Block Ciphers
Lucifer, DES, RC5, AES

Block Ciphers & S-P Networks
- Block Ciphers: Substitution ciphers with large block size (≥ 64 bits)
- How to define a good substitution for such large blocks?
- “SP Networks” (Shannon, 1949)
 - small, carefully designed substitution boxes (“confusion”)
 - their output mixed by a permutation box (“diffusion”)
 - iterated a certain number of times

Lucifer
- Early 1970s: First serious needs for civilian encryption (in electronic banking)
- IBM’s response: Lucifer, an iterated SP cipher
- Lucifer (v0):
 - Two fixed, 4x4 s-boxes, \(S_0\) & \(S_1\)
 - A fixed permutation \(P\)
 - Key bits determine which s-box is to be used at each position
 - \(8 \times 64/4 = 128\) key bits (for 64-bit block, 8 rounds)

Feistel Ciphers
- A straightforward SP cipher needs twice the hardware: one for encryption \((S, P)\), one for decryption \((S^{-1}, P^{-1})\).
- Feistel’s solution:
 - \(E_k(x)\)
 - \(f(x, k)\)
 - \(x \rightleftharpoons E_{k_1}(E_{k_0}(x)) = E_{k_{10}}(x)\)
 - \(f(x) = f(x, k)\)
 - \(x \rightleftharpoons f(x) \oplus E_{k_1}(E_{k_0}(x))\)
- Lucifer v1: Feistel SP cipher; 64-bit block, 128-bit key, 16 rounds.
Data Encryption Standard (DES)

- Need for a standardized cipher to protect computer and communications data
- NBS’ request for proposals (1973)
- IBM’s submission Lucifer is adopted after a revision by NSA, reducing the key size to 56 bits.

The DES Contraversy

- Design process was not made public. Any hidden trapdoors in the s-boxes? (Now, with the design criteria better understood, this speculation is mostly over.)
- 56-bit key length is too short. So that NSA can break it?

Strengthening DES

- Multiple DES encryption
 3DES: $E_{K3}(D_{K2}(E_{K1}(x)))$
- DES-X (Rivest, 1995)
 $E_{K}(x \oplus K1) \oplus K2$
 - overhead cost minimal
 - construction is provably secure (Rogaway & Killian)

After the DES

- DES was designed mainly for h/w; it was slow in s/w. It was also suspect, due to the secret design process.
- By the late ’80s, need for an independently developed, fast-in-s/w cipher was clear.
- Several prominent examples emerged in this era: IDEA, Blowfish, RC5…
RC5 (Rivest, 1994)

- Extremely simple & flexible
- Variable block size (w), key size (b), no. of rounds (r); specified as RC5-w/r/b.
- Encryption algorithm:
 \[
 \begin{align*}
 L_1 &= L_0 + K_0 \\
 R_1 &= R_0 + K_1 \\
 \text{for } i = 2 \text{ to } 2r+1 \text{ do } \quad & L_i = R_{i-1} \\
 & \quad R_i = ((L_i - 1 \oplus R_i - 1) \ll (R_i - 1)) + K_i
 \end{align*}
 \]
- For 64-bit block size (w=32), 24 rounds (r=12) is secure

Advanced Encryption Standard (AES)

Successful public design process:
- NIST’s request for proposals for a new enc. standard to replace DES (1997)
- 5 finalists (1999)
 - Mars (IBM)
 - RC6 (RSA)
 - Twofish (Schneier et al.)
 - Serpent (Anderson et al.)
 - Rijndael (Daemen & Rijmen)
- Winner: Rijndael (2000)

AES (Rijndael)

- An SP cipher with one algebraically designed s-box (optimal against linear & diff. cryptanalysis)
- 128-bit block size
 - 128, 192, or 256-bit key.
- 10-14 rounds of:
 - ByteSub, ShiftRow, MixColumn, AddRoundKey
- Decryption is similar to encryption (by design)
- Very good security; also very high performance in s/w, h/w, and restricted devices (smart cards)