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Replication is a widely-used technique in information retrieval and database systems for providing fault
tolerance and reducing parallelization and processing costs. Combinatorial models based on hypergraph

partitioning are proposed for various problems arising in information retrieval and database systems. We con-
sider the possibility of using vertex replication to improve the quality of hypergraph partitioning. In this study,
we focus on the constrained min-cut replication (CMCR) problem, where we are initially given a maximum repli-
cation capacity and a K-way hypergraph partition with an initial imbalance ratio. The objective in the CMCR
problem is finding the optimal vertex replication sets for each part of the given partition such that the initial
cut size of the partition is minimized, where the initial imbalance is either preserved or reduced under the
given replication capacity constraint. In this study, we present a complexity analysis of the CMCR problem and
propose a model based on a unique blend of coarsening and integer linear programming (ILP) schemes. This
coarsening algorithm is derived from a novel utilization of the Dulmage-Mendelsohn decomposition. Experi-
ments show that the ILP formulation coupled with the Dulmage-Mendelsohn decomposition-based coarsening
provides high quality results in practical execution times for reducing the cut size of a given K-way hypergraph
partition.
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1. Introduction
In the literature, hypergraph models have found
numerous applications in a broad range of fields,
including parallel scientific computing, A3VLSI design,
software engineering, wireless communication net-
works, information retrieval, and database systems.
In proposed models, the combinatorial optimization
problem at hand is generally expressed as a hyper-
graph partitioning problem, trying to optimize a
particular objective function (e.g., maximizing the
spectrum utilization in a wireless network, minimiz-
ing the total disk access cost in a database system)
subject to certain constraints (e.g., number of channels
allowed in a certain wireless spectrum, block size of a
disk page). As implied by the established model, the
quality of the produced solution given for the initial
combinatorial optimization problem directly relates
to the intermediate hypergraph partition. Hence,
efficient and effective hypergraph partitioning algo-
rithms play a significant role in hypergraph-based
combinatorial optimization models.

Combinatorial models based on hypergraph parti-
tioning can broadly be categorized into two groups.

In the former group, undirectional hypergraph partition-
ing models, hypergraphs are used to model a shared
relation among the tasks or data represented by the
vertices. For instance, hypergraph partitioning mod-
els used in database and geographic information sys-
tems, wireless communication networks, information
retrieval, and software engineering can be categorized
in this group. In the latter group, directional hypergraph
partitioning models, hypergraphs are used to model
a directional (source-destination) relation among the
tasks or data represented by the vertices. For example,
hypergraph partitioning models used in VLSI design
can be categorized in this group. In this study, we
focus on the undirectional hypergraph partitioning
models. Directional hypergraph models are out of the
scope of this work.

Replication is a widely-used technique in infor-
mation retrieval and database systems. This tech-
nique is generally used for providing fault toler-
ance (e.g., maximizing the availability of data in
case of a disk failure) and enhancing parallelization
(e.g., minimizing communication costs in informa-
tion retrieval systems) and processing (e.g., minimiz-
ing disk access costs of a database system) costs.
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We consider the possibility of using vertex replica-
tion to improve the quality of partitioning objective in
undirectional hypergraph models. That is, many exist-
ing real-world problems addressed by undirectional
hypergraph models allow the coexistence of multiple
copies of a vertex. We believe this availability pro-
vides room for improvement, which can be exposed
by vertex replications on the modeled hypergraph.
For instance, in a hypergraph model (Demir et al.
2008), optimizing the disk access costs, where vertices
represent junction records and hyperedges represent
the access patterns of the aggregate network opera-
tions, multiple copies of a record can coexist on a
file system to decrease the number of page misses.
Likewise, in an information retrieval system modeled
by a hypergraph (Cambazoglu and Aykanat 2006),
optimizing the overall query throughput, where ver-
tices represent terms and hyperedges represent doc-
uments/pages, instances of a term might be placed
on multiple servers to decrease the processing times
of queries.

We refer to using vertex replication to improve
the quality of partitioning objective in undirectional
hypergraphs as hypergraph partitioning with vertex repli-
cation and there are two viable approaches to this
problem. In the first approach, called one-phase, repli-
cation is performed concurrently with the partition-
ing. In the second approach, called two-phase, replica-
tion is performed in two separate phases. In the first
phase, the hypergraph is partitioned and in the sec-
ond phase, replication is applied to the partition pro-
duced in the previous phase. The one-phase approach
has the potential of producing high quality solutions
since it considers partitioning and replication simul-
taneously. However, the two-phase approach is more
general and flexible since it enables the use of any one
of the state-of-the-art hypergraph partitioning tools in
the first phase. The two-phase approach also has the
additional flexibility of working on a given partition
that already contains replicated vertices.

Our main contribution consists of providing a
detailed complexity analysis of the two-phase hyper-
graph partitioning with vertex replication problem
and proposing an efficient and effective replica-
tion phase based on a unique blend of coarsening
and integer linear programming (ILP) schemes. This
coarsening scheme is based on a novel utilization
of the Dulmage-Mendelsohn decomposition. In this
approach, we iterate over available parts and try to
find replication sets corresponding to the vertices that
are to be replicated into iterated parts. The replication
set of each part is constrained by a maximum repli-
cation capacity, and these sets are constrained to be
determined in such a way that the partition imbal-
ance is either improved or preserved after the repli-
cation. To the best of our knowledge, this is the first

study considering the vertex replication in undirec-
tional hypergraph models. To present a baseline, we
discuss related studies from directional hypergraph
models next.

In VLSI design, the first in-depth discussion about
logic replication is given by Russo et al. (1971), where
they propose a heuristic approach. Later, Kring and
Newton (1991) and Murgai et al. (1991) extend the
Fidduccia and Mattheyses (FM) iterative improve-
ment algorithm to allow vertices to be duplicated
during partitioning. Hwang and El Gamal (1992) pro-
pose a network flow model to the optimal replication
for min-cut partitioning, and an FM-based heuristic
to the size-constrained min-cut replication problem.
Kužnar et al. (1994) introduce the concept of func-
tional replication. Yang and Wong (1995) provide an
optimal solution to the min-area min-cut replication
problem. Alpert and Kahng (1995) present a survey
about circuit partitioning and provide a brief list of
existing logic replication schemes. Enos et al. (1997)
provide enhancements for available gate replication
heuristics. All of these works on VLSI applications fall
into the category of vertex replication on directional
hypergraphs. Very recently, Selvitopi et al. (2012) pro-
pose and discuss a method for replicated partition-
ing of undirected hypergraphs relying on one-phase
approach.

This paper is organized as follows: In §2, prelimi-
nary definitions are presented. In §3, a detailed com-
plexity analysis of the problem at hand is given. Then,
in §4, the proposed model to the CMCR problem is
presented. Later, in §5, experimental setup and results
of the conducted experiments are given. Finally, in §6,
we conclude the paper.

2. Preliminaries
In this section, notations and definitions that are used
throughout the paper are given. In §2.1, we start by
defining the K-way hypergraph partitioning problem.
Later in §2.2, the partitioning with vertex replication
problem is presented. Finally in §2.3, the Dulmage-
Mendelsohn decomposition is presented.

2.1. K-Way Hypergraph Partitioning
A hypergraph H = 4V1N5 is defined as a two-tuple,
where V denotes the set of vertices and N denotes
the set of nets (hyