Bayesian Decision Theory

- Bayesian Decision Theory is a fundamental statistical approach that quantifies the tradeoffs between various decisions using probabilities and costs that accompany such decisions.
- First, we will assume that all probabilities are known.
- Then, we will study the cases where the probabilistic structure is not completely known.
Fish Sorting Example Revisited

- State of nature is a random variable.
- Define w as the type of fish we observe (state of nature, \textit{class}) where
 - $w = w_1$ for sea bass,
 - $w = w_2$ for salmon.
- $P(w_1)$ is the \textit{a priori probability} that the next fish is a sea bass.
- $P(w_2)$ is the a priori probability that the next fish is a salmon.
Prior Probabilities

- Prior probabilities reflect our knowledge of how likely each type of fish will appear before we actually see it.
- How can we choose $P(w_1)$ and $P(w_2)$?
 - Set $P(w_1) = P(w_2)$ if they are equiprobable (uniform priors).
 - May use different values depending on the fishing area, time of the year, etc.
- Assume there are no other types of fish

$$P(w_1) + P(w_2) = 1$$
(exclusivity and exhaustivity).
Making a Decision

- How can we make a decision with only the prior information?

Decide

\[
\begin{cases}
 w_1 & \text{if } P(w_1) > P(w_2) \\
 w_2 & \text{otherwise}
\end{cases}
\]

- What is the \textit{probability of error} for this decision?

\[
P(error) = \min\{P(w_1), P(w_2)\}
\]
Let’s try to improve the decision using the lightness measurement x.

Let x be a continuous random variable.

Define $p(x|w_j)$ as the class-conditional probability density (probability of x given that the state of nature is w_j for $j = 1, 2$).

$p(x|w_1)$ and $p(x|w_2)$ describe the difference in lightness between populations of sea bass and salmon.
Figure 1: Hypothetical class-conditional probability density functions for two classes.
Posterior Probabilities

- Suppose we know \(P(w_j) \) and \(p(x|w_j) \) for \(j = 1, 2 \), and measure the lightness of a fish as the value \(x \).

- Define \(P(w_j|x) \) as the \textit{a posteriori probability} (probability of the state of nature being \(w_j \) given the measurement of feature value \(x \)).

- We can use the \textit{Bayes formula} to convert the prior probability to the posterior probability

\[
P(w_j|x) = \frac{p(x|w_j)P(w_j)}{p(x)}
\]

where \(p(x) = \sum_{j=1}^{2} p(x|w_j)P(w_j) \).
Making a Decision

- \(p(x|w_j) \) is called the **likelihood** and \(p(x) \) is called the **evidence**.

- How can we make a decision after observing the value of \(x \)?

 Decide

 \[
 \begin{cases}
 w_1 & \text{if } P(w_1|x) > P(w_2|x) \\
 w_2 & \text{otherwise}
 \end{cases}
 \]

- Rewriting the rule gives

 Decide

 \[
 \begin{cases}
 w_1 & \text{if } \frac{p(x|w_1)}{p(x|w_2)} > \frac{P(w_2)}{P(w_1)} \\
 w_2 & \text{otherwise}
 \end{cases}
 \]

- Note that, at every \(x \),

 \[
 P(w_1|x) + P(w_2|x) = 1.
 \]
What is the probability of error for this decision?

\[P(error|x) = \begin{cases}
 P(w_1|x) & \text{if we decide } w_2 \\
 P(w_2|x) & \text{if we decide } w_1
\end{cases} \]

What is the average probability of error?

\[P(error) = \int_{-\infty}^{\infty} p(error, x) \, dx = \int_{-\infty}^{\infty} P(error|x) \, p(x) \, dx \]

Bayes decision rule minimizes this error because

\[P(error|x) = \min\{P(w_1|x), P(w_2|x)\}. \]
Bayesian Decision Theory

- How can we generalize to
 - more than one feature?
 - replace the scalar x by the feature vector \mathbf{x}
 - more than two states of nature?
 - just a difference in notation
 - allowing actions other than just decisions?
 - allow the possibility of rejection
 - different risks in the decision?
 - define how costly each action is
Let \(\{w_1, \ldots, w_c\} \) be the finite set of \(c \) states of nature (classes, categories).

Let \(\{\alpha_1, \ldots, \alpha_a\} \) be the finite set of \(a \) possible actions.

Let \(\lambda(\alpha_i \mid w_j) \) be the loss incurred for taking action \(\alpha_i \) when the state of nature is \(w_j \).

