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Staining methods routinely used in pathology lead to similar color distributions in the biologically differ-
ent regions of histopathological images. This causes problems in image segmentation for the quantitative
analysis and detection of cancer. To overcome this problem, unlike previous methods that use pixel
distributions, we propose a new homogeneity measure based on the distribution of the objects that
we define to represent tissue components. Using this measure, we demonstrate a new object-oriented
segmentation algorithm. Working with colon biopsy images, we show that this algorithm segments the
cancerous and normal regions with 94.89 percent accuracy on the average and significantly improves the
segmentation accuracy compared to its pixel-based counterpart.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In the current practice of medicine, histopathological examina-
tion of biopsies is the most commonly used method to locate and
classify diseases including cancer. In cancer diagnosis, pathologists
visually examine the changes in cell morphology and tissue distri-
bution under a microscope and determine whether a biopsy con-
tains any malignant (cancerous) region and, if so, the cancer type
and its malignancy level (grade). However, as it mainly relies on the
visual interpretation, this examination may lead to a considerable
amount of subjectivity, especially in cancer grading [1,2]. To reduce
this subjectivity, it has been proposed to use computational meth-
ods that rely on the quantification of a tissue by defining mathemat-
ical features [3–7]. Although the very first step in this quantification
is the segmentation of a tissue image into homogeneous regions,
these studies have not mainly focused on this problem and have
extracted features from the tissue image assuming that it is homo-
geneous. Nevertheless, besides having many heterogeneous regions
in a tissue image, the existence of such regions and their ratio help
pathologists determine the cancer grade.

It has been proposed to segment an image into homogeneous
regions by either connecting adjacent pixels or locating edges
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according to a homogeneity measure. Numerous studies have de-
fined the homogeneity based on the color information of pixels
and/or the spatial relations between the colors (i.e., texture informa-
tion of pixels) [8,9]. A large subset of them quantizes the pixels of an
image into clusters using the color information alone and considers
the connected pixels of the same cluster as a homogeneous region
[10–15]. One common method to find such clusters is to employ
the color histogram of the image. For example, Park et al. [11] per-
form morphological operators on the histogram, while Shafarenko
et al. [12] apply the watershed algorithm to the histogram to de-
tect the clusters. Besides employing the color histogram, different
approaches (such as fuzzy [13,14] and genetic [15] approaches) are
also used to obtain the clusters. Another subset of studies proposes
to use spatial information of pixels in addition to their color infor-
mation [16–19]. The color and the texture information could be used
consecutively or together in segmentation. For example, the JSEG
algorithm proposed by Deng and Manjunath [17] first uses pixel
color information to quantize them into clusters, without consider-
ing their spatial relations. Following the quantization, they define a
homogeneity criterion to quantify the texture of the color-quantized
pixels. In contrast, in the algorithm proposed by Chen et al. [19], the
texture is extracted from the gray-scale of the image and it is used
together with the color information to obtain the overall segmenta-
tion. As they commonly result in oversegmentation, both of these
approaches merge the segmented regions according to their color
similarity. These previously proposed segmentation algorithms lead
to promising results especially when there is a considerable amount
of difference in the color distribution of adjacent regions. However,
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Fig. 1. A histopathological image stained with the hematoxylin-and-eosin technique.

due to the routinely used staining techniques, the color distribution
of different regions is very similar for histopathological images. For
instance, Fig. 1 shows such a histopathological image stained with
the hematoxylin-and-eosin technique, which is routinely used to
stain a biopsy in hospitals. As observed in this figure, this image
consists of two regions in which the color distributions are very
similar (here the upper right of the image contains tumorous regions
whereas its lower left contains healthy regions).

In this paper, we introduce a new homogeneity measure and
demonstrate a new segmentation algorithm that uses this homo-
geneity measure to segment a biopsy image, for which the color dis-
tribution is very similar in its heterogeneous regions. Our proposed
approach relies on the quantification of the spatial relations between
the tissue components (e.g., epithelial tissue components, connec-
tive tissue components, and luminal structures). For this purpose, we
define different types of “objects”, which represent different compo-
nents of a tissue, and make use of the distribution of these objects as
well as their spatial relations to define our homogeneity measure. As
opposed to the existing algorithms, which rely on pixel-based infor-
mation (pixel colors and/or pixel-based textures), the proposed seg-
mentation algorithm uses object-based information. Working with
colon biopsy images, we demonstrate that our object-oriented seg-
mentation algorithm yields 94.89 percent accuracy on the average
and significantly improves the accuracy in locating tumorous re-
gions and other non-cancerous tissue transformations compared to
its pixel-based counterpart.

