given in Tables IV and V. Table IV contains four situations where
no hit-point island is found. As a result, we can either conclude
that the target is unreachable (Case 1) or say nothing (Case
0). Table V contains the situations where a hit-point island is
found. Note that some situations in the table have no real-world
interpretations (named “impossible” in the table) and thus they
are not considered by the algorithm. Thus, the proof is complete.

VI. PERFORMANCE ANALYSIS

In this section, we report the performance results of the RTEF
algorithms listed in Table VI. We used RTA* as the basis and
evaluated the performance increase of various RTEF algorithms
on three different types of grids: random-, maze-, and U-type
described as follows. We randomly generated 16 grids of size



UNDEGER AND POLAT: REAL-TIME EDGE FOLLOW: A REAL-TIME PATH SEARCH APPROACH 867

TABLE VI
RTEF ALGORITHMS AND THEIR ABBREVIATIONS

Fig. 18. Sample random-, maze-, and U-type grids.

200×200 and tested the algorithms on a Centrino 1.5-GHz
laptop.

Random grids are generated randomly based on a specified
obstacle ratio (the percentage of the obstacle cells). We used
three random grids generated with obstacle ratios 0.3, 0.35,
and 0.4. Maze grids are the ones where every two nonobstacle
cells are always connected through a path (usually one path).
Two parameters, obstacle ratio and corridor size (the minimum
corridor width in the maze), are used to produce mazes. The
corridor size effect is obtained by scaling small mazes (e.g., a
200×200 maze can be obtained by scaling a 50×50 maze). Nine
different mazes are generated using obstacle ratios 0.3, 0.5, and
0.7 and corridor sizes 1, 2, and 4 and used in the experiments. U-
type grids are created by randomly putting U-shaped obstacles
of random sizes on an empty grid. Taking into consideration
the number of U-type obstacles, minimum and maximum width
and height of U-shaped obstacles, we used four different U-type
grids where the number of U-type obstacles is 30, 50, 70, 90 and
minimum/maximum U sizes are 5/50. Three of the input grids
used in our experiments, one for each type, are given in Fig. 18.

Initially, agent and target locations are randomly generated
for each grid type such that the distance between them is at least
half of the maze size. These locations are kept the same in all
the experiments with different configurations.

We assume that an agent perceives the environment up to a
limit, which is called visual depth (v). Being at its center, the
agent can only sense cells within the rectangular area of size
2v × 2v. We used the statement full vision to emphasize that the
agent has infinite visual depth and knows the entire grid world
before the search starts.

Fig. 19. Average path length decrease of RTEF over RTA* in all the grids.

Fig. 20. Average path length decrease of RTEF over RTA* in maze-, random-,
and U-type grids.

A. First Experiment: Comparison of RTA* and
RTEF Algorithms

We tested 12 different algorithms (11 RTEFs + 1 RTA*) on
16 grids with four different visual depths (10, 20, 40, and full).
Thus, 768 test configurations were generated, and ten runs were
performed for each configuration, making 7680 runs in total. The
results demonstrate that RTEF-ARM finds much shorter paths (a
significant improvement in the solution quality) in almost all the
tested configurations. In terms of total execution time, RTEF-
ARM seems to be better than the original RTA* in most of the
tested configurations, although execution time per movement is
quite high.

1) Path Length Analysis: The ratio of the number of moves
of RTA* to that of any RTEF algorithm is used as a metric
to compare the lengths of the solution paths. Larger the ratio,
better is the solution quality of the RTEF algorithm. Figs. 19–
Fig. 22 show the average solution quality of the RTEF algorithms
compared to RTA* considering all grids, grids of different types
(random-, maze-, and U-type), and different visual depths (10,
20, 40, and full) and grids with different corridor sizes (1, 2,
and 4), respectively.

All the RTEF algorithms perform better than RTA* in all the
grids. This is expected since RTEF-ARM is an improvement



868 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 5, SEPTEMBER 2007

Fig. 21. Average path length decrease of RTEF over RTA* with visual depths
10, 20, 40, and full. Note that c stands for cell.

