
Exploiting Query Views for Static Index Pruning in Web
Search Engines

Ismail Sengor Altingovde, Rifat Ozcan, Özgür Ulusoy
Department of Computer Engineering, Bilkent University, 06800, Ankara, Turkey

{ismaila, rozcan, oulusoy}@cs.bilkent.edu.tr

ABSTRACT
We propose incorporating query views in a number of static
pruning strategies, namely term-centric, document-centric and
access-based approaches. These query-view based strategies
considerably outperform their counterparts for both disjunctive
and conjunctive query processing in Web search engines.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing –indexing methods H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval –search
process.

General Terms
Algorithms, Experimentation, Performance.

1. INTRODUCTION
Static index pruning techniques permanently remove a

presumably redundant part of an inverted file, to reduce the file
size and query processing time. The sole purpose of a static
pruning strategy is staying loyal to the original ranking of the
underlying search system especially for the top-ranked results,
while reducing the index size, to the greatest extent possible.

In this paper, we propose a new pruning approach that exploits
query views. In the literature, the idea of using query terms to
represent a document is known as query view (e.g., [8]). In the
scope of our work, for a given document, all queries that rank this
particular document among their top-ranked results constitute the
query view of that document. Our contributions are as follows:

• First, we fully explore the potential of a previous strategy,
namely access-based pruning, that makes use of the query
logs in the static index pruning context. To this end, we
provide an adaptive version of the term-centric pruning
algorithm provided in [6]. We also introduce a new
document-centric version of the access-based algorithm, and
show that the latter outperforms its term-centric counterpart.

• Second, we provide an effectiveness comparison of these
access-based approaches to the term-centric approach [4] and
document-centric approach [3], for their best performing
setups reported in the literature. Our experimental findings
reveal that, although the access based methods are inferior to
the latter strategies for disjunctive query processing (as

shown in the literature [6]), they turn out to be the most
effective strategies when the queries are processed in the
conjunctive mode. This is a new result that has not been
reported before. Furthermore, the document-centric version
of the access-based strategy as described here is found to be
superior to all other strategies for conjunctive query
processing, which has vital importance for WSEs.

• Finally, the main contribution of this paper is exploiting
query views to tailor more effective static index pruning
strategies for both disjunctive and conjunctive query
processing; i.e., the most common query processing modes
in WSEs. More specifically, the terms of a document that
appear in the query view of this particular document are
considered to be privileged and preserved in the index to the
greatest possible extent during the static pruning. The query
view heuristic is coupled with all three pruning approaches
in the literature (term- and document-centric approaches as
proposed in [4, 3], and the access-based term-centric method
adapted from [6]) as well as the document-centric version of
the access-based method that is introduced here.

Our findings reveal that for both disjunctive and
conjunctive query processing, the query view based pruning
strategies reveal an excellent performance in terms of the
similarity of the top-ranked results to the original results
(i.e., obtained by using the original index) and significantly
outperform their counterparts without query views. The gains
are especially emphasized at the higher levels of pruning.

2. STATIC PRUNING APPROACHES
2.1 Baseline Static Pruning Algorithms
Term-Centric Pruning (TCP) strategy. TCP, the adaptive
version of the top-k algorithm proposed in [4], is reported to be
very successful in static pruning. In this strategy, for each term t
in the index I, first the postings in t’s posting list are sorted by a
scoring function (e.g, TF-IDF). Next, the kth highest score, zt, is
determined and all postings that have scores less than zt * ε are
removed, where ε is a user defined parameter to govern the
pruning level. Following the practice in [2], we simply determine
ε values according to the desired pruning level. We also employ
BM25 as the scoring function for TCP and entirely discard the
terms with document frequency ft > N/2 (where N is the total
number of documents) as in [2]. In Algorithm 1, we demonstrate
TCP strategy as adapted in our framework.

Document-Centric Pruning (DCP) strategy. In this paper, we
apply the DCP strategy for the entire index, which is slightly
different than pruning only the most frequent terms as originally

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11...$10.00.