The remainder of this paper is organized as follows. In Section
2, we first provide our method to identify the objects in a tissue
image, then describe our homogeneity criterion based on the spatial
relations between the objects, and last explain our segmentation
algorithm. Subsequently, we present our experiments and discuss
their results in Section 3. Finally, we provide a summary of our work
and discuss a future research perspective in Section 4.

2. Object-oriented textural segmentation

In a biopsy image, biologically different parts of the tissue are
characterized with the spatial organizations of its cellular and con-
nective tissue components. These organizations show differences,
depending on the organ from which the tissue is taken. In this work,
we focus on colon biopsy images where the tissue components are
organized to form glandular structures. In these images, epithe-
lial cells are lined up around a luminal structure, forming a crypt
(gland), and lymphoid cells take place in between these crypts. This

organization deviates from its regular structure due to the existence
of cancer. Furthermore, this deviation is aggravated with the increas-
ing malignancy level. Thus, for the detection of cancer and its malig-
nancy level, the regions containing such tumorous structures should
be distinguished from those that contain the normal ones.

In this work, we propose a segmentation algorithm that uses the
fact that the structural organization of a tissue (i.e., the spatial dis-
tributions of cellular and connective tissue components with respect
to each other) changes with the existence of cancer. To this end, we
define our homogeneity measure based on the texture of these com-
ponents. We define primitive objects to represent these components,
instead of exactly identifying their locations, since this localization
brings about a more difficult segmentation problem even for human
experts.

2.1. Object definition

For defining objects, we first run the k-means algorithm on the
color intensities of pixels and quantize the pixels into three clusters.
These clusters correspond to purple regions (for epithelial and lym-
phoid cell components), pink regions (for connective tissue compo-
nents), andwhite regions (for both luminal structures and connective
tissue components1). Subsequently, we locate circular primitives on
the pixels of each cluster after eliminating small holes and regions
in the cluster. Since there are different ways of locating circles on
a group of pixels, we make use of a heuristic in which the circular
components are iteratively located. For a given set of pixels P={xi},
this algorithm works as follows:

Step 1: It assigns each particular pixel xi to the largest possible
circle that includes this particular pixel xi and that is formed by only
the pixels xj ∈ P.

Step 2: It forms connected components C = {C1,C2, . . . ,CN} from
the pixels such that the connected component Ck consists of the
pixels that are assigned to the circle k. In this step, it also eliminates
the connected components smaller than an area threshold.

Step 3: For each component Ck, it recursively calls Steps 1 and
2 considering only the pixels of this connected component (i.e., in
Step 1,Pwill be a set of pixels belonging to the component Ck) until
there is no change in the pixels of the component. Note that there
will be no change when a component is circular.

In our work, we run this iterative algorithm twice for each cluster.
In the first run, we consider all of the pixels of the cluster and find
the circular primitives. Then in the second run, we consider all of the
pixels that belong to the same cluster but not belong to any of the
circles found in the first run. Finally, the primitives obtained from
the first and the second runs are merged. In Fig. 2, the results of
iterations in the first and the second runs along with the final result
are shown on a small image.

After this two-step iterative algorithm, we group the circular
primitives of each cluster into two object types depending on their
sizes. Here the circular primitives with a size smaller than a thresh-
old are defined as one type of the object and those with a size greater
than the threshold are defined as the other type. Therefore, at the
end of this step, six different object types (depending on both the size
of a primitive and the cluster that it belongs to) are defined for the
tissue components of a given image. In Fig. 3(b), the object-map for

1 Here “connective tissue components” is used as a general term, which repre-
sents the other components rather than cell nuclei and luminal structures. Pink-like
color usually corresponds to the components such as cytoplasm, muscularis mucosa,
and cell plate whereas white-like color usually corresponds to postfixative artificial
defects in the connective tissue and materials secreted by neoplastic cells such as
mucin.
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Fig. 2. The steps for locating circular primitives for a cluster: (a) pixels that belong to the cluster are shown with black; (b–e) the results of each iteration in the first run;
(f,g) the results of each iteration in the second run; (h) final result obtained by merging the results of the first and the second runs.

