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• We propose models to simultaneously schedule map and reduce tasks in a MapReduce job.
• Our models exploit the pattern of the relations between mappers and reducers.
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• Our models improve the parallel runtimes of two key operations within the MapReduce.
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a b s t r a c t

Task scheduling for MapReduce jobs has been an active area of research with the objective of decreasing
the amount of data transferred during the shuffle phase via exploiting data locality. In the literature,
generally only the scheduling of reduce tasks is considered with the assumption that scheduling of map
tasks is already determined by the input data placement. However, in cloud or HPC deployments of
MapReduce, the input data is located in a remote storage and scheduling map tasks gains importance.
Here, we propose models for simultaneous scheduling of map and reduce tasks in order to improve data
locality and balance the processors’ loads in both map and reduce phases. Our approach is based on
graph and hypergraph models which correctly encode the interactions between map and reduce tasks.
Partitions produced by these models are decoded to schedule map and reduce tasks. A two-constraint
formulation utilized in these models enables balancing processors’ loads in both map and reduce phases.
The partitioning objective in the hypergraph models correctly encapsulates the minimization of data
transfer when a local combine step is performed prior to shuffle, whereas the partitioning objective in
the graph models achieve the same feat when a local combine is not performed. We show the validity of
our scheduling on the MapReduce parallelizations of two important kernel operations – sparse matrix–
vector multiplication (SpMV) and generalized sparse matrix–matrix multiplication (SpGEMM) – that are
widely encountered in big data analytics and scientific computations. Compared to random scheduling,
our models lead to tremendous savings in data transfer by reducing data traffic from several hundreds
of megabytes to just a few megabytes in the shuffle phase and consequently leading up to 2.6x and 4.2x
speedup for SpMV and SpGEMM, respectively.
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1. Introduction

MapReduce [1] simplifies the programming for large-scale
data-parallel applications and greatly reduces the development
effort by sparing the programmer from complex issues such as par-
allel execution, fault tolerance, data management, task scheduling,
etc. Hadoop [2], an open source implementation of MapReduce,
has been used in production environments of many big companies
and is deployed on clusters that can scale up to tens of thousands
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of cores. Its generality, ease of use and scalability led to a wide
acceptance and adoption in many fields.

A MapReduce job consists of map, shuffle and reduce phases
which are carried out one after another by multiple parallel tasks
that process data in parallel. The map tasks process the input data
and emit ⟨key, value⟩ (KV) pairs. In the shuffle phase, the KV pairs
are communicated and then they are sorted according to keys, thus
grouping the values that belong to the same key. The reduce tasks
then process the grouped values for keys and produce the final
outputs belonging to keys. The tasks in a phase depend on the tasks
in the preceding phase.

The performance of MapReduce jobs has been focus of interest
in the literature. The studies that aim at improving the parallel
performance of a MapReduce job generally either try to reduce
data transfers during the shuffle phase [3–8] or try to balance
the loads in the map and/or reduce phases [5,9]. Task scheduling
studies usually focus on only the assignment of reduce tasks with
the belief that map scheduling is determined by the initial data
distribution of the file system hosted on the MapReduce compute
nodes. However, in cloud or high performance computing deploy-
ments of MapReduce this assumption is not valid. The input data
often resides in a remote shared file system such as Lustre [10], or
distributed object store such as Amazon S3 [11]. In such a setup,
since all the data is loaded from a remote location, the scheduling
of map tasks also becomes important.

In recent years, the MapReduce framework has attracted in-
terest from the graph processing, machine learning, and scientific
computing domains and there have been many studies towards
parallelizing kernel operations in these fields using MapReduce.
Examples include HAMA [12], Apache Mahout [13], MR-MPI [14]
and [15]. In these domains, since the interactions among map and
reduce tasks can be predetermined by a scan of the input datasets,
and the applications often perform multiple iterations of MapRe-
duce computations, intelligently scheduling map and reduce tasks
can yield significant performance gains.

In this work we propose a task assignment mechanism that
simultaneously schedules map and reduce tasks to improve the
performance of applications. Our contributions in this work can
summarized as follows:

• We propose models based on graph and hypergraph par-
titioning to achieve a static scheduling of map and reduce
tasks in a MapReduce job. The aims of our models are to
attain locality among map and reduce tasks, and to balance
computations at each processor. The locality in task assign-
ment reduces the amount of data transfer in the shuffle
phase and balancing of computations leads to faster task
execution.

• We show how our models can be utilized in a MapReduce
framework. Our models’ outputs are used as hash functions
to distribute KV pairs tomappers and reducers, i.e., wemake
use of application-specific knowledge to schedule map and
reduce tasks.

• We showcase the impact of our approach by improving
the performance of two kernel operations: sparse matrix–
vector multiplication (SpMV) and generalized sparse
matrix-matrix multiplication (SpGEMM). We present algo-
rithms for implementing these two operations in a MapRe-
duce framework and describe how to use ourmodels within
them. In that sense, our models can be seen as improve-
ments to the existing algorithms.

• The models’ success of exploiting domain-specific knowl-
edge in assigning tasks are validated with comprehensive
experiments. Compared to random scheduling, the models
lead to tremendous savings in data transfer in the shuffle
phase, which leads up to 2.6x and 4.2x speedup for SpMV
and SpGEMM, respectively.

SpMV is a common primitive that is encountered widely in
numerical algebra [16] and iterative computations such as PageR-
ank [17]. SpGEMM occurs in multigrid interpolation and restric-
tion [18], linear programming [19], multi-source breadth first
search [20], similarity join [21] and item-to-item collaborative
filtering in recommendation systems [22]. The omnipresence of
these kernel operations inmachine learning, graph algorithms, and
scientific computations make them attractive targets for perfor-
mance optimization.

The rest of the paper is organized as follows. The related work
and background are given in Section 2.MapReduce parallelizations
of SpMV and SpGEMM operations are respectively investigated in
Sections 5 and 6. Section 7 presents the experiments. Section 8
concludes.

2. Related work

Scheduling jobs and tasks for MapReduce programs has been
an active area of research since the popularization of MapReduce
paradigm. Job scheduling [23–28] considers allocation andusage of
the resources in case ofmultipleMapReduce jobs. Task scheduling,
on the other hand, focuses on the assignment of map and reduce
tasks regarding a singleMapReduce job. Our work falls in the latter
category, so we focus on the works in this category.