Fig. 22. Average path length decrease of RTEF over RTA* with corridor sizes
1, 2, and 4 cells.

over RTA* without any drawbacks. Furthermore, the most ben-
eficial improvement is obtained in mazes, next in U-type, and
then in random grids. This is due to the fact that the difference be-
tween the suboptimal solutions found by RTA* and the optimal
one is maximal in mazes. Increasing the visual depth yields bet-
ter solutions (shorter paths) for RTEF-ARM over RTA* because
RTEF-ARM is able to make use of environmental information.
RTEF-ARM performs better than RTA* when the corridor size
increases since wider corridors increase the average branching
factor and the area of heuristic depression to be filled up. When
the branching factor is high, RTA* has lots of alternatives to
pursue while the RTEF-ARM is able to classify the alternatives
intelligently. The RTEF algorithms integrated with history are
the best because history cells are merged with real obstacles
yielding the larger obstacles that cause the agent to be more ex-
plorative. For RTEF-RTA*-Penalty, penalty value 3 seems to be
the best. RTEF-Visited-Count, RTEF-RTA*, and RTEF-RTA*-
Penalty (penalty< 2) perform the worst. The best improvement
increase (81.63) was encountered in mazes with obstacle ratio
0.5 and corridor size 2, due to the difficulty level of maze and
the high branching factor. The worst improvement (1.08) was
encountered in maze grids with obstacle ratio 0.3 and corridor
size 1. The second worst was 1.26 in random grids with obstacle
ratio 0.3.

Fig. 23. Average total execution time decrease of RTEF over RTA* in all the
grids.

Fig. 24. Average total execution time decrease of RTEF over RTA* in
random-, maze-, and U-type grids. Note that the ones below 1 are not an
improvement for RTEF.

Fig. 25. Average total execution time decrease of RTEF over RTA* with
10, 20, 40 cell and full vision ranges. Note that the ones below 1 are not an
improvement for RTEF.

2) Execution Time Analysis: In this section, we will compare
the total execution times of RTEF and RTA* for the experiments
reported in the previous section. Similarly, the ratio of execu-
tion time of RTA* to that of any RTEF algorithm is reported.
Figs. 23–26 show the speed-up by considering all cases, grids
of different types (random-, maze-, and U-type), different visual



UNDEGER AND POLAT: REAL-TIME EDGE FOLLOW: A REAL-TIME PATH SEARCH APPROACH 869

Fig. 26. Average total execution time decrease of RTEF over RTA* with 1, 2,
and 4 cell corridor sizes. Note that the ones below 1 are not an improvement for
RTEF.

depths (10, 20, 40, and full) and grids with different corridor
sizes (1, 2, and 4), respectively.

The RTEF algorithms perform better than RTA* in U-type
grids. This is due to the decrease in both path length and the
cost of edge-following (U-type grids have less obstacle edges).
Increasing the visual depth is beneficial up to a point; and having
the complete grid information (full vision) does not bring more
efficiency because knowing the entire obstacle borders (which
may not be useful all the time) makes the edge-following phase
costly. Such a case can be seen in the experiments reported
in Fig. 25. When the corridor size gets larger, RTEF performs
better since the average branching factor increases and the edge-
following phase becomes less costly. On the average, all the
RTEF algorithms perform better than RTA* in maze- and U-type
grids, which are the most difficult ones. Since random grids are
the easiest grids for RTA*, RTEF algorithms generally perform
worse than RTA*. The RTEF-RTA*-Penalty-3 is efficient and
returns shorter solution paths. Penalties greater than 3 did not
bring any performance improvement, but even a reduction in
some cases. Although history computations are costly, RTEF
algorithms with history take less execution time due to their
ability to return the shortest solution paths. The RTEF-Visited-
Count, RTEF-RTA*, and RTEF-RTA*-Penalty-0 are the most
inefficient algorithms.

We have also performed a number of experiments with dif-
ferent types of grids and visual depths which are not included
here. We observed that the best average speed-up (15.26) was
encountered in U-type grids with visual depth 40 and the worst
speedup (0.11) was with random grids with full vision (ran-
dom grids were easy for RTA* and knowing the entire obstacle
borders due to full vision increases the edge-following cost).

B. Second Experiment: The Effect of Look-Ahead Depth

In the second experiment, five different look-ahead depths
(3, 5, 7, 9, and 11), and four different visual ranges (10, 20,
40, and full), are used with RTA* in 16 grids. Thus, 320 test
configurations were generated, and ten runs were performed for
each configuration, making 3200 runs in total.