Fig. 3. The steps for the object-oriented segmentation of a biopsy image: (a) start with the original tissue image; (b) locate the circular objects on the quantized image; (c)
determine the seeds; (d) grow the seeds; (e) merge the regions; and (f) the segmented image.

an exemplary tissue image (Fig. 3(a)) is illustrated. The motivation
to define two different object types for the same cluster relies on the
fact that each cluster may represent more than one tissue compo-
nent. For example, purple cluster represents both the epithelial and

lymphoid cell components; epithelial cells are lined up around a lu-
minal structure, forming a crypt, and lymphoid cells reside between
these crypts. Since lymphoid cells are smaller and farther apart from
each other compared to epithelial cells, these cells are expected to
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Fig. 4. A schematic of the proposed region-growing method.

form smaller circles. The definition of two different object types for
the purple cluster could be helpful to represent this difference.2

2.2. Object-oriented texture definition

In our segmentation algorithm, we make use of the textural com-
position of the objects that we define for the representation of the
tissue components. For this purpose, we propose a homogeneity cri-
terion based on how the objects are distributed in size and in space.
In a homogeneous image, for each object, there should be another
one with the same object type and in its symmetric location. Also for
each object type, the size of the objects should be the same. Thus,
we define two measures:

(1) Object size uniformity: It measures the uniformity in the object
size. For this reason, for each particular object type, we use the
standard deviation of the areas of the objects that belong to this
particular object type. If the objects are uniformly distributed
in size, the standard deviation of their areas should be equal to
zero. Note that here we use the coefficient of variation since the
different types of objects have areas of different scales.

(2) Object spatial distribution uniformity: It quantifies how uniform
the objects are distributed in space. For this purpose, for each
particular object type, we compute the sum of the position vec-
tors of every object, which belongs to this particular object type,
with reference to the image centroid and use the magnitude

2 Although this does not provide an exact classification of tissue components,
it helps group the similar tissue components into a single object type.

of the resulting vector. If the objects are uniformly distributed
in space, the magnitude should be equal to zero. We define
this measure particularly for the objects rather than the pix-
els, as opposed to the previous work of Deng and Manjunath
[17] where this measure is strictly defined on the individual
pixels. For this measure, instead of pixels, using objects over-
comes the problem of dealing with images that exhibit similar
color distributions in their different regions, unlike the previous
literature.

2.3. Segmentation algorithm

In our segmentation algorithm, we propose to segment an image
into regions for which the aforementioned twomeasures (object size
uniformity and object spatial distribution uniformity) are minimized
for all object types. As it is not feasible to minimize these measures
for the entire image, we compute them over small windows and use
them in our region-growing method. For this reason, we compute
these measures using a window centered at each pixel in the image.
Thus, for each pixel, there are a total of 12 uniformity measures,
two measures for each of the six objects that we define for the
representation of tissue components (Section 2.1).

Our region-growing method is a three-step procedure. In the first
step, we determine the initial seeds based on the uniformity mea-
sures of pixels. In the second step, we iteratively grow these ini-
tial seeds also based on the uniformity measures. In the third step,
we merge the oversegmented regions employing the object distri-
butions. Next, we explain these steps in detail; a schematic of the
proposed region-growing method is provided in Fig. 4.
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Fig. 5. The segmentation results. (a1)–(d1) The manual segmentations; (a2)–(d2) the results obtained by our object-based algorithm; (a3)–(d3) the results obtained by the
JSEG algorithm.

2.3.1. Seed-determination
We determine the seeds by connecting pixels for which all of

the 12 uniformity measures are smaller than their corresponding
thresholds. In our algorithm, for each measure j, we set a threshold
Tj =�j +�j, where �j and �j are the mean and the standard deviation
of the associated measure computed over all pixels. Note that here
we connect the pixels based on the four-connectivity.

In addition to determining the seeds based on our uniformity
measures computed within a particular window, we repeat the same
procedure using a smaller window to capture finer textural infor-
mation. Then, we combine the seeds obtained using both the larger
and the smaller windows if their seeds do not overlap. In the case
that these seeds overlap, we use the seeds obtained from the larger
window and only the non-overlapping regions of the seeds obtained
from the smaller window. At the end, we eliminate the seeds that
are smaller than the size of the smaller window. Fig. 3(c) shows the
seeds computed for the image given in Fig. 3(a).