Task scheduling presents two challenges which are critical
for parallel performance: balancing the load in map and reduce
phases, and decreasing the communication in the shuffle phase.
Both can be alleviated via various approaches depending on the
environment and the applicationMapReduce is being realized. The
approach proposed by [3] considers data locality for decreasing
communication in the shuffle phase and schedules each reduce
task to its center-of-gravity node. This node is determined by two
main factors: network locations of this reduce task’s feeders and
the partitioning skew regarding this task. Similarly, the authors
in [4] argue the overhead of the large network traffic and exploit
data locality on both map and reduce phases to decrease the
network traffic. Data locality is achieved by considering factors
related to virtualmachine placement, properties of theMapReduce
job being run and the system load. [5] proposes a locality-aware
approach based on a cost model that schedules reduce tasks in
order to decrease the amount of data transferred in the shuffle
phase. This approach is similar to our work in the sense that it
also makes use of hash functions in order to decrease the data
transferred in the shuffle phase and balance the load in reduce
phase. Our work uses the hash functions in a static manner where
they are determined from the patterns inherent in the input data,
while in [5] they are determined on-the-fly according to the key
frequencies. Another locality-aware approach is studied by [6],
in which a scheduler called LARTS makes use of the information
about the network locations and partition sizes in the scheduling
decisions. LARTS improves data locality by reduce task scheduling
and hence is able to decrease the network traffic. In [7], the authors
propose a method that monitors the execution of MapReduce jobs
and schedules map and reduce tasks according to the pattern
deduced. By doing so they are able to schedule tasks preserving
locality hence able to decrease the amount of transferred data in
the shuffle phase. Recently, the authors of [8] propose an algorithm
to improve the data locality and further overlap local reduce and
shuffle phases of MapReduce jobs. Another study [9] aims to bal-
ance the load in the reduce phase by collecting the key distribution
of intermediate pairs and running an algorithm that utilizes this
data to further make the scheduling decisions. The works in [29–
31] all aim at decreasing communication overheads: [29] by over-
lapping map and shuffle phases, [30] by overlapping shuffle and
reduce phases, and [31]with a barrier-lessMapReduce framework.
These studies do not consider data locality.
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Most of these works perform dynamic scheduling and do not
focus on improving the performance of a specific operation. Our
approach is static, i.e., in a preprocessing stage we determine
hash functions to exploit the target operation realized within the
MapReduce paradigm. Most of the dynamic scheduling techniques
for the tasks in aMapReduce job rely on scheduling only the reduce
tasks in order to reduce data transfer in the shuffle phase and
less often in order to balance the loads of the processors in the
reduce phase. They usually do not handle scheduling of map tasks,
i.e., clustering of map tasks on to same machines that produce
values for the same keys. They rightly do so since this information
largely depends on the application and it is usually not possible
to know it in advance without perhaps running the application
beforehand to collect information, or using application-specific
knowledge to infer relations among tasks — which is the case in
our approach. This also constitutes the main difference between
static and dynamic scheduling methods.

Although dynamic scheduling approaches are more general
than ours and may lead to runtime improvements in a MapReduce
job, it can be said that only scheduling reduce tasks and without
proper scheduling of map tasks, the improvements in data transfer
in the shuffle phase would be minuscule compared to the gains
obtained with a static approach at the expense of a preprocessing
stage (our methods are able to reduce the amount of data transfers
from several hundreds of megabytes to a few megabytes). More-
over, as dynamic scheduling techniques donot aimat balancing the
loads in the map phase and since the map phase is much more ex-
pensive than the reduce phase for the operations evaluated in this
work, a dynamic scheduling approach is highly unlikely to yield a
better computation time than the proposed static scheduling.

3. Background

We realized the subject operations using MR-MPI library [14].
This library usesMPI for handling communication between proces-
sors and in that sense it is fast and flexible. However, these come at
the expense of fault tolerance and redundancy, both of which may
prove vital in a commodity cluster but are not of prime concern on
high performance computing systems. The high performance com-
puting systems, sometimes called tier-0 systems, are characterized
with very high availability and they allow access to full resources,
without any virtualization or whatsoever. As our focus in this work
is such a system, we preferred MR-MPI for implementation.

MR-MPI library supports two basic data types on which the
functions operate: ⟨Key, Value⟩ (KV) and ⟨Key,Multivalue⟩ (KMV).
As the name suggests, a KMV pair stores all values related to a key
while a KV pair stores a single one of them. The operations that are
of interest to our work in this library are briefly described below:

• map(): Generates KV pairs.
• reduce(): Reduces KMV pairs to KV pairs.
• collate(): Communicates KV pairs and generates KMV pairs

from them. Equivalent to MapReduce shuffle.
• aggregate(): Distributes KV pairs among processors. Neces-

sitates communication.
• convert(): Creates KMV pairs from KV pairs in which the

values belonging to the same key become a MultiValue.
• add(): Adds KV pairs of a MapReduce object to those of

another.

These operations are used in our implementation. For more details
on MR-MPI, see [14].

4. Modeling MapReduce applications

The map and reduce tasks in a MapReduce job can be sched-
uled with certain considerations in mind if the relations between
map and reduce tasks are known apriori. These relations may
be inferred from the target application’s computational structure
on the input data or the MapReduce job can be run beforehand
to infer them. The latter case is particularly useful if the same
MapReduce job will be executedmultiple times. In this section, we
show how the map and reduce tasks can be scheduled via graph
and hypergraph partitioning models to address important issues
such as load balancing and communication reduction.

Consider a set M of map tasks and a set R of reduce tasks,
where the time to execute a map task mi ∈ M and a reduce
task rj ∈ R is respectively denoted with size(mi) and size(rj).
A KV pair is denoted with the tuple ⟨key, val⟩. The set of KV
pairs generated by mi is denoted by kvp(mi) and the set of KV
pairs destined for rj is denoted by kvp(rj). Note that it is as-
sumed that the relation between map and reduce tasks is known,
i.e., it is known that which map task produces value(s) for a
certain key. The left of Fig. 1 shows an example MapReduce job
with three map and four reduce tasks. For example, kvp(m2) =

{⟨k1, d⟩, ⟨k2, e⟩⟨k3, f ⟩, ⟨k3, g⟩, ⟨k3, h⟩, ⟨k4, i⟩, ⟨k4, j⟩} and kvp(r2) =

{⟨k2, c⟩, ⟨k2, e⟩}.

4.1. Formation

In the bipartite graph G = (VM
∪ VR, E) proposed to model a

given MapReduce job, the map and reduce tasks are represented
by different vertex sets. There exists a vertex vm

i ∈ VM for map
task mi ∈ M and a vertex vr

j ∈ VR for reduce task rj ∈ R. There
exists an edge (vm

i , vr
j ) ∈ E if the map task represented by vm

i
generates at least one KV pair for the reduce task represented by
vr
j , i.e., kvp(mi)∩ kvp(rj) ̸= ∅. The edges represent the dependency

of the reduce tasks to the map tasks. The graph in the middle of
Fig. 1 models the MapReduce job in the left of the same figure.
For example, there exists an edge between vm

2 and vr
3 since m2

generates the KV pairs ⟨k3, f ⟩, ⟨k3, g⟩, ⟨k3, h⟩, which are to be
reduced by r3.

The hypergraph H = (VM
∪ VR,N ) proposed to model a

given MapReduce job is the same with G in terms of vertex sets
and what they represent. The difference between H and G lies in
representing the dependencies, which is achieved by nets in H as
opposed to the edges in G. There exists a net nj ∈ N for each reduce
task rj ∈ R and this net connects the vertex that represents the
reduce task rj and the vertices corresponding to the map tasks that
generate at least one KV pair for rj. The vertices connected by nj is
denoted by

Pins(nj) = {vm
i : kvp(mi) ∩ kvp(rj) ̸= ∅} ∪ {vr

j }.