Let \(x \) be the \(d \)-component vector-valued random variable called the feature vector.
Bayesian Decision Theory

- $p(x|w_j)$ is the class-conditional probability density function.
- $P(w_j)$ is the prior probability that nature is in state w_j.
- The posterior probability can be computed as

$$
P(w_j|x) = \frac{p(x|w_j)P(w_j)}{p(x)}$$

where $p(x) = \sum_{j=1}^{c} p(x|w_j)P(w_j)$.

Conditional Risk

- Suppose we observe x and take action α_i.
- If the true state of nature is w_j, we incur the loss $\lambda(\alpha_i|w_j)$.
- The expected loss with taking action α_i is

$$R(\alpha_i|x) = \sum_{j=1}^{c} \lambda(\alpha_i|w_j)P(w_j|x)$$

which is also called the conditional risk.
The general decision rule $\alpha(x)$ tells us which action to take for observation x.

We want to find the decision rule that minimizes the overall risk

$$R = \int R(\alpha(x)|x) p(x) \, dx.$$

Bayes decision rule minimizes the overall risk by selecting the action α_i for which $R(\alpha_i|x)$ is minimum.

The resulting minimum overall risk is called the Bayes risk and is the best performance that can be achieved.
Define

- α_1: deciding w_1,
- α_2: deciding w_2,
- $\lambda_{ij} = \lambda(\alpha_i \mid w_j)$.

Conditional risks can be written as

\[
R(\alpha_1 \mid x) = \lambda_{11} P(w_1 \mid x) + \lambda_{12} P(w_2 \mid x),
\]
\[
R(\alpha_2 \mid x) = \lambda_{21} P(w_1 \mid x) + \lambda_{22} P(w_2 \mid x).
\]
The minimum-risk decision rule becomes

\[
\text{Decide } \begin{cases}
 w_1 & \text{if } (\lambda_{21} - \lambda_{11})P(w_1|\mathbf{x}) > (\lambda_{12} - \lambda_{22})P(w_2|\mathbf{x}) \\
 w_2 & \text{otherwise}
\end{cases}
\]

This corresponds to deciding \(w_1 \) if

\[
\frac{p(\mathbf{x}|w_1)}{p(\mathbf{x}|w_2)} > \frac{(\lambda_{12} - \lambda_{22})P(w_2)}{(\lambda_{21} - \lambda_{11})P(w_1)}
\]

\(\Rightarrow \) comparing the likelihood ratio to a threshold that is independent of the observation \(\mathbf{x} \).
Minimum-Error-Rate Classification

- Actions are decisions on classes (α_i is deciding w_i).
- If action α_i is taken and the true state of nature is w_j, then the decision is correct if $i = j$ and in error if $i \neq j$.
- We want to find a decision rule that minimizes the probability of error.
Define the *zero-one loss function*

\[
\lambda(\alpha_i | w_j) = \begin{cases}
0 & \text{if } i = j \\
1 & \text{if } i \neq j
\end{cases} \quad i, j = 1, \ldots, c
\]

(all errors are equally costly).

Conditional risk becomes

\[
R(\alpha_i | \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i | w_j) P(w_j | \mathbf{x})
\]

\[
= \sum_{j \neq i} P(w_j | \mathbf{x})
\]

\[
= 1 - P(w_i | \mathbf{x}).
\]
Minimizing the risk requires maximizing $P(w_i|x)$ and results in the *minimum-error decision rule*

Decide w_i if $P(w_i|x) > P(w_j|x)$ \(\forall j \neq i\).

The resulting error is called the *Bayes error* and is the best performance that can be achieved.
Minimum-Error-Rate Classification

Figure 2: The likelihood ratio $\frac{p(x|w_1)}{p(x|w_2)}$. The threshold θ_a is computed using the priors $P(w_1) = 2/3$ and $P(w_2) = 1/3$, and a zero-one loss function. If we penalize mistakes in classifying w_2 patterns as w_1 more than the converse, we should increase the threshold to θ_b.

θ_a θ_b \mathcal{R}_2 \mathcal{R}_1 \mathcal{R}_2 \mathcal{R}_1
Discriminant Functions

- A useful way of representing classifiers is through *discriminant functions* $g_i(x), i = 1, \ldots, c$, where the classifier assigns a feature vector x to class w_i if

$$g_i(x) > g_j(x) \quad \forall j \neq i.$$

- For the classifier that minimizes conditional risk

$$g_i(x) = -R(\alpha_i|x).$$

- For the classifier that minimizes error

$$g_i(x) = P(w_i|x).$$
Discriminant Functions

- These functions divide the feature space into c decision regions (R_1, \ldots, R_c), separated by decision boundaries.
- Note that the results do not change even if we replace every $g_i(x)$ by $f(g_i(x))$ where $f(\cdot)$ is a monotonically increasing function (e.g., logarithm).
- This may lead to significant analytical and computational simplifications.
The Gaussian Density

- Gaussian can be considered as a model where the feature vectors for a given class are continuous-valued, randomly corrupted versions of a single typical or prototype vector.