2.3.2. Seed-growing
In the next step, we start growing the initial seeds using the

same set of 12 uniformity measures. In the beginning, we compute
the threshold values by considering the pixels that are not assigned
to any of the seeds in the seed-determination step. Using the four-
connectivity, we connect the unassigned pixels for which all of the
measures are smaller than their corresponding thresholds to form
a new connected component. If this new component is a neighbor

of a previously determined seed, we merge them together. In the
case that this component has more than one neighbor, we merge
it with its closest neighbor.3 If the component has no neighbors,
then this component is considered as a new seed. We continue this
iterative procedure for all of the remaining unassigned pixels until
there is no unassigned pixel left with measures smaller than the
thresholds. Note that, for each iteration, the threshold values are
recomputed considering themean and the standard deviation of only
the remaining unassigned pixels from the previous iteration. After
this iterative procedure is completed, if any of the determined seeds
is smaller than the size of the smaller window, we connect it to its
largest neighbor. In the case that it has no neighbors, we eliminate
this seed. Finally, we fill in the holes of each seed.

We repeat this entire seed-growing procedure as necessary until
there are no unassigned pixels left in the image. To do so, in its
first iteration, we compute the threshold of the measures as Tj =
�j + �j and update the threshold in the next iteration, by increasing
the effect of �j incrementally each iteration. For the image given in
Fig. 3(a), the final regions computed at the end of seed-growing step
are shown in Fig. 3(d).

3 To select the closest neighbor, we compute the same measure set over the
pixels of the component as well as over those of its neighbors. We compute the
Euclidean distance between the measures of the component and those of each
neighbor as the closeness measure.
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Fig. 6. The segmentation results. (e1)–(h1) The manual segmentations; (e2)–(h2) the results obtained by our object-based algorithm; (e3)–(h3) the results obtained by the
JSEG algorithm.

2.3.3. Region-merge
The seed-growing step often results in oversegmented regions.

For this reason, in the final step, we merge these regions based on
their object distributions. In our region-merge step, we use two dif-
ferent criteria to characterize a region: (1) the percentage of the total
area of the same type of objects in the region and (2) the percent-
age of the combined areas of the different objects that correspond to
the same cluster in the region. Using these criteria, we first merge a
region with its closest neighbor if its size is smaller than the larger
window size. In the case that its size is larger, we only combine it
with its closest neighbor only if the distance between them is smaller
than the merge threshold. It is worth noting that after merging a re-
gion with its neighbor, we update the criteria accordingly and con-
tinue the merge with the updated criteria. For the image in Fig. 3(a),
the regions obtained at the end of the region-merge step are illus-
trated in Fig. 3(e) and the final boundaries are superimposed on the
original image in Fig. 3(f).

3. Experiments

3.1. Results

In our experiments, we use the microscopic images of colon
biopsy samples of 16 randomly chosen patients from the Pathology
Department archives in Hacettepe School of Medicine. Each biopsy
sample consists of a 5–6�m-thick tissue section stained with the
hematoxylin-and-eosin technique. The images of these samples are

taken in the RGB color space using a Nikon Coolscope Digital Micro-
scope; 5× microscope objective lens is used and the image resolution
is 1920 × 2560. Each colon biopsy image contains both normal and
cancerous (colon adenocarcinomatous) regions. Cancerous regions
contain tumors with different grades. In Figs. 5–8, the first image of
each row consists of the manual segmentation provided by our med-
ical expert.4 For each tissue image, the regions are labeled as either
cancerous or normal and the boundary between these regions are
drawn in red. In between these boundaries, there are also regions
that can be included in either side without affecting the medical in-
terpretation; such regions are shaded in red.

In Figs. 5–8, the second column of each row shows the segmenta-
tion results for each image that are obtained by our object-oriented
segmentation algorithm. To compare our results with those obtained
from a pixel-based segmentation algorithm, we also run the JSEG
algorithm, which is proposed by Deng and Manjunath [17]. This
algorithm separately uses the color information of pixels and their
texture composition to segment an image into its homogeneous
regions. In our experiments, we use the program provided by its
authors in their web site.5 The results obtained by this program
are also presented in the third columns of Figs. 5–8. For both our
segmentation algorithm and the JSEG algorithm, the selection of

4 By Professor C. Sokmensuer, MD, who is specialized in colorectal carcinomas
and has been practicing oncology for the last 15 years.