Compared to the edges, the nets are better means for capturing
multi-way dependencies. The hypergraph in the right of Fig. 1
models theMapReduce job in the left of the same figure. For exam-
ple, n3 connects vm

2 , v
m
3 and vr

3 since the map tasks m2 and m3 re-
spectively generates the KV pairs ⟨k3, f ⟩, ⟨k3, g⟩, ⟨k3, h⟩ and ⟨k3, k⟩,
which are to be reduced by r3. Hence, Pins(n3) = {vm

2 , vm
3 , vr

3}.
In both G andH, a two-constraint formulation is used for vertex

weights to enable load balancing in two distinct computational
phases of map and reduce. The weights of a vertex vm

i ∈ VM are
assigned as

w1(vm
i ) = size(mi)

w2(vm
i ) = 0
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Fig. 1. An example with three map and four reduce tasks, and the corresponding graph and hypergraph used to model them.

in order to balance the processors’ loads in the map phase. The
weights of a vertex vr

j ∈ VR are assigned as

w1(vr
j ) = 0

w2(vr
j ) = size(rj)

in order to balance the processors’ loads in the reduce phase.
The cost of edge (vm

i , vr
j ) in G is assigned the number of KV pairs

generated bymi for rj to encapsulate the volume of communicated
data, i.e., c(vm

i , vr
j ) = |kvp(mi) ∩ kvp(rj)|. The cost of net nj in H is

assigned as 1, i.e., c(nj) = 1, reasons of which will be clear shortly.

4.2. Partitioning

G/H is partitioned into K parts to obtain Π (G/H) = {V1 =

VM
1 ∪ VR

1 , . . . ,VK = VM
K ∪ VR

K }. The obtained partition is used
to schedule map and reduce tasks in a given MapReduce job. For
convenience, the partitions on VM and VR are denoted by ΠM and
ΠR, respectively. Without loss of generality we assume that the
vertex part Vk is associated with processor Pk. The vertices in VM

k
are decoded as assigning the map tasks represented by these ver-
tices to Pk. The vertices in VR

k are decoded as assigning the reduce
tasks represented by these vertices to Pk. In partitioning G and H,
the partitioning objective ofminimizing the cutsize corresponds to
decreasing communication volume in the shuffle phase, whereas
the partitioning constraint of balancing part weights corresponds
to balancing loads inmap and reduce phases.

The correct encapsulation of communication volume in the
shuffle phase depends on the specifics of the implementation. A
processor may choose to introduce an additional local reduction
phase for further reduction of communication volume at the ex-
pense of more computation. The idea is that if a processor gener-
ates multiple values for a specific key whose reduce task belongs
to another processor, it can either send them all or it can reduce
them first and then send a single KV pair. The former incurs more
communication and the latter incurs less communication at the ex-
pense of additional computation. In the example in Fig. 1, assume
that the map tasks m2 and m3 are both assigned to processor Pk,
whereas the reduce task r3 is assigned to some other processor.
Regarding the values generated for key k3, Pk has two options:

(i) sending them all to the processor responsible for r3,

(ii) first reducing the values for k3 and then sending a single KV
pair to the target processor.

The graph model correctly encapsulates the communication vol-
ume incurred in the shuffle phase if local reduction is not per-
formed (case (i)). This is because the graph model represents KV
pair(s) produced by a certain map task for a specific key with a
different edge. On the other hand, the hypergraph model correctly
encapsulates the communication volume if local reduction is per-
formed (case (ii)). This is because the locally reduced values for a
specific key are represented with the pins of a single net and in the
partitioning the connectivity metric [32] is utilized. Unit net costs
are required here since for any key, a processor may contribute at
most a single KV pair due to local reduction, i.e., uniform data size.

An additional issue regarding the partitioning models and the
optional local reduce is the computational load balance in the re-
duce phase. Recall that in both models, the vertex weights regard-
ing the reduce phase were set to the number KV pairs generated
for the respective reduce tasks. If local reduction is not performed,
then theseweights correctly represent the amount of computation
in the reduce phase and balancing part weights in the partitioning
process balances processors’ computations in the reduce phase. If
local reduction is performed, however, both models overestimate
the computations in the reduce phase as some of the KV pairs will
be reduced locally. It is not possible to infer the exact amount of
computation in the reduce phase if the optional local reduce is
performed as this information depends on the distribution of data
— the goal of the partitioning models. Hence, it is not possible to
utilize the correct vertex weights in the models for this case. Inter-
estingly, however, the objective of minimizing cutsize in the graph
model strongly correlates to the assigned vertex weights since the
minimization of the cutsize translates to the maximization of the
number of internal edges, which in turn implies the maximization
of the number of KV pair reductions in the reduce phase, rather
than in the local reduce. This correlation exists in the hypergraph
model as well, but it is more loose.

5. Sparse matrix–vector multiplication

We first briefly review the parallel algorithm for sparsematrix–
vector multiplication (SpMV) and discuss the graph and hyper-
graph models in the context of MapReduce framework. Then, we
describe the MapReduce implementation of SpMV and show how
to use the partitions obtained by the graph/hypergraph models to
assign map and reduce tasks to processors.
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5.1. Parallel algorithm and MapReduce

We focus on one-dimensional columnwise parallelization of
y = Ax, where A is permuted into a block structure as:⎡⎢⎣A11 . . . A1K

...
. . .

...

AK1 . . . AKK

⎤⎥⎦ .

Here, K is the number of processors, A is a square n×nmatrix, and
x and y are dense vectors of size n. The size of submatrix block Akℓ
is nk × nℓ. ai,∗ and a∗,j respectively denote row i and column j of A
and ai,j denotes the nonzero element at row i and column j of A. To
denote the number of nonzeros in a row, column, or a (sub)matrix,
we use the function nnz(·).

In the columnwise partitioning, processor Pk is held responsible
for the computations related to kth column stripe [AT

1k . . . AT
Kk]

T of
A, whose size is n × nk. This columnwise partitioning of A induces
a partition on the input vector x as well, where Pk stores the
subvector xk.

The parallel algorithm that results from the columnwise parti-
tioning of A is called the column-parallel algorithm for SpMV and
its basic steps for processor Pk are as follows:

1. For each submatrix block Aℓk owned by Pk, Pk computes
ykℓ = Aℓkxk for 1 ≤ ℓ ≤ K . Here, it is assumed that the
submatrix blocks are ordered in such a way that the result-
ing elements from the multiplication containing a specific
submatrix block Aℓk belong to Pℓ. In other words, the sparse
subvector ykℓ contains the elements that are computed by Pk,
but belong to Pℓ (ℓ ̸= k). The elements in these subvectors
are called the partial results. As Pk’s portion of y, it computes
ykk = Akkxk and sets yk = ykk.

2. The partial results are communicated to aggregate yℓ
k at Pk

with the aim of computing the final results of the elements
in yk. To do so, Pk receives the partial results computed by
Pℓ (ℓ ̸= k), i.e., yℓ

k. Note that Pk only needs interaction with
processors that have partial results to send it.

3. In the final step, Pk sums the partial results by yk = yk + yℓ
k

for each Pℓ.

We assume there is no overlap of communication and compu-
tation in the above algorithm and the steps proceed in a similar
manner to BSP model of computation. In addition, we retain the
flexibility of having different partitions on input and output vectors
in SpMV. In other words, it is not enforced for a processor to store
the ith element of y if it stores the ith element of x. In the column-
parallel algorithm, there is a single communication phase between
two computational phases. Considering the two computational
phases, the first computation phase is likely to be more expensive
compared to the second one. However, there may be other linear
vector operations that involve vectors x and y. For this reason,
it is a good practice to balance the vector elements owned by
the processors (i.e., number of x and/or y elements) besides the
nonzeros of A owned by each processor. In thisway, the processors’
loads in each computational phase can be balanced.