- Some properties of the Gaussian:
 - Analytically tractable.
 - Completely specified by the 1st and 2nd moments.
 - Has the maximum entropy of all distributions with a given mean and variance.
 - Many processes are asymptotically Gaussian (Central Limit Theorem).
 - Linear transformations of a Gaussian are also Gaussian.
 - Uncorrelatedness implies independence.
Univariate Gaussian

For $x \in \mathbb{R}$:

$$p(x) = N(\mu, \sigma^2)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right]$$

where

$$\mu = E[x] = \int_{-\infty}^{\infty} x \ p(x) \ dx,$$

$$\sigma^2 = E[(x - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 \ p(x) \ dx.$$
Figure 3: A univariate Gaussian distribution has roughly 95% of its area in the range $|x - \mu| \leq 2\sigma$.
Multivariate Gaussian

- For $x \in \mathbb{R}^d$:

$$p(x) = N(\mu, \Sigma)$$

$$= \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right]$$

where

$$\mu = E[x] = \int x p(x) \, dx,$$

$$\Sigma = E[(x - \mu)(x - \mu)^T] = \int (x - \mu)(x - \mu)^T p(x) \, dx.$$
Figure 4: Samples drawn from a two-dimensional Gaussian lie in a cloud centered on the mean \(\mu \). The loci of points of constant density are the ellipses for which \((x - \mu)^T \Sigma^{-1} (x - \mu)\) is constant, where the eigenvectors of \(\Sigma \) determine the direction and the corresponding eigenvalues determine the length of the principal axes. The quantity \(r^2 = (x - \mu)^T \Sigma^{-1} (x - \mu) \) is called the squared \textit{Mahalanobis distance} from \(x \) to \(\mu \).
Linear Transformations

- Recall that, given $x \in \mathbb{R}^d$, $A \in \mathbb{R}^{d \times k}$, $y = A^T x \in \mathbb{R}^k$, if $x \sim N(\mu, \Sigma)$, then $y \sim N(A^T \mu, A^T \Sigma A)$.

- As a special case, the whitening transform

$$A_w = \Phi \Lambda^{-1/2}$$

where

- Φ is the matrix whose columns are the orthonormal eigenvectors of Σ,
- Λ is the diagonal matrix of the corresponding eigenvalues,

gives a covariance matrix equal to the identity matrix I.
Discriminant Functions for the Gaussian Density

- Discriminant functions for minimum-error-rate classification can be written as

\[g_i(x) = \ln p(x|w_i) + \ln P(w_i). \]

- For \(p(x|w_i) = N(\mu_i, \Sigma_i) \)

\[g_i(x) = -\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(w_i). \]
Case 1: $\Sigma_i = \sigma^2 I$

- Discriminant functions are

$$g_i(x) = w_i^T x + w_{i0} \quad \text{(linear discriminant)}$$

where

$$w_i = \frac{1}{\sigma^2} \mu_i$$

$$w_{i0} = -\frac{1}{2\sigma^2} \mu_i^T \mu_i + \ln P(w_i)$$

(w_{i0} is the threshold or bias for the i'th category).
Case 1: $\Sigma_i = \sigma^2 I$

- Decision boundaries are the hyperplanes $g_i(x) = g_j(x)$, and can be written as

$$w^T(x - x_0) = 0$$

where

$$w = \mu_i - \mu_j$$

$$x_0 = \frac{1}{2}(\mu_i + \mu_j) - \frac{\sigma^2}{\|\mu_i - \mu_j\|^2} \ln \frac{P(w_i)}{P(w_j)} (\mu_i - \mu_j).$$

- Hyperplane separating R_i and R_j passes through the point x_0 and is orthogonal to the vector w.