5 The program is available at http://vision.ece.ucsb.edu/segmentation/jseg/
software.

http://vision.ece.ucsb.edu/segmentation/jseg/software
http://vision.ece.ucsb.edu/segmentation/jseg/software
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Fig. 7. The segmentation results. (i1)–(l1) The manual segmentations; (i2)–(l2) the results obtained by our object-based algorithm; (i3)–(l3) the results obtained by the JSEG
algorithm.

the merge threshold parameter affects the results. In Figs. 5–8, we
provide the results of each of these algorithms, selecting the best
merge parameter for each image. Additionally, for the JSEG algo-
rithm, we also select the best color quantization threshold and the
best number of scales for each image.

In our algorithm, besides the merge parameter, we use the same
set of parameters for all images. To define our circular primitives,
we set the area threshold parameter to be 100 pixels so that it is
large enough to eliminate the noise and small enough to represent
the tissue components. Also in defining the objects from the circu-
lar primitives, we use an object area threshold of 150 pixels to ac-
commodate different tissue components represented by the same
cluster. In the seed-determination, we use the window sizes of 257
and 65 pixels for the large and small windows to determine suffi-
ciently coarse and fine textures in our images with a resolution of
1920×2560. In the region-growing step, we increment the effect of
the standard deviation by 10 percent of its value in each iteration
for computational reasons.

3.2. Discussion

For the colon biopsy image shown in Fig. 5(a), our object-based
algorithm leads to accurate segmentation. It results in only one can-
cerous crypt (marked with 1) being included in the normal region
and only a small amount of normal crypts (marked with 2 and 3)

being included to the cancerous region (Fig. 5(a2)). On the other
hand, the pixel-based algorithm yields a segmented region for can-
cerous parts that contain a significant amount of normal crypts (Fig.
5(a3)). Similarly, for the image given in Fig. 5(b), our object-based
segmentation algorithm yields accurate results and greatly improves
the specificity and the accuracy compared to the pixel-based algo-
rithm. Higher specificity (i.e., having less number of false positives)
is important for correct grading of cancer. In cancer grading, the
grade measures how much a tissue differentiates from the normal.
The correct grading of cancer is critical since it affects the selection
of the treatment and is an important predictor for the survival time
of a patient. In colon adenocarcinoma grading, the differentiation is
quantified according to how much the glands of a cancerous region
are similar to the normal gland. False positives affect this quantifi-
cation and cause to select a lower grade.

For the images given in Fig. 5(c) and (d), both the pixel-based and
the object-based algorithms yield accurate results in the segmenta-
tion of their adenocarcinomatous and normal regions.

For the images given in Figs. 6(e)–(g), both of the algorithms re-
sult in oversegmentation. However, although the object-based seg-
mentation algorithm does not have a heterogeneous region, which
includes both cancerous and normal parts, the pixel-based segmen-
tation algorithm has one that contains both of these parts. Similarly,
for Figs. 6(h) and 7(i), the pixel-based algorithm leads to heteroge-
neous regions, and thus, yields lower segmentation accuracy com-
pared to the object-based algorithm.
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Fig. 8. The segmentation results. (m1)–(p1) The manual segmentations; (m2)–(p2) the results obtained by our object-based algorithm; (m3)–(p3) the results obtained by
the JSEG algorithm.