In the parallel algorithm above, there are n map and n reduce
tasks, i.e., |M| = |R| = n. A map task mj is defined as the
multiplication of a∗,j with xj (performed in the first step of the
column-parallel algorithm). In the rest of the paper, we use xi/yi to
denote a single element of x/y, rather than the portion owned by
the processor. For each nonzero in a∗,j, themap taskmj generates a
single KV pair, hence, kvp(mj) = {⟨yi, ai,j ∗ xj⟩ : ai,j ̸= 0 for 1 ≤ i ≤

n}. A reduce task ri is defined as the summation of partial results
generated for yi (performed in the third step of the column-parallel
algorithm). The KV pairs destined for ri is given by kvp(ri) =

Algorithm 1: Sparse matrix–vector multiplication
Input: A, hM , hR

1 Set initial x
2 A.aggregate(hM ) ▷ Key j, Value (i, ai,j)

3 x.aggregate(hM ) ▷ Key j, Value xj
4 Let y be an empty MapReduce object
5 repeat

▷ other computations... (on vectors, etc.)

6 y.add(x)
7 y.add(A)
8 y.convert()

▷ IN: Key j,MultiValue [(i, ai,j)], xj
9 y.reduce()

▷ OUT: Key i, Value yji = ai,jxj

▷ optional local reduce
10 y.convert()
11 y.reduce()

▷ communication phase (shuffle)
12 y.collate(hR) ▷ OUT: Key i,MultiValue [yji]

▷ IN: Key i, MultiValue [yji]
13 y.reduce()

▷ OUT: Key i, Value
∑

j y
j
i

▷ other computations... (on vectors, etc.)
until application-specific condition is met

{⟨yi, ai,j ∗ xj⟩ : ai,j ̸= 0 for 1 ≤ j ≤ n}. The size ofmj is proportional
to the number of nonzeros in the respective column of A, hence,
size(mj) = nnz(a∗,j), whereas the size of ri is proportional to the
number of nonzeros in the respective row of A, hence, size(ri) =

nnz(ai,∗).
The formation and partitioning of the graph/hypergraph for

efficient parallelization of column-parallel SpMV in MapReduce
framework follow the methodology described in Sections 4.1 and
4.2, respectively. All edges in G have unit weights since mj gen-
erates a single KV pair for ri if ai,j ̸= 0, and it does not generate
anything, otherwise. All nets in H have unit costs as well. The K -
way partitions ΠM (G/H) and ΠR(G/H) are used to schedule map
and reduce tasks, details ofwhichwill be described in the following
section. Fig. 2 shows an SpMV operation and its representation
with the graph and hypergraph models.

5.2. Implementation

We describe the parallelization of the SpMV operation under
MapReduce paradigm. The parallelization is realized using theMR-
MPI library [14]. We first give the MapReduce-based paralleliza-
tion, and then explain how to assign the tasks to the processors in
order to decrease the communication overhead in the shuffle phase
and balance the loads of the processors in both map and reduce
phases.

Algorithm 1 presents the MapReduce-based parallelization of
SpMV. The SpMV operation is assumed to be repeated in an
application-specific context and it is highlighted in gray in the algo-
rithm. We omit the application-specific details and focus solely on
the SpMV operation itself. Note that a similar routine is also used
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Fig. 2. An example SpMV, and graph and hypergraph models to represent it. The numbers inside the vertices indicate the two weights associated with them. Vectors and
matrices are color-matched with the vertices they are represented with. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

in [14] without explicit usage of any hash function. In the algo-
rithm, A and x are distributed among the processors via aggregate()
operation prior to performing SpMV and they are keyed according
to column index j (line 2 and 3). aggregate() operation can take a
hash function as input (whose role is going to be clarified shortly).
The keys regarding A and x are added to y and they are converted to
the KMV pairs (lines 6–8). Then, the multiplication operations are
performed via reduce(), in which the multiple values belonging to
key j are reduced via multiplying value of each with xj. The results
of this operation are the partial results for y that are keyed by index
i. yji denotes the partial value generated by column j for yi. The
operations up to this point constitute the first computational phase
of the column-parallel algorithm.

The first computational phase is followed by an optional local
reduce in which the partial results are summed locally (note that
these summations do not compute the final values of y yet). The
partial results are then communicated and KMV pairs are created
accordingly, producing possible multiple yji values for yi (line 12).
Notice that collate() also accepts a hash function as input.

Finally, the partial results are reduced and the final values of y
are computed by simply summing them (line 13). The computation
of final values constitutes the second computational phase of the
column-parallel algorithm. Note that the first computational phase
is the ‘‘map’’ phase even though a reduce call has been performed,
as it emits KV pairs and is followed by a shuffle phase, which is in
turn followed by a reduce operation to compute the final results.

We make use of the partitions ΠM
= {VM

1 , . . . ,VM
K } and ΠR

=

{VR
1 , . . . ,V

R
K } described earlier in order to achieve an efficient

distribution of data and computations in Algorithm 1. ΠM and
ΠR can be utilized as hash functions in the algorithm, which are
respectively denoted with hM and hR. hM is simply obtained from
ΠM as

hM (j : vm
j ∈ VM

k ) = Pk, 1 ≤ j ≤ n and 1 ≤ k ≤ K ,

which allows distributing matrix columns, elements of x and the
respective map tasks via aggregate() with hM as its input. Similarly,
hR is obtained from ΠR as

hR(i : vr
i ∈ VR

k ) = Pk, 1 ≤ i ≤ n and 1 ≤ k ≤ K ,

which allows distributing elements of y and the respective reduce
tasks on them via collate()1 with hR as its input.

1 collate() is actually an aggregate() followed by a convert().

6. Sparse matrix-sparse matrix multiplication

The literature on parallelization of sparse matrix-sparse ma-
trix multiplication of form C = AB (SpGEMM) is more recent
compared to that on SpMV. One of the recent promising studies
on this subject is based on parallelization with one-dimensional
partitioning of input matrices (A and B) and outer product tasks
via hypergraph models [33]. We first briefly review the parallel
algorithm for SpGEMM and discuss the graph and hypergraph
models in the context ofMapReduce framework. Then,we describe
the MapReduce implementation of SpGEMM and show how to use
the partitions obtained by the graph/hypergraph models to assign
map and reduce task to processors.

6.1. Parallel algorithm and MapReduce

We focus on one-dimensional partitioning of input matrices A
and B, and two-dimensional partitioning of output matrix C . The
matrices A and B are permuted into block structures as⎡⎢⎣A11 . . . A1K

...
. . .

...

AK1 . . . AKK

⎤⎥⎦ and

⎡⎢⎣B11 . . . B1K
...

. . .
...

BK1 . . . BKK

⎤⎥⎦ ,

respectively, where A is an m × n and B is an n × p matrix.
Processor Pk is held responsible from the outer products in kth
column stripe Ac

k = [AT
1k . . . AT

Kk]
T of A and the respective kth row

stripe Br
k = [Bk1 . . . BkK ] of B. An outer product performed between

a column x of A and the respective row x of B is denoted with
a∗,x ⊗ bx,∗ It is assumed if Pk stores a∗,x, it also stores bx,∗ in order
to avoid redundant communication (i.e., a conformal partition of A
and B). The described partitions of A and B do not induce a natural
partition of C since the outer products performed by a processor
may contribute to any nonzero in C . In other words, there is no
locality in access to elements of C .

The parallel algorithm that results from the columnwise parti-
tioning of A and the rowwise partitioning of B is called the outer-
product–parallel algorithm for SpGEMM and its basic steps for Pk
are as follows:

1. For each column x in column stripe Ac
k (and hence each

row in row stripe Br
k), Pk computes the outer product Cx

=

a∗,x ⊗ bx,∗. This outer product generates partial result(s) for
the elements of C , denoted with Cx. There exists a complete
partial result set for each such outer product. Observe that
two such different partial result set Cx and Cy may contain
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Fig. 3. An example SpGEMM, and graph and hypergraph models to represent it. The numbers inside the vertices indicate the two weights associated with them. Matrices
are color-matched with the vertices they are represented with. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

partial results for the same element of C . Pk may sum them
by

∑
xC

x or it may not do so and leave them as they are. If
ci,j belongs to Pk, it sets the initial value of this nonzero by
ci,j = cki,j.

2. The partial results are communicated to aggregate each cℓ
i,j

at Pk with the aim of computing the final result of this
nonzero whose accumulation responsibility is given to Pk.
To do so, Pk receives each such partial result cℓ

i,j computed
by Pℓ (ℓ ̸= k).

3. In the final step, Pk sums the partial results by ci,j = ci,j + cℓ
i,j

for each Pℓ.

As in the column-parallel SpMV, we assume no overlap of
communication and computation and the steps proceed in a sim-
ilar manner to the BSP model. Notice the resemblance of outer-
product–parallel algorithm for SpGEMM to the column-parallel
algorithm for SpMV. The outer-product–parallel SpGEMM has the
same skeleton with the column-parallel SpMV, where there exists
a single communication phase between two computational phases.
Here too the first computational phase is likely to be more expen-
sive compared to the second one.

In the parallel algorithm above, there are n map tasks and
nnz(C) reduce tasks, i.e., |M| = n and |R| = nnz(C). A map
task mx is defined as the outer product a∗,x ⊗ bx,∗ (performed in
the first step of the outer-product–parallel algorithm). For each
ci,j ∈ Cx,mx generates a single KVpair, hence, kvp(mx) = {⟨ci,j, ai,x∗
bx,j⟩ : ai,x, bx,j ̸= 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ p}. A reduce
task ri,j is defined as the summation of partial results generated
for ci,j (performed in the third step of the outer-product–parallel
algorithm). The KV pairs destined for ri,j is given by

kvp(ri,j) = {⟨ci,j, ai,x ∗ bx,j⟩ : ai,x, bx,j ̸= 0 for 1 ≤ x ≤ n}.

The size of mx is proportional to the number of operations per-
formed in the respective outer product, hence, size(mx) = nnz(a∗,x)
× nnz(bx,∗), whereas the size of ri,j is proportional to the number
of outer products that generate a partial result for ci,j, hence,
size(ri,j) = |{Cx

: ci,j ∈ Cx
}|.

In the graph and hypergraph models used to parallelize the
outer-product–parallel SpGEMM in theMapReduce framework, all
edges and nets have unit costs, respectively. The K -way partitions
ΠM (G/H) and ΠR(G/H) are used to schedule map and reduce
tasks, details of which will be described in the following section.
Fig. 3 shows an SpGEMMoperation and its representationwith the
graph and hypergraph models.

Algorithm 2: Sparse matrix-sparse matrix multiplication
Input: A, B, hM , hR

1 A.aggregate(hM ) ▷ Key x, Value (i, ai,x,‘c ’)

2 B.aggregate(hM ) ▷ Key x, Value (j, bx,j,‘r ’)
3 Let C be an empty MapReduce object
4 repeat

▷ other computations...

5 C .add(A)
6 C .add(B)
7 C .convert()

▷ IN Key j,MultiValue [(i, ai,x,‘c ’), . . . , (j, bx,j,‘r ’), . . .]
8 C .reduce()

▷ OUT: Key (i, j), Value cxi,j = ai,xbx,j

▷ optional local reduce
9 C .convert()

10 C .reduce()

▷ communication phase (shuffle)
11 C .collate(hR) ▷ OUT: Key (i, j),MultiValue [cxi,j]

▷ IN Key (i, j),MultiValue [cxi,j]

12 C .reduce()
▷ OUT Key (i, j), Value

∑
x c

x
i,j

▷ other computations...
until application-specific condition is met

6.2. Implementation

We describe the parallelization of the SpGEMM operation un-
der MapReduce paradigm. We first give the MapReduce-based
parallelization, and then explain how to assign the tasks to the
processors in order to decrease the communication overhead in
the shuffle phase and balance the loads of the processors in both
map and reduce phases.

Algorithm 2 presents the MapReduce-based parallelization of
SpGEMM. The algorithm solely focuses on parallelizing SpGEMM
and ignores the application-specific issues. In the algorithm,
the matrices A and B are distributed among the processors via
aggregate() operation and matrix A is keyed according to column
index x and matrix B is keyed according to row index x (lines 1
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Table 1
Matrices used in the experiments.

Number of Row/column degree

Operation Matrix Rows/columns Nonzeros Average Maximum

SpMV
y = Ax

333SP 3,712,815 22,217,266 6.0 28
adaptive 6,815,744 27,248,640 4.0 4
circuit5M_dc 3,523,317 19,194,193 5.5 27
CurlCurl_4 2,380,515 26,515,867 11.1 13
delaunay_n23 8,388,608 50,331,568 6.0 28
germany_osm 11,548,845 24,738,362 2.1 13
hugetrace-00000 4,588,484 13,758,266 3.0 3
rajat31 4,690,002 20,316,253 4.3 1252
rgg_n_2_24_s0 16,777,216 265,114,400 15.8 40
Transport 1,602,111 23,500,731 14.7 15

SpGEMM
C = AAT

crashbasis 160,000 1,750,416 10.9 18
crystm03 24,696 583,770 23.6 27
dawson5 51,537 1,010,777 19.6 33
ia2010 216,007 1,021,170 4.7 49
kim1 38,415 933,195 24.3 25
lhr71 70,304 1,528,092 21.7 63
olesnik0 88,263 744,216 8.4 11
rgg_n_2_17_s0 131,072 1,457,506 11.1 28
struct3 53,570 1,173,694 21.9 27
xenon1 48,600 1,181,120 24.3 27

and 2). The values contained in these keys are the nonzero ele-
ments and additional information regarding row/column indices
and identification of matrices. C is initially empty and it is filled
with the KV pairs of A and B (lines 5 and 6). These pairs are
converted to KMV pairs next (line 7). Then, the multiplication
operations are performed via reduce(), in which each element of
column x of A is multiplied with each element of row x of B,
i.e., a∗,x ⊗ bx,∗. The results of this outer product are the partial
results for C that are keyed with the row and column pair indices,
(i, j), in order to achieve a two-dimensional partitioning of C . This
first computational phase is followed by an optional local reduce
in which the partial results are summed. Next follows a collate()
in which the partial results are communicated and KMV pairs are
created accordingly, producing possible multiple cxi,j values for ci,j
(line 11). The final step of SpGEMM corresponds to the second
computational phase of the outer-product–parallel algorithm and
it contains the reduction of ci,j via summation (line 12). Observe
that similar to SpMV, the functions aggregate() and collate() take
hash functions as their input, which we exploit to achieve task
assignments in Algorithm 2.

We make use of the partitions ΠM
= {VM

1 , . . . ,VM
K } and ΠR

=

{VR
1 , . . . ,V

R
K } obtained by the graph/hypergraph models and use

them as hash functions in order to achieve an efficient distribution
of data and computations, as done for SpMV. hM is obtained from
ΠM as

hM (x : vm
x ∈ VM

k ) = Pk, 1 ≤ x ≤ n and 1 ≤ k ≤ K ,

and hR is obtained from ΠR as

hR((i, j) : vr
i,j ∈ VR

k ) = Pk, 1 ≤ i ≤ m, 1 ≤ j ≤ p
and 1 ≤ k ≤ K .

hM is used along with aggregate() to obtain a columnwise dis-
tribution of A, a rowwise distribution of B and a distribution of
map tasks. hR, on the other hand, is used along with collate() to
obtain a two-dimensional nonzero-based distribution of C and a
distribution of reduce tasks.

7. Experiments

We test a total of six schemes in our experiments:

• RN: The tasks in the first and the second computation phases
are distributed among the processors in a random manner

and local reduce is not performed (i.e., lines 10 and 11 in
Algorithm 1 and lines 9 and 10 in Algorithm 2 are not exe-
cuted). This scheme is equivalent to using the default hash
function in the MapReduce implementation in Algorithms 1
and 2 for aggregating data.

• RNr: Similar to RN, but with the optional local reduce.
• GR: The tasks in the first and the second computation phases

are distributed among the processorswith the graphmodels
with the aim of decreasing communication overhead under
the load balance constraint. Local reduce is not performed in
this scheme.

• GRr: Similar to GR, but with the optional local reduce.
• HY: The tasks in the first and the second computation phases

are distributed among the processors with the hypergraph
models with the aim of decreasing communication over-
head under the load balance constraint. Local reduce is not
performed in this scheme.

• HYr: Similar to HY, but with the optional local reduce.

The experiments are performed on an IBM System x iData-
Plex machine (dx360M4). A node on this machine consists of 16
cores (two 8-core Intel Xeon E5 processors) with 2.7 GHz clock
frequency and 32 GB memory. The nodes are connected with
an Infiniband non-blocking tree network topology. We tested for
32, 64, . . . , 1024 processors. Recall that these are also the number
of parts in partitioning models.

All sparse matrix operations (SpMV, SpGEMM) are imple-
mented using the MR-MPI library [14]. The partitions obtained
by the graph/hypergraph models are fed to the aggregate() and
collate() as hash functions. Each sparse matrix operation is re-
peated 10 times and the average is reported in the results in the
upcoming sections. Metis [34] is used to partition the graphs and
PaToH [32] is used to partition the hypergraphs, both in default
settings. The maximum allowed imbalance in processors’ loads
in both computational phases is set to 10% for each of the two
constraints. Recall that this imbalance determines the maximum
allowed imbalance in both computational phases.

We evaluate the performance of all schemes for each operation
with the matrices given in Table 1, which are from the UFL Sparse
Matrix Collection [35]. For each type of operation, we include
10 matrices. The maximum degree values presented in the table
are the maximum of maximum number of nonzeros in rows and
columns. For SpGEMM, we test the operation C = AAT , which
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Table 2
Volume, imbalance and runtime averages for SpMV (volume in megabytes and time in seconds).

Actual values Normalized within scheme Normalized wrt RN and RNr

K Scheme RNr RN GRr GR HYr HY RN/RNr GR/GRr HY/HYr GRr/RNr HYr/RNr GR/RN HY/RN

32

%imb-map 0.5 0.5 0.7 0.7 0.9 0.9 1.00 1.00 1.00 1.4 2.0 1.4 2.0
%imb-reduce 0.5 0.5 1.0 1.0 1.6 1.6 1.00 1.00 1.00 1.9 3.2 1.9 3.2
volume 406.3 448.9 0.6 1.0 0.5 1.6 1.10 1.60 2.91 0.002 0.001 0.002 0.004
time 1.26 0.93 0.61 0.59 0.61 0.60 0.74 0.96 0.99 0.49 0.48 0.64 0.65

64

%imb-map 0.8 0.8 1.6 1.6 0.9 0.9 1.00 1.00 1.00 2.1 1.2 2.1 1.2
%imb-reduce 0.7 0.7 2.1 2.1 2.0 2.0 1.00 1.00 1.00 2.9 2.7 2.9 2.7
volume 433.7 456.2 0.9 1.5 0.8 2.4 1.05 1.59 2.88 0.002 0.002 0.003 0.005
time 0.64 0.47 0.33 0.32 0.33 0.32 0.74 0.97 0.97 0.52 0.52 0.69 0.68

128

%imb-map 1.0 1.0 3.2 3.2 1.3 1.3 1.00 1.00 1.00 3.1 1.2 3.1 1.2
%imb-reduce 1.2 1.2 3.6 3.6 2.7 2.7 1.00 1.00 1.00 2.9 2.2 2.9 2.2
volume 448.5 459.9 1.4 2.2 1.2 3.5 1.03 1.59 2.84 0.003 0.003 0.005 0.008
time 0.34 0.25 0.20 0.18 0.20 0.19 0.71 0.91 0.93 0.59 0.59 0.75 0.76

256

%imb-map 1.6 1.6 4.2 4.2 1.6 1.6 1.00 1.00 1.00 2.7 1.0 2.7 1.0
%imb-reduce 2.0 2.0 5.3 5.3 3.6 3.6 1.00 1.00 1.00 2.6 1.8 2.6 1.8
volume 455.9 461.7 2.0 3.1 1.8 5.0 1.01 1.58 2.76 0.004 0.004 0.007 0.011
time 0.20 0.15 0.13 0.12 0.13 0.12 0.73 0.89 0.89 0.66 0.67 0.81 0.81

512

%imb-map 2.7 2.7 6.0 6.0 1.9 1.9 1.00 1.00 1.00 2.2 0.7 2.2 0.7
%imb-reduce 3.3 3.3 7.4 7.4 5.1 5.1 1.00 1.00 1.00 2.2 1.5 2.2 1.5
volume 459.7 462.6 2.9 4.5 2.6 7.1 1.01 1.57 2.71 0.006 0.006 0.010 0.015
time 0.17 0.13 0.10 0.09 0.10 0.09 0.78 0.86 0.86 0.60 0.60 0.66 0.66

1024

%imb-map 3.9 3.9 7.1 7.1 2.2 2.2 1.00 1.00 1.00 1.8 0.6 1.8 0.6
%imb-reduce 4.5 4.5 8.8 8.8 6.6 6.6 1.00 1.00 1.00 1.9 1.5 1.9 1.5
volume 461.7 463.1 4.1 6.4 3.8 10.1 1.00 1.56 2.68 0.009 0.008 0.014 0.022
time 0.23 0.19 0.09 0.07 0.09 0.07 0.85 0.83 0.82 0.39 0.40 0.38 0.39

is also listed as one of the key operations and included in the
experiments of [33].

7.1. SpMV

The results obtained for the SpMV operation are presented
in Table 2. We compare the schemes in terms of four metrics:
computational imbalance in map and reduce phases in terms of
KV pairs (indicated with imb-map and imb-reduce, respectively),
communication volume (volume) and runtime (time). The volume
is in terms of megabytes (Mb) and the time is in terms of seconds.
The table is grouped under three basic column groups. The first
column group presents the actual results obtained by the com-
pared schemes. The second column group compares the schemes
within themselves, i.e., with andwithout the optional local reduce.
The last column group measures the performance of partitioning
models against the baseline random assignment. Each value in the
table is the geometricmean of the results obtained for thematrices
used for SpMV on a specific number of processors. The last two
column groups contain the normalized values in the format of A/B,
which means scheme A is normalized with respect to scheme B.