The results show that the path length improvement of RTA*
with reasonable look-ahead depths is insignificant compared

Fig. 27. Total execution time increase of RTA* with look-ahead depth 3, 5, 7,
9, and 11 over RTA*. Note that lower values are better.

Fig. 28. Average path length decrease of RTA* with look-ahead depth 3, 5, 7,
9, and 11 over RTA*.

to the RTEF algorithms. The time per move and total execution
time of RTA* with large look-ahead depths are too high because
the time complexity is exponential in the size of the look-ahead
depth. Fig. 27 shows the execution time ratios of RTA* with
various look-ahead depths (1–11) to RTA* without look-ahead
depth. Sudden increase in the execution time highly depends on
the grid type, which affects the average branching factor and the
area of heuristic depression needed to be filled up. The sharpness
of the increment is too high in grids with wide corridors, and
low in grids with narrow corridors.

1) Path Length Analysis: The average path length decrease
of RTA* with look-ahead depth of 3, 5, 7, 9, and 11 with respect
to RTA* is shown in Fig. 28, and the comparison of RTA* with
various look-ahead depths, RTEF-Visited-Count-History, and
RTEF-RTA*-Penalty-3 can be found in Fig. 29.

As can be seen easily from Fig. 28, increasing the look-ahead
depth does not always improve the solution, although we expect
shorter paths. This is easily observed from the results of maze
grids with 1-cell- and 2-cell corridors. Since the results seemed
to be strange at first, we examined the test runs in detail, and
found out the problem, which was also mentioned in [3]. The
reason was to choose the wrong alternative at a very critical
decision point because of stopping the search at an immature
depth guiding a local optimal. This is exemplified using one of
our problematic runs shown in Fig. 30. In the example, although
RTA* with look-ahead depth 7 could easily reach the target,



870 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 5, SEPTEMBER 2007

Fig. 29. Average path length decrease of RTEF-Visited-Count-History, RTEF-
RTA*-Penalty-3, and RTA* with look-ahead depth 3, 5, 7, 9, and 11 over RTA*.

Fig. 30. Critical decision point of RTA* with look-ahead depth 9.

Fig. 31. Average total execution time decrease of RTEF-Visited-Count-
History, RTEF-RTA*-Penalty-3, and RTA* with look-ahead depth 3, 5, 7, 9,
and 11 over RTA*. Note that ratios below 1 mean becoming worse.

RTA* with look-ahead depth 9 selected a wrong direction at a
very early stage, and had to travel almost the entire maze. Thus
instead of 576 moves, it took 11 704 moves to reach the target.

2) Execution-Time Analysis: The improvements in the ex-
ecution time of RTA* with look-ahead depth, RTEF-Visited-
Count-History, and RTEF-RTA*-Penalty-3 over RTA* can be
seen in Fig. 31. The results show that using look-ahead depth
is not sufficient for RTA* to overtake the total time efficiency
of RTEF in maze grids having wide corridors. However, RTA*
with look-ahead depth performed better than RTEF with small
look-ahead depths in random grids and maze grids with 1-cell
corridors.

C. Third Experiment: Effect of Search Depth

In the third experiment, four different search depths (10, 20,
40, and 80), and four different vision ranges (10, 20, 40, and full),

Fig. 32. Average path length decrease of RTEF-Visited-Count-History and
RTEF-RTA*-Penalty-3 with 10, 20, 40, and 80 cell depth over RTA* without
depth limit.

Fig. 33. Average execution time decrease of RTEF-Visited-Count-History and
RTEF-RTA*-Penalty-3 with 10, 20, 40, and 80 cell depth over RTA* without
depth limit.

were used with two RTEF algorithms: RTEF-Visited-Count-
History and RTEF-RTA*-Penalty-3, in 16 grids. In all, 512 test
configurations were generated, and ten runs were performed
for each configuration, making 5120 runs in total. The average
solution length and execution time ratios of RTEF algorithms
with various search depths are shown in Figs. 32 and 33.

The results show that when a search depth is specified, the
path lengths get longer, but the time spent per move decreases
significantly. Thus, if the path lengths do not increase sharply
(which do not if a very small depth is not used), the total exe-
cution time usually decreases. As a conclusion, we can say that
if the time per move and total execution time are critical, it is
better to use a search depth. But, if path lengths form the most
significant item, it is better to use a large search depth to have a
bounded complexity, or not to use any.