Case 1: $\Sigma_i = \sigma^2 I$

Figure 5: If the covariance matrices of two distributions are equal and proportional to the identity matrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of $d - 1$ dimensions, perpendicular to the line separating the means. The decision boundary shifts as the priors are changed.
Case 1: $\Sigma_i = \sigma^2 I$

- Special case when $P(w_i)$ are the same for $i = 1, \ldots, c$ is the **minimum-distance classifier** that uses the decision rule

$$\text{assign } x \text{ to } w_{i^*} \text{ where } i^* = \arg \min_{i=1,\ldots,c} \|x - \mu_i\|. $$
Case 2: $\Sigma_i = \Sigma$

- Discriminant functions are

$$g_i(x) = w_i^T x + w_{i0} \quad \text{(linear discriminant)}$$

where

$$w_i = \Sigma^{-1} \mu_i$$

$$w_{i0} = -\frac{1}{2} \mu_i^T \Sigma^{-1} \mu_i + \ln P(w_i).$$
Case 2: $\Sigma_i = \Sigma$

- Decision boundaries can be written as

$$w^T(x - x_0) = 0$$

where

$$w = \Sigma^{-1}(\mu_i - \mu_j)$$

$$x_0 = \frac{1}{2}(\mu_i + \mu_j) - \frac{\ln(P(w_i)/P(w_j))}{(\mu_i - \mu_j)^T\Sigma^{-1}(\mu_i - \mu_j)}(\mu_i - \mu_j).$$

- Hyperplane passes through x_0 but is not necessarily orthogonal to the line between the means.
Case 2: $\Sigma_i = \Sigma$

Figure 6: Probability densities with equal but asymmetric Gaussian distributions. The decision hyperplanes are not necessarily perpendicular to the line connecting the means.
Case 3: $\Sigma_i = \text{arbitrary}$

- Discriminant functions are

$$g_i(x) = x^TW_ix + w_i^Tx + w_{i0} \quad \text{(quadratic discriminant)}$$

where

$$W_i = -\frac{1}{2} \Sigma_i^{-1}$$
$$w_i = \Sigma_i^{-1} \mu_i$$
$$w_{i0} = -\frac{1}{2} \mu_i^T \Sigma_i^{-1} \mu_i - \frac{1}{2} \ln |\Sigma_i| + \ln P(w_i).$$

- Decision boundaries are hyperquadrics.
Case 3: $\Sigma_i = \text{arbitrary}$

Figure 7: Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general hyperquadrics.
Case 3: $\Sigma_i = \text{arbitrary}$

Figure 8: Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general hyperquadrics.
For the two-category case

\[P(error) = P(x \in \mathcal{R}_2, w_1) + P(x \in \mathcal{R}_1, w_2) \]
\[= P(x \in \mathcal{R}_2 | w_1) P(w_1) + P(x \in \mathcal{R}_1 | w_2) P(w_2) \]
\[= \int_{\mathcal{R}_2} p(x | w_1) P(w_1) \, dx + \int_{\mathcal{R}_1} p(x | w_2) P(w_2) \, dx. \]
For the multicategory case

\[P(error) = 1 - P(correct) \]

\[= 1 - \sum_{i=1}^{c} P(x \in R_i, w_i) \]

\[= 1 - \sum_{i=1}^{c} P(x \in R_i | w_i) P(w_i) \]

\[= 1 - \sum_{i=1}^{c} \int_{R_i} p(x | w_i) P(w_i) \, dx. \]
Figure 9: Components of the probability of error for equal priors and the non-optimal decision point x^*. The optimal point x_B minimizes the total shaded area and gives the Bayes error rate.
Receiver Operating Characteristics

- Consider the two-category case and define
 - w_1: target is present,
 - w_2: target is not present.

Table 1: Confusion matrix.

<table>
<thead>
<tr>
<th>Assigned</th>
<th>w_1</th>
<th>w_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>w_1</td>
<td>correct detection</td>
</tr>
<tr>
<td></td>
<td>w_2</td>
<td>false alarm</td>
</tr>
</tbody>
</table>

- Mis-detection is also called false negative or Type II error.
- False alarm is also called false positive or Type I error.
If we use a parameter (e.g., a threshold) in our decision, the plot of these rates for different values of the parameter is called the receiver operating characteristic (ROC) curve.

Figure 10: Example receiver operating characteristic (ROC) curves for different settings of the system.
Summary

- To minimize the overall risk, choose the action that minimizes the conditional risk $R(\alpha|x)$.
- To minimize the probability of error, choose the class that maximizes the posterior probability $P(w_j|x)$.
- If there are different penalties for misclassifying patterns from different classes, the posteriors must be weighted according to such penalties before taking action.
- Do not forget that these decisions are the optimal ones under the assumption that the “true” values of the probabilities are known.