Algorithm 1 Term-Centric Pruning
Input: I, k, ε, N
1: for each term t in I
2: fetch the postings list It from I
3: if |It| > N / 2
4: remove It entirely from I
5: if |It| > k
6: for each posting entry <d>,
7: compute Score(t, d) with BM25
8: let zt be the kth highest score among the scores
9: τt zt * ε
10: for each posting entry <d>
11: if Score(t, d) ≤ τt
12: remove entry <d> from It

proposed by [3]. Additionally, instead of scoring each term of a
document with Kullback-Leibler divergence (KLD), we prefer to
use BM25, as it is reported to perform better in [1]. Finally, in [3]
it is again shown that the uniform strategy; i.e., pruning a fixed
number of terms from each document, is inferior to the adaptive
strategy, where a fraction (λ) of the total number of unique terms
in a document is pruned. Algorithm 2 conveys the DCP strategy.

Algorithm 2 Document-Centric Pruning
Input: D, λ
1: for each document d ∈ D
2: sort t ∈ d in descending order w.r.t. Score(d, t)
3: remove the last |d|*λ terms from d

2.2 Adaptive Access-based Pruning Strategies
Access-based Term-Centric Pruning (aTCP) strategy. For the
first time in the literature, Garcia et al. used the search engine
query logs to guide the static index pruning process [6]. However,
their work does not use the actual content of the queries, but just
makes use of the access count of a document; i.e., the number of
times a document appears in top-k results of queries, where k is
typically set to 1000. In particular, their algorithm applies the, so-
called, MAXPOST heuristic, which simply keeps a fixed number
of postings with the highest number of access count in each
term’s posting list. In that work, the result of the MAXPOST
approach is found to be rather discouraging.

For this study, we decide to implement an adaptive version of
the MAXPOST approach. Since it iterates over each term and
removes some postings, we classify this approach as term-centric,
and call the adaptive version access-based TCP (aTCP). In this
case, instead of keeping a fixed number of postings in each list,
we keep a fraction (μ) of the number of postings in each list.
Algorithm 3 shows aTCP strategy.

Algorithm 3 Access-based Term-Centric Pruning
Input: I, μ, AccessScore[]
1: for each term t in I
2: fetch the postings list It from I
3: sort d ∈ It in descending order w.r.t. AccessScore[d]
4: remove the last |It|*μ postings from It

Access-based Document-Centric Pruning (aDCP) strategy. In
this paper, we propose a new access-based strategy. Instead of
pruning the postings from each list, we propose to prune

documents entirely from the collection, starting from the
documents with the smallest access counts. The algorithm is
adaptive in that, for an input pruning fraction (μ), the pruning
iterates while the total length of pruned documents is less than
|D|*μ, where |D| is the collection length; i.e., total number of
unique terms in the collection. Algorithm 4 presents this strategy,
which we call access-based DCP (aDCP).

Algorithm 4 Access-based Document-Centric Pruning
Input: D, μ, AccessScore[]
1: sort d ∈ D in descending order w.r.t. AccessScore[d]
2: NumPrunedPostings 0
3: while NumPrunedPostings < |D|*μ
4: remove the document d with the smallest access score
5: NumPrunedPostings NumPrunedPostings + |d|

3. PRUNING USING QUERY VIEWS
Let’s assume a document collection D= {d1,…,dN} and a query

log Q = {Q1, …,QM}, where Qi = {t1,…,tq}. After this query log Q
is executed over D, the top-k documents (at most) are retrieved
for each query Qi, which is denoted as RQi,k. Now, we define the
query view of a document d as: QVd = ∪ Qi, where d ∈ RQi, k.

That is, each document is associated with a set of terms that
appear in the queries that have retrieved this document within the
top-k results. Without loss of generality, we assume that during
the construction of the query views, queries in the log are
executed in the conjunctive mode; i.e., all terms that appear in the
query view of a document also appear in the document.

The set of query views for all documents, QVD, can be
efficiently computed either offline or online. In an offline
computation mode, the search engine can execute a relatively
small number of queries on the collection and retrieve, say, top-
1000 results per query. Note that, as discussed in [6], it may not
be necessary to use all of the previous log files; the most recent
log or sampling from the earlier logs can be sufficient.

We envision that for a given document, the terms that appear as
query terms to rank this document within top results of these
queries should be privileged, and should not be pruned to the
greatest extent possible. In what follows, we introduce four
pruning strategies that exploit the query views, based on the TCP,
DCP, aTCP and aDCP strategies, respectively.