D. Comparison With Optimal Solution Paths

Finally, we have conducted a number of experiments to com-
pare the path lengths of 8 of 12 algorithms (7 RTEFs + 1 RTA*)
with optimal path lengths on 16 grids. We implemented the off-
line path planning algorithm A* [18] to compute the optimal
path lengths. Note that 160 different agent-target locations are
used, and we assume that the mazes are fully known (full vision
case). Finally, we computed the ratio of path length of each of
these eight algorithms to that of optimal solutions to clearly see
the proximity of solutions to the optimal ones (Fig. 34).



UNDEGER AND POLAT: REAL-TIME EDGE FOLLOW: A REAL-TIME PATH SEARCH APPROACH 871

Fig. 34. Average ratio of RTEF algorithms and RTA* solution path lengths over optimal path lengths, and their standard deviations.

The solutions found by RTEF algorithms are very close to
optimal ones on the average. On the other hand, RTA* gener-
ates solutions that are very far away from optimal solutions on
the average. The best performance is obtained by RTEF-VCH.
The solutions are only 1.501 times longer than the optimal ones
on the average, and the standard deviation is 1.068. The worst
performance is obtained by RTA*. The solutions are 33.022
times longer than the optimal ones on the average, and the stan-
dard deviation is 50.417, which is unacceptably high. When
we closely look at the results from the viewpoint of different
types of grids, we see that RTEF algorithms and RTA* show
opposite behaviors most of the time. When the obstacle ratio
increases and grids become complicated, RTEF algorithms con-
verge to optimum (e.g., the results are exactly optimal in maze
grids with obstacle ratio 0.7); on the contrary, RTA* is far away
from the optimal solutions (e.g., the results are 124 times longer
than the optimal ones in maze grids with two-cell corridors and
obstacle ratio 0.5). As a result, we can conclude that RTEF al-

gorithms are able to find out solutions very close to optimal
solutions.

VII. CONCLUSION

We have shown that RTEF is able to make use of environ-
mental information acquired during the search successfully, and
brings significant performance improvement over RTA* with
respect to path lengths in all types of grids. Especially, the
improvement is the highest in grids with wide corridors (e.g.,
U-type grids and maze grids with corridor size greater than 1) be-
cause their high branching factor and large heuristic depression
area to be filled up make the grids difficult for RTA*. In addition,
the path length improvement of RTA* with reasonable look-
ahead depths is still insignificant compared to RTEF algorithms.

With respect to execution time, we have observed that the
total execution time to reach the goal is usually better than
RTA* in maze and U-type grids although the time per move of



872 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 5, SEPTEMBER 2007

RTEF is very high compared to RTA*. This improvement is due
to much shorter paths found by RTEF. But, the total execution
time of RTEF is worse than RTA* in random grids because
random grids are not very challenging for both RTEF and RTA*.
RTA* with look-ahead depth offers very little execution time
improvement with very small look-ahead depths (e.g., 2–5); but,
the total execution time becomes unreasonably high with larger
look-ahead depths. Finally, we have introduced a search depth
to RTEF guaranteeing a constant complexity. The test results
clearly demonstrate that search depth significantly decreases
time per move, but this advantage is balanced with longer paths,
and, thus, the total execution time generally becomes more or
less the same on the average. Although the focus of this paper
was not moving targets, some of the RTEF versions can very
easily be adapted to moving targets. Currently, we are studying
moving targets and multiagent versions of RTEF.

REFERENCES

[1] J. Bruce and M. Veloso, “Real-time randomized path planning for robot
navigation,” in Proc. IEEE Int. Conf. Intell. Robots Syst. Piscataway,
NJ: IEEE, 2002, pp. 2383–2388.

[2] P. Cheng and S. M. LaValle, “Resolution complete rapidly-exploring ran-
dom trees,” in Proc. IEEE Int. Conf. Robot. Autom., 2002, pp. 267–272.

[3] B. Hamidzadeh and S. Shekhar, “DYNORAII: A real-time path planning
algorithm,” Int. J. Artif. Intell. Tools, vol. 2, no. 1, pp. 93–115, Mar. 1993.

[4] T. Ishida and R. E. Korf, “Moving target search: A real-time search for
changing goals,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 6,
pp. 97–109, Jun. 1995.

[5] T. Ishida, “Real-time bidirectional search: Coordinated problem solving
in uncertain situations,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18,
no. 6, pp. 617–628, Jun. 1996.