When we compare the schemes that use partitioning models
for task assignment (i.e., GR, GRr, HY, HYr) against the ones that do
not (i.e., RN, RNr), the benefits of using a model are seen clearly.
These models decrease the communication volume drastically by
obtaining a volume of no more than 7 Mb in any K value, whereas
the communication volume of RN or RNr is around 400 Mb. The
reduction in communication volume is reflected as improvement
in overall runtime of the SpMV. For example on 128 processors, RN
obtains an SpMV time of 0.34 s, while GR obtains an SpMV time
of 0.18 s. In terms of imbalance, the schemes that utilize random
assignment usually exhibit better performance since the sole pur-
pose of these schemes is maintaining such a balance, while for the
schemes that utilize partitioning models balance is a constraint
rather than objective.

The execution of the optional local reduce is expected to de-
crease the communication volume. This is validated from the val-
ues in the second column group and the volume row. For example
on 128 processors, RN incurs 3% more volume than RNr, GR incurs

59% more volume than GRr and HY incurs 184% more volume than
HYr. This difference is less in RN and RNr since random assignment
already necessitates a large amount of communication. The results
regarding the optional local reduce indicate that performing local
reduce does not pay off as the parallel runtimes obtained by RN,
GR and HY are lower than the ones obtained by RNr, GRr and HYr,
respectively. However, this may not always be the case, especially
when the savings from communication are drastic with the execu-
tion of local reduce, which happens not to be the case for SpMV.
Note that the imbalances in KV pairs in the first and second phases
of computations are the same with or without the local reduce as
their counts are independent of it.

Recall that without the local reduce, the graph model correctly
encapsulates the total volume during the partitioning process.
From the volume results in Table 2, when we compare GR and HY,
it is seen that GR obtains lower volume for any K : for example on
512 processors the volume of GR is 4.5 Mbwhile it is 7.1 Mb for HY.
On the other hand, with the local reduce, the hypergraph model
correctly encapsulates the total volume. When we compare GRr
and HYr, it is seen that HYr obtains lower volume for any K : for
example on 512 processors the volume of HYr is 2.6 Mb while it is
2.9 Mb for GRr.

Fig. 4 presents the parallel SpMV runtimes obtained by the
compared schemes for matrix rajat31. There are three plots: the
one in the left compares the schemes that do not contain local
reduce, i.e., RN, GR, HY, the one in the center compares the schemes
that contain local reduce, i.e., RNr, GRr, HYr, and the one in the
right compares all. We display the plots for a single matrix only as
the plots for other matrices exhibit similar behaviors. Both with
and without local reduce, the task assignments realized by the
partitioning models scale much better. Observe that the schemes
without local reduce obtain lower runtimes compared to their
counterparts, as also observed in Table 2. Up to 256 processors, all
schemes seem to scale, but after that point, the schemes relying
on random assignment scale poorly while the schemes relying on
partitioning models scale further by being able to decrease the
runtime. The reason behind this is the increased importance of
communication in overall runtime, which we investigate next.

Fig. 5 illustrates the dissection of parallel SpMV times as bar
charts for matrix rajat31 on 64, 256 and 1024 processors. Blue
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Fig. 4. Parallel SpMV runtimes of compared schemes for matrix rajat31. Both axes are in logarithmic scale.

Fig. 5. Dissection of computation and communication times in parallel SpMV for matrix rajat31 on 32, 128 and 512 processors. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

and yellow bars in the figure respectively represent the compu-
tation and communication times. When we compare the perfor-
mance of different schemes (RNr, GRr, HYr) for a specific number
of processors with local reduce, it is seen that the computation
times are roughly the same, whereas the communication times
vary drastically. This is also the case without local reduce. When
we compare the communication performance of a scheme for a
specific number of processors, it is observed that local reduce
decreases the communication time significantly as expected. Al-
though it is expected that the total amount of computation of a
scheme for a specific number of processors should stay the same
with or without local reduce, this does not seem to be the case due
to the overhead of the convert() and reduce() operations involved
in local reduce. As seen from both bar charts, the key to scalability
is to address the communication bottlenecks, which is achieved by
the partitioning models in a very successful manner.

7.2. SpGEMM

The results obtained for the SpGEMM operation are presented
in Table 3. The decoding of the table is the same with the one
presented for SpMV (Table 2).We experiment up to 512 processors
for this operation.

As seen from Table 3, the schemes that utilize a partitioning
model decrease the communication volume drastically in the shuf-
fle phase. For example on 128 processors, GRr and HYr incur a
volume of 5–6 Mb, while RNr incurs a volume of 341.7 Mb. Sim-
ilarly, on the same number of processors, GR and HY respectively
incur a volume of 13.1 and 21.4 Mb, while RN incurs a volume
of 356 Mb. The benefit of decreasing data transferred is seen as
improvement in parallel SpGEMM runtime: the schemes relying
on partitioning models obtain more than 2-4x speedup over the

ones that do not so for any number of processors. The schemes
exhibit close performance in computational balance in the map
phase. However, RN and RNr obtain better balance in the reduce
phase.

As also observed in the SpMV operation, performing the op-
tional local reduce leads to reductions in data transfer in the shuffle
phase. For random assignment schemes, the optional local reduce
does not seem to work as RNr obtains higher parallel SpGEMM
times than RN. This is because there is not much difference in the
volumes incurred by these two schemes. On the other hand, for
small number of processors, the optional local reduce pays off for
the schemes that rely on partitioningmodels up to 256 processors.
Comparing the volumes incurred by the graph and hypergraph
models, when there is no local reduce GR always obtains lower
volume than HY for any number of processors. In the existence of
local reduce, HYr obtains lower volume than GRr for 128, 256 and
512 processors, while GRr obtains lower volume than HYr in 32
and 64 processors. Note that graph partitioners can perform close
to hypergraph partitioners if the sparsity pattern of the underlying
model accommodates uniformity.

Fig. 6 presents the parallel SpGEMM runtimes obtained by the
compared schemes for matrix kim1. The left plot compares the
schemes that do not contain local reduce, i.e., RN, GR, HY, the center
plot compares the schemes that contain local reduce, i.e., RNr,
GRr, HYr, and the right plot compares all. With or without local
reduce, the schemes relying on partitioning models exhibit better
scalability. RN and RNr scale up to 128 processors, while GR, GRr,
HY and HYr scale all theway up to 512 processors. As also observed
in Table 3, GRr and HYr perform slightly better than GR and HY
on small number of processors, while the opposite situation is
observed on 256 and 512 processors.
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Table 3
Volume, imbalance and runtime averages for SpGEMM (volume in megabytes and time in seconds).