Term-Centric Pruning with Query Views (TCP-QV). This
strategy is based on Algorithm 1, but employs query views during
pruning. In particular, once the pruning threshold (τt) is
determined for a term t’s posting list, the postings that have scores
below the threshold are not directly pruned. That is, given a
posting d in the list of term t, if t ∈ QVd, this posting is preserved
in the index, regardless of its score. Note that, by only modifying
line 11 as presented in Algorithm 5, the query view heuristic is
taken into account to guide the pruning.

Algorithm 5 Term-Centric Pruning with Query Views
Input: I, k, ε, N, QVD
1-9: //First 9 lines are the same as Algorithm 1 and not repeated
10: for each posting entry <d>,
11: if Score(t, d) ≤ τt and t ∉ QVd
12: remove entry <d> from It

Document-Centric Pruning with Query Views (DCP-QV). In
this case, for the purpose of discussion, let’s assume that each
term t in a document d is associated with a priority score Prt,
which is set to 1 if t ∈ QVd and 0 otherwise. The terms of a
document d are now sorted (in descending order) according to
these two keys, first the priority score and then score function
output. During the pruning, last |d|*λ terms are removed, as
before. This strategy is demonstrated in Algorithm 6.

Algorithm 6 Document-Centric Pruning with Query Views
Input: D, λ, QVD
1: for each document d in D
2: for each term t ∈ d
3: if t ∈ QVd then Prt 1 else Prt 0
4: sort t ∈ d in descending order wrt. first Prt, then Score(d, t)
5: remove the last |d|*λ terms from d

Access-based Term-Centric Pruning (aTCP) with Query
Views (aTCP-QV). In aTCP strategy, , we assume that each
posting d in the list of a term t is associated with a priority score
Prd, which is set to 1 if t ∈ QVd and 0 otherwise. Then, the
postings in the list are sorted in the descending order of the two
keys, first the priority score and then the access count. During the
pruning, last |It|*μ postings are removed (Algorithm 7).

Algorithm 7 Access-based Term-Centric Pruning with QV
Input: I, μ, AccessScore[], QVD
1: for each term t in I
2: fetch the postings list It from I
3: for each posting entry <d>,
3: if t ∈ QVd then Prd 1 else Prd 0
7: sort d ∈ It in desc. order w.r.t. first Prd then AccessScore[d]
8: remove the last |It|*μ postings from It

Access-based Document-Centric Pruning (aDCP) with Query
Views (aDCP-QV). In this case, we again prune the documents
starting from those with the smallest access counts until the
pruning threshold (|D|*μ) is reached. But, while pruning
documents, those terms that appear in the query view of these
documents are kept in the index. This is shown in Algorithm 8.

Algorithm 8 Access-based Document-Centric Pruning with QV
Input: D, μ, AccessScore[], QVD
1: sort d ∈ D in descending order w.r.t. AccessScore[d]
2: NumPrunedPostings 0
3: while NumPrunedPostings < |D|*μ
4: fetch d with the smallest score
5: for each term t ∈ d
6: if t ∉ QVd
7: remove t from d
8: NumPrunedPostings NumPrunedPostings + 1

4. EXPERIMENTAL EVALUATION
Document collection and indexing. For this study, we crawled
around 2.2 million pages from Open Directory Project (ODP)
Web directory (www.dmoz.org). We first indexed the dataset
using the publicly available Zettair IR system
(www.seg.rmit.edu.au/zettair/). Once the initial index is
generated, we used our homemade IR system to create the pruned
index files and execute the training and test queries over them.

Training and test query sets. We use a subset of the AOL Query
Log (http://imdc.datcat.org/collection/1-003M-5) that contains 20
million queries for a period of 12 weeks. The query terms are
normalized by case-folding, sorting in the alphabetical order and
removing the punctuation and stop-words. We consider only those
queries of which all terms appear in the lexicon of the collection.

From the normalized query log subset, we construct training
and test sets. The training query set that is used to compute the
access counts and query views for the documents are from the
first half (i.e., 6 weeks) of the log. The test set that is used to
evaluate the performance for different pruning strategies are
constructed from the second half (last 6 weeks) of the log. During
the query processing with both training and test sets, a version of
BM25 scoring function as described in [3], is used.

