CS473-Algorithms I

Lecture 1

Introduction to Analysis of Algorithms
Motivation

– Procedure vs. Algorithm
– What kind of problems are solved by Algorithms?
 • determine/compare DNA sequences
 • efficiently search (e.g. Google) web pages w/ keywords
 • route data (e.g. email) on the Internet
 • decode data (e.g. banking) for security
– Data Structures & Algorithms
– Repertoire vs. New Algorithms (Techniques)
Motivation cntd

– Efficient (scope of course) vs. Inefficient
– Design algorithms that are
 • fast,
 • uses as little memory as possible, and
 • correct!
Problem: Sorting (from Section 1.1)
Input: Sequence of numbers
\langle a_1, a_2, \ldots, a_n \rangle

Output: A permutation
\Pi = \langle \Pi(1), \Pi(2), \ldots, \Pi(n) \rangle

such that
\[a_{\Pi(1)} \leq a_{\Pi(2)} \leq \ldots \leq a_{\Pi(n)} \]
Algorithm: Insertion sort (from Section 1.1)

Insertion-Sort (A)

1. for j ← 2 to n do
 2. key ← A[j];
 3. i ← j - 1;
 4. while i > 0 and A[i] > key do
 5. A[i+1] ← A[i];
 6. i ← i - 1;
 endwhile
 7. A[i+1] ← key;
endfor
Pseudocode Notation

- Liberal use of English
- Use of indentation for block structure
- Omission of error handling and other details
 • Needed in real programs
Algorithm: Insertion sort

Idea:

- Items sorted **in-place**
 - Items rearranged within array
 - At most constant number of items stored outside the array at any time
 - Input array A contains sorted output sequence when Insertion-Sort is finished

• **Incremental approach**
Algorithm: Insertion sort

Example: Sample sequence

\[A = \langle 31, 42, 59, 26, 40, 35 \rangle \]

Assume first 5 items are already sorted in \(A[1..5] \)

\[A = \langle 26, 31, 40, 42, 59, 35 \rangle \]
Running Time

• Depends on
 – Input size (e.g., 6 elements vs 60000 elements)
 – Input itself (e.g., partially sorted)

• Usually want upper bound
Kinds of running time analysis:

- **Worst Case** *(Usually)*:
 \[T(n) = \text{max time on any input of size } n \]

- **Average Case** *(Sometimes)*:
 \[T(n) = \text{average time over all inputs of size } n \]
 Assumes statistical distribution of inputs

- **Best Case** *(Rarely)*:
 BAD*: Cheat with slow algorithm that works fast on some inputs
 GOOD: Only for showing bad lower bound

*Can modify any algorithm (almost) to have a low best-case running time

- Check whether input constitutes an output at the very beginning of the algorithm
Running Time

• For Insertion-Sort, what is its worst-case time
 – Depends on speed of primitive operations
 • Relative speed (on same machine)
 • Absolute speed (on different machines)

• Asymptotic analysis
 – Ignore machine-dependent constants
 – Look at growth of $T(n)$ as $n \to \infty$
Notation

• Drop low order terms
• Ignore leading constants

E.g. $3n^3 + 90n^2 - 2n + 5 = \Theta(n^3)$
• As n gets large a $\Theta(n^2)$ algorithm runs faster than a $\Theta(n^3)$ algorithm.
Running Time Analysis of Insertion-Sort

• Sum up costs:

\[T(n) = c_1n + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1) \]

• The best case (sorted order):

\[T(n) = (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_4 + c_5 + c_7) \]

• The worst case (reverse sorted order):

\[T(n) = \frac{1}{2} (c_5 + c_6 + c_7)n^2 + (c_1 + c_2 + c_4 + \frac{1}{2} (c_5 + c_6 + c_7) + c_8)n - (c_2 + c_4 + c_5 + c_8) \]
Running Time Analysis of Insertion-Sort

• Worst-case (input reverse sorted)
 – Inner loop is $\Theta(j)$

\[
T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta\left(\sum_{j=2}^{n} j\right) = \Theta(n^2)
\]

• Average case (all permutations equally likely)
 – Inner loop is $\Theta(j/2)$

\[
T(n) = \sum_{j=2}^{n} \Theta\left(\frac{j}{2}\right) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)
\]

• Often, average case not much better than worst case

• Is this a fast sorting algorithm?
 – Yes, for small n. No, for large $n.$
Algorithm: Merge-Sort

• Basic Step: Merge 2 sorted lists of total length \(n \) in \(\Theta(n) \) time

• Example:

\[
\begin{array}{cccc}
2 & 3 & 7 & 8 \\
1 & 4 & 5 & 6 \\
\end{array}
\}
\begin{array}{cccc}
1 & 2 & 3 & 4 & 5 & 6 & \ldots \\
\end{array}
\]
Recursive Algorithm:

Merge-Sort (A,p,r) \((T(n)) \)

if \(p = r \) then return; \((\Theta(1)) \)

else

\(q \leftarrow \lfloor (p+r)/2 \rfloor; \) : Divide \((\Theta(1)) \)

Merge-Sort(A,p,q); : Conquer \((T(n/2)) \)

Merge-Sort(A,q+1,r); : Conquer \((T(n/2)) \)

Merge(A,p,q,r); : Combine \((\Theta(n)) \)

endif

• Call Merge-Sort(A,1,n) to sort A[1..n]

• Recursion bottoms up when subsequences have length 1
Recurrence (for Merge-Sort) - From Section 1.3

- Describes a function recursively in terms of itself
- Describes performance of recursive algorithms
- For Merge-Sort

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n=1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases}
\]
• How do we find a good **upper bound** on \(T(n) \) in closed form?

• Generally, will assume \(T(n) = \text{Constant} \ (\Theta(1)) \) for sufficiently small \(n \)

• For **Merge-Sort** write the above recurrence as

\[
T(n) = 2 \ T(n/2) + \Theta(n)
\]

• Solution to the recurrence

\[
T(n) = \Theta(n \log n)
\]
Conclusions (from Section 1.3)
∀ Θ(nlgn) grows more slowly than Θ(n²)

Therefore Merge-Sort beats Insertion-Sort in the worst case

• In practice, Merge-Sort beats Insertion-Sort for n>30 or so.