In Figs. 7(j) and (k), there are heterogeneity in the tumor such
that it contains regions of both grade 2 (marked with 1) and grade
3 (cancerous regions other than that marked with 1). Besides, in Fig.
7(j), in the regions marked with 2, the tumor infiltrates into nor-
mal regions. For this image, our object-based algorithm successfully
segments the normal region that is located in the upper left from
the cancerous parts and captures the heterogeneity in cancerous re-
gions. On the other hand, although the pixel-based algorithm iden-
tifies some part of this normal region, it could not capture the het-
erogeneity in the tumor. For this image, neither the object-based nor
the pixel-based algorithms can segment the normal crypts that are
in the top right of the image. For the image given in Fig. 7(k), both
the pixel-based and the object-based algorithms capture the hetero-
geneity in the tumor. For the image shown in Fig. 7(l), both of the
algorithms segment the normal and cancerous regions with an ac-
ceptable accuracy. At a first glance, it could be considered that the
pixel-based algorithm yields better results since the object-based
algorithm results in oversegmentation. However, when the normal
regions are examined carefully, it is observed that normal regions
contain some non-tumorous transformations (oncocytic and hyper-
plastic transformations) as well as lymphoid aggregations (regions
marked with 1 and 2, respectively). Although the pixel-based algo-
rithm does not capture these transformations, the object-based algo-
rithm is successful to do that and distinguish the regions containing
such transformations from those that do not contain any. The identi-
fication of such heterogeneities is important for cancer grading and

prognosis. The heterogeneity in the tumor is known to affect the can-
cer grade, while non-cancerous tissue transformations are presently
believed to be the prognostic parameters, which is further expected
to be better understood in the future.

For the image shown in Fig. 8(m), the object-based algorithm
incorrectly segments a normal region (marked with 1 in Fig. 8(m2))
and oversegments the remaining cancerous regions. For this image,
the pixel-based approach achieves a successful segmentation.

For the image given in Fig. 8(n), both the pixel-based and the
object-based algorithms lead to a heterogeneous region, which con-
tains both normal and cancerous parts (regions marked with 1 in
Figs. 8(n2) and (n3)). Besides this heterogeneous region, our segmen-
tation algorithm results in more number of segmented regions com-
pared to the pixel-based algorithm; this is attributed to the promi-
nent lymphoid reaction in the tumor. Similarly, for the images given
in Figs. 8(o) and (p), both of the algorithms result in heterogeneous
regions (regions marked with 1 and 2 in Figs. 8(o2), (o3), (p2), and
(p3)). In spite of these heterogeneous regions, both of the algorithm
yield acceptable accuracies for all these images.

In order to quantitatively compare the segmentation results of
the object-based and the pixel-based algorithms, we calculate the
true positive, false positive, true negative, and false negative rates
using the manual segmentation as the gold standard and then report
the sensitivity, specificity, and accuracy of these algorithms. Since
both our object-oriented algorithm and the JSEG algorithm are un-
supervised segmentation methods, they do not output the class of
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Table 1
The average and the standard deviation of the sensitivity, specificity, and accuracy
percentages for the object-based and the pixel-based algorithms

Object-based Pixel-based

Sensitivity 96.05 ± 5.72 86.25 ± 31.32
Specificity 92.22 ± 10.56 78.27 ± 26.38
Accuracy 94.89 ± 3.77 86.78 ± 11.46

the segmented regions. Therefore, we consider the class of the dom-
inant region as the label of the region and calculate the true positive,
false positive, true negative, and false negative rates accordingly. In
our calculation, we do not consider the pixels that could be included
in either side (either cancerous or normal region) without affecting
the medical interpretation (the pixels that are shaded in red in Figs.
5–8). We report the average and the standard deviation of the sen-
sitivity, specificity, and accuracy percentages in Table 1. This table
shows that our object-oriented algorithm yields higher sensitivity
and specificity percentages and that it improves the accuracy of the
JSEG algorithm for the segmentation of histopathological images. To
investigate whether or not this improvement is significant, we use
the Wilcoxon test with a significance level of 0.05. This test exhibits
that this improvement is statistically significant.

4. Conclusion

In this work, we proposed a new homogeneity measure based on
the distribution of the objects. For this purpose, we defined objects
to represent tissue components including epithelial tissue compo-
nents, connective tissue components, and luminal structures. Using
this object-oriented measure, we demonstrated a new object-based
segmentation algorithm. As opposed to the existing algorithms that
use pixel-based information in defining their homogeneity measure,
our segmentation algorithm uses object-based information, for the
first time.

Working with colon biopsy images with similar color distri-
butions in their heterogeneous regions, we demonstrate that our
object-oriented algorithm significantly improves the accuracy in
segmenting tumorous regions and also other non-cancerous tissue
transformations compared to its pixel-based counterpart. Our future
research directions include examining the use of supervised classifi-
cation algorithms in merging the segmented regions and extracting
a set of quantitative features from the segmented regions for cancer
grading.
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