In the training stage, queries are executed in the conjunctive
mode and top-1000 results per query are retrieved. Training set
includes 1.8 million queries. We use a test set of 1000 randomly
selected queries from the second half of the AOL log (i.e., it is
temporally disjoint from the training set). These queries are also
normalized. We keep only those queries that can retrieve at least
one document from our collection when processed in the
conjunctive mode. Furthermore, we guarantee that train and test
sets are query-wise disjoint by removing all queries from the test
set that also appear in the training set after the normalization.

Evaluation measure. In this paper, we compare the lists of top-
10 results that are obtained using the original and pruned index
files. To this end, we employ the symmetric difference measure
[4]. The score of 1 means exact overlap, whereas the score of 0
implies that two lists are disjoint.

Performance of the query views: disjunctive mode. In Table 1,
we provide average symmetric difference results of all eight
pruning strategies for the top-10 results and disjunctive query
processing mode. In terms of the four baseline algorithms, the
findings in this case confirm the earlier observations in [1, 4, 6].
Our adaptation of the access-based approach, aTCP, is the worst
among all and only after 30% pruning, the symmetric difference
score drops down to 0.54. On the other hand, the document-
centric version of the access-based pruning strategy, aDCP,
achieves much better performance; it is clearly superior to its
term-centric counterpart and provides comparable results to DCP,
at the early stages of the pruning (up to 50%). Among these four
strategies, TCP is the clear winner whereas DCP is the runner-up
and the access-based strategies are inferior to those, especially at
the higher levels of pruning. This implies that solely using access
counts is not adequate to guide the static index pruning.

Next, we evaluate the performance of the strategies with query
views, namely TCP-QV, DCP-QV, aDCP-QV and aTCP-QV. A
brief glance over Table 1 reveals that these approaches are far
superior to their counterparts that are not augmented with query
views. Remarkably, the order of algorithms is similar in that TCP-
QV is still the best performer (though sometimes replaced by
DCP-QV) and aTCP-QV is the worst. However, the gaps are now
considerably closer. Indeed, the percentage improvement columns
reveal that, query views enormously enhance the performance of
the poor strategies (e.g., aTCP) at all pruning levels (ranging from
11% to 343%). Even for those strategies that were relatively more
successful before, query views provide significant gains,
especially at the higher levels of the pruning. For instance, at 50%

Table 1. Avg. symmetric difference scores for top-10 results and disjunctive query processing. Relative improvements w.r.t. the
baseline algorithm are shown in the column ∆%. All improvements are statistically significant at 0.05 level using paired t-test.

% TCP DCP aTCP aDCP TCP-QV ∆% DCP-QV ∆% aTCP-QV ∆% aDCP-QV ∆%
10% 0.97 0.94 0.84 0.94 0.98 1% 0.98 4% 0.93 11% 0.96 2%
20% 0.91 0.86 0.68 0.87 0.95 4% 0.95 10% 0.88 29% 0.91 5%
30% 0.83 0.77 0.54 0.77 0.91 10% 0.93 21% 0.84 56% 0.86 12%
40% 0.74 0.68 0.42 0.66 0.86 16% 0.89 31% 0.80 90% 0.81 23%
50% 0.64 0.58 0.31 0.54 0.82 28% 0.84 45% 0.76 145% 0.77 43%
60% 0.55 0.49 0.22 0.41 0.79 44% 0.79 61% 0.74 236% 0.74 80%
70% 0.47 0.40 0.14 0.30 0.71 51% 0.66 65% 0.62 343% 0.66 120%

Table 2. Avg. symmetric difference scores for top-10 results and conjunctive query processing. Relative improvements w.r.t. the
baseline algorithm are shown in the column ∆%. All improvements except (*)ed values are statistically significant at 0.05 level.

% TCP DCP aTCP aDCP TCP-QV ∆% DCP-QV ∆% aTCP-QV ∆% aDCP-QV ∆%
10% 0.66 0.80 0.93 0.98 0.94 42% 0.98 23% 0.97 4% 0.98 0%*
20% 0.52 0.66 0.86 0.96 0.90 73% 0.95 44% 0.94 9% 0.96 0%*
30% 0.41 0.54 0.78 0.91 0.86 110% 0.92 70% 0.91 17% 0.93 2%
40% 0.32 0.43 0.70 0.85 0.84 163% 0.88 105% 0.87 24% 0.90 6%
50% 0.25 0.33 0.60 0.79 0.81 224% 0.84 155% 0.84 40% 0.86 9%
60% 0.19 0.25 0.52 0.71 0.79 316% 0.79 216% 0.79 52% 0.81 14%
70% 0.15 0.17 0.43 0.61 0.51 240% 0.58 241% 0.71 65% 0.73 20%

pruning, the symmetric difference score jumps from 0.64 to 0.82
for TCP (a relative increase of 28%), and from 0.58 to 0.84 for
DCP (45%). The relative improvements for all strategies exceed
10% after 20% pruning level. In short, query views significantly
improve the baseline strategies, and carry them around 75-85%
effectiveness at 50% pruning level, which is a solid success.