[6] K. Knight, “Are many reactive agents better than a few deliberative ones?,”
in Proc. 13th Int. Joint Conf. Artif. Intell., 1993, pp. 432–437.

[7] J. J. Kuffner, Jr. and J. C. Latombe, “Goal-directed navigation for animated
characters using realtime path planning and control,” in Proc. CAPTECH
1998: Workshop Model. Motion Capture Techn. Virtual Environ., Geneva,
Switzerland, Nov.1998, pp. 26–28.

[8] J. J. Kuffner, Jr. and J. C. Latombe, “Fast synthetic vision, memory, and
learning models for virtual humans,” in Proc. Comput. Anim., Piscataway,
NJ, May 1999, pp. 118–127.

[9] S. Koenig and M. Likhachev, “D* Lite,” in Proc. Natl. Conf. Artif. Intell.,
2002, pp. 476–483.

[10] S. Koenig and M. Likhachev, “Improved fast replanning for robot nav-
igation in unknown terrain,” in Proc. Int. Conf. Robot. Autom., 2002,
pp. 968–975.

[11] S. Koenig, “A comparison of fast search methods for real-time situated
agents,” in Proc. Auton. Agents Multi-Agent Syst., 2004, pp. 864–871.

[12] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy, “Incremental heuristic
search in artificial intelligence,” Artif. Intell. Mag., vol. 25, no. 2, pp. 99–
112, 2004.

[13] A. Konar, Artificial Intelligence and Soft Computing: Behavioral and
Cognitive Modeling of Human Brain. Boca Raton, FL: CRC, 2000.

[14] R. E. Korf, “Real-time heuristic search,” Artif. Intell., vol. 42, no. 2–3,
pp. 189–211, 1990.

[15] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
presented at the IEEE Int. Conf. Robot. Autom., May 1999, Detroit, MI.

[16] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects,” in Algorithmic and Computational Robotics: New Direc-
tions, B. R. Donald, K. M. Lynch, and D. Rus, Eds. Wellesley, MA: A.
K. Peters, 2001, pp. 293–308.

[17] Z. Michalewicz, Genetic Algorithms + Data Structure = Evolution Pro-
grams. New York: Springer-Verlag, 1986.

[18] S. Russell and P. Norving, Artificial Intelligence: A Modern Approach.
Englewood Cliffs, NJ: Prentice-Hall, 1995.

[19] M. Shimbo and T. Ishida, “Controlling the learning process of real-time
heuristic search,” Artif. Intell., vol. 146, no. 1, pp. 1–41, May 2003.

[20] A. Stentz, “Optimal and efficient path planning for partially-known en-
vironments,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 4, May 1994,
pp. 3310–3317.

[21] A. Stentz, “The focussed D* algorithm for real-time replanning,” in Proc.
Int. Joint Conf. Artif. Intell., Aug. 1995, pp. 1652–1659.

[22] K. Sugihara and J. K. Smith, “Genetic algorithms for adaptive planning of
path and trajectory of a mobile robot in 2D terrains,” Dept. Inf. Comput.
Sci. Univ. Hawaii, Tech. Rep. ICS-TR-97-04, May 1997.

[23] A. S. Tanenbaum, Computer Networks. Englewood Cliffs, NJ: Prentice-
Hall, 1996, pp. 349–351.

[24] C. Undeger, F. Polat, and Z. Ipekkan, “Real-time edge follow: A new
paradigm to real-time path search,” presented at the GAME-ON 2001,
London, U.K.

Cagatay Undeger received the B.Sc. degree from
Kocaeli University, Kocaeli, Turkey, in 1998 and the
M.S. degree from the Ankara, Turkey, Middle East
Technical University, in 2001, where he is currently
working toward the Ph.D. degree.

His current research interests include the field of
real-time search.

Faruk Polat received the B.Sc. degree in com-
puter engineering from the Middle East Technical
University, Ankara, Turkey, in 1987 and the M.S.
and Ph.D. degrees in computer engineering from
Bilkent University, Ankara, in 1989 and 1993, re-
spectively.

He is currently a Professor in the Department
of Computer Engineering, Middle East Technical
University. During 1992–1993, he was engaged in
research as a Visiting NATO Science Scholar in
the Department of Computer Science, University of

Minnesota, MN. His current research interests include artificial intelligence,
multiagent systems, and object-oriented data models.