Actual values Normalized within scheme Normalized wrt RN and RNr

K Scheme RNr RN GRr GR HYr HY RN/RNr GR/GRr HY/HYr GRr/RNr HYr/RNr GR/RN HY/RN

32

%imb-map 6.5 6.5 7.3 7.3 5.6 5.6 1.00 1.00 1.00 1.1 0.9 1.1 0.9
%imb-reduce 0.6 0.6 4.9 4.9 2.9 2.9 1.00 1.00 1.00 7.8 4.7 7.8 4.7
volume 299.7 347.6 2.2 4.4 2.4 10.1 1.16 2.00 4.28 0.007 0.008 0.013 0.029
time 0.76 0.57 0.30 0.32 0.31 0.36 0.75 1.08 1.17 0.39 0.41 0.56 0.63

64

%imb-map 9.1 9.1 10.4 10.4 9.0 9.0 1.00 1.00 1.00 1.2 1.0 1.2 1.0
%imb-reduce 0.9 0.9 7.2 7.2 4.5 4.5 1.00 1.00 1.00 7.7 4.8 7.7 4.8
volume 326.4 353.1 3.6 7.0 3.8 15.2 1.08 1.97 4.00 0.011 0.012 0.020 0.043
time 0.43 0.33 0.17 0.18 0.18 0.21 0.75 1.04 1.11 0.40 0.42 0.56 0.63

128

%imb-map 17.5 17.5 15.4 15.4 12.9 12.9 1.00 1.00 1.00 0.9 0.7 0.9 0.7
%imb-reduce 1.3 1.3 10.1 10.1 5.8 5.8 1.00 1.00 1.00 8.0 4.6 8.0 4.6
volume 341.7 356.0 6.1 13.1 5.7 21.4 1.04 2.15 3.73 0.018 0.017 0.037 0.060
time 0.25 0.19 0.12 0.11 0.12 0.12 0.73 0.99 1.02 0.45 0.48 0.61 0.66

256

%imb-map 20.0 20.0 23.4 23.4 18.0 18.0 1.00 1.00 1.00 1.2 0.9 1.2 0.9
%imb-reduce 2.0 2.0 15.9 15.9 8.2 8.2 1.00 1.00 1.00 8.0 4.2 8.0 4.2
volume 350.1 357.4 9.6 21.7 8.8 32.2 1.02 2.26 3.65 0.027 0.025 0.061 0.090
time 0.18 0.14 0.09 0.08 0.09 0.09 0.77 0.92 0.97 0.49 0.50 0.58 0.63

512

%imb-map 30.1 30.1 29.3 29.3 24.7 24.7 1.00 1.00 1.00 1.0 0.8 1.0 0.8
%imb-reduce 3.9 3.9 18.3 18.3 12.9 12.9 1.00 1.00 1.00 4.7 3.3 4.7 3.3
volume 354.4 357.8 14.2 32.4 13.4 46.8 1.01 2.28 3.49 0.040 0.038 0.091 0.131
time 0.30 0.27 0.07 0.06 0.08 0.07 0.90 0.87 0.89 0.24 0.25 0.24 0.25

Table 4
Amortization of partitioning.

# of SpMVs # of SpGEMMs

Local reduce Local reduce

K With Without With Without

32 6 10 1 2
64 13 28 4 6

128 44 107 10 18
256 154 395 20 31
512 367 563 10 11

Fig. 7 illustrates the dissection of parallel SpGEMM times as bar
charts formatrixkim1 on32, 128 and512processors. Observe that,
as also was the case for SpMV, the schemes with local reduce have
less communication overhead compared to the schemes without
local reduce. The arguments made for SpMV are also valid for
SpGEMM. Compared to SpMV, the improvements in the commu-
nication performance are more pronounced with the execution of
the local reduce. This is due to the higher number of intermediate
KV pairs produced in SpGEMM. Since all schemes achieve a good
computational balance, the key to better parallel performance and
scalability lies in the reduction of communication overheads.

7.3. Preprocessing and amortization

We evaluate the pre-processing overheads of the proposed
models in Table 4. We only consider the schemes based on graph
partitioning, i.e., GR and GRr, in our analyses to compare with
RN and RNr due to a number of reasons. First, graph partition-
ing is faster compared to hypergraph partitioning and when the
close performance of graph and hypergraph models is taken into
account, GR and GRr become more viable compared to HY and
HYr in terms of pre-processing overhead. Second, while there
exist several fast parallel partitioners for graphs, this is not the
case for hypergraphs. Hence, the analyses in this section do not
involve HY and HYr. In Table 4, an entry signifies the number of
SpMV or SpGEMM iterations required to amortize the partitioning
overhead and is the geometric average of the matrices used for
the respective operation and K value. For example, the value of
44 in the table indicates that compared to RNr, partitioning the
graphs and running SpMV in parallel using GRr amortizes GRr’s
partitioning overhead in 44 SpMV iterations.We use ParMETIS [36]
to partition the graphs.

From the values in Table 4, it is clearly seen that the graph
models for SpGEMM amortize much better than the graph models
for SpMV. For example, for K = 128, while 44–107 iterations are
required for SpMV to amortize, only 10–18 iterations are required
for SpGEMM to amortize. This is simply because the graphs for
SpGEMM are partitioned faster with ParMETIS compared to the
graphs for SpMV.

Another important point is that the graph models amortize
better in the existence of local reduce. The reason behind this
does not lie in runtime differences between GR and GRr, which
are very close, but between RN and RNr, which are quite distant
especially at small processor counts. The high parallel runtimes
of RNr compared to that of RN (see Tables 2 and 3), for example,
lead GRr to amortize in 44 and 10 SpMV and SpGEMM iterations,
respectively, at K = 128, while, these values are 107 and 18 for GR.

The amortization tends to slow down with increasing number
of processors. The reason behind this is that ParMETIS does not
scale after a certain number of processors and actually further
scales down, where this scaling down is seemingly sharper in
SpMV than SpGEMM. This trend seems to evaporate when increas-
ing number of processors from 256 to 512, especially for SpGEMM.
This is not because ParMETIS miraculously starts scaling up after a
certain point, but because RN and RNr starts to scale down around
256 processors, which in turn decreases the amortization overhead
at 512 processors as GR and GRr scale successfully at any number
of processors.

All in all, it can be said that the amortization happens somewhat
fast, often not in the magnitudes of tens of hundreds or a few
thousands of iterations as expected from an application arising
from scientific computing. This is due to the BSP nature of the
MapReduce implementation and the HPC nature of the graph par-
titioner ParMETIS, the former containing synchronization burdens
once every a few operations for the ease of programming while
the latter carries no such burdens at the expense of utilizing more
complex algorithms.

8. Conclusions

In this work we focused on static scheduling of map and reduce
tasks in a MapReduce job to achieve data locality and load bal-
ance, where the data locality usually translates into reduced data
transfer in the shuffle phase and the load balance usually translates
into faster task execution in the map and reduce phases. Our
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Fig. 6. Parallel SpGEMM runtimes of compared schemes for matrix kim1. Both axes are in logarithmic scale.

Fig. 7. Dissection of computation and communication times in parallel SpGEMM for matrix kim1 on 32, 128 and 512 processors. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

approach relies on exploiting the domain-specific knowledge with
thehelp of themodels basedongraph andhypergraphpartitioning.
This knowledge is obtained through scanning the input data in a
preprocessing stage to determine the interactions amongmap and
reduce tasks. In order to utilize our models within MapReduce,
the information produced by them are used as hash functions to
schedule the tasks in map and reduce phases. Our models’ capa-
bilities are demonstrated on two key operations, sparse matrix–
vector multiplication (SpMV) and sparse matrix-sparse matrix
multiplication (SpGEMM)— both of which are common operations
in scientific computations and graph algorithms. Using our models
in the experiments that contain up to 1024 processors, the amount
of data transferred in the shuffle phase has been reduced from
several hundreds of megabytes to only a few megabytes, resulting
in up to 2.6x speedup for SpMV and 4.2x speedup for SpGEMM.

As future work, we plan to integrate our models into more
common dialects of MapReduce such as Hadoop and test them
on commodity clusters. Since our models completely ignore the
important issues such as fault tolerance in MapReduce, we also
plan to investigate methods that will render the proposed models
fault-tolerant. Lastly, we consider validating the impact of static
task scheduling in more realistic scenarios via models constructed
on the fly while running a MapReduce job.
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