Performance of the query views: conjunctive mode. In Table 2,
we provide symmetric difference results for the conjunctive case.
Interestingly, conjunctive processing is mostly overlooked and
has been taken into account in only few works [5, 7, 9], whereas it
is the default and probably the most crucial processing mode for
WSEs. Thus, we first analyse the results for the baseline
strategies, which has not been discussed in the literature to this
extent, before moving to query view based strategies.

Our experiments reveal that for the conjunctive processing
mode, TCP is the worst strategy. This is a rather expectable result
(see, for instance, [5, 9]). What is more surprising for this case is
the performance of the access-based strategies: aDCP and aTCP
outperform TCP and DCP with a wide margin at all pruning
levels. This is a new result that has not been reported before in the
literature. We think that one reason of this great boost in
performance may be the conjunctive processing of the training
queries while computing the access counts. In the previous work,
both training and testing have been conducted in disjunctive
mode. Another remarkable issue is, our document-centric version
of the access based strategy, aDCP, significantly outperforms its
term-centric adaptation. Indeed, aDCP achieves a similarity of
79% to the original results even when the index is halved.

Turning our attention to the query view based strategies, we
again report important improvements. This time, the worst
performing strategies, TCP and DCP, have most benefited from
the query views, even more than doubling or tripling their
similarity scores at certain pruning levels. The gains on access-
based strategies are less emphasized, though reaching to 40% and
9% at 50% pruning for aTCP-QV and aDCP-QV, respectively.
Note that, aDCP reaches to very high similarity scores of 0.98 and

0.96 at 10% and 20% pruning levels, respectively; and these are
the only cases in Table 2 where the query view couldn’t achieve
any further improvements. For all other cases, query view based
strategies again surpass their counterparts with a large margin,
and reach to around 80% similarity at a pruning level of 60%.

5. ACKNOWLEDGMENTS
This work is supported by The Scientific and Technological
Research Council of Turkey (TÜBİTAK) under the grant no
108E008. We thank Cigdem Gündüz-Demir and Ben Carterette.

6. REFERENCES
[1] Altingovde, I. S., Ozcan, R., and Ulusoy, Ö. A practitioner’s

guide for static index pruning. In ECIR'09, 675-679, 2009.
[2] Blanco, R. and Barreiro, A. Boosting static pruning of

inverted files. In Proc. of SIGIR’07, 777-778, 2007.
[3] Büttcher, S. and Clarke, C. L. A document-centric approach

to static index pruning in text retrieval systems. In Proc. of
CIKM’06, 182-189, 2006.

[4] Carmel, D., Cohen, D., Fagin, R., Farchi, E., Herscovici, M.,
Maarek, Y. S., and Soffer, A. Static index pruning for
information retrieval systems. In SIGIR’01, 43-50, 2001.

[5] de Moura, E. S., Santos, C. F., Araujo, B. D., Silva, A. S.,
Calado, P., and Nascimento, M. A. Locality-Based pruning
methods for web search. ACM TOIS 26, 2, 1-28, 2008.

[6] Garcia, S. Search Engine Optimization Using Past Queries.
Doctoral Thesis, RMIT University, 2007.

[7] Ntoulas, A. and Cho, J. Pruning policies for two-tiered
inverted index with correctness guarantee. In Proc. of
SIGIR’07, 191-198, 2007.

[8] Poblete, B. and Baeza-Yates, R. Query-sets: using implicit
feedback and query patterns to organize web documents. In
Proc. of WWW’08, 41-50, 2008.

[9] Skobeltsyn, G., Junqueira, F., Plachouras, V., and Baeza-
Yates, R. ResIn: a combination of results caching and index
pruning for high-performance web search engines. In Proc of
SIGIR’08, 131-138, 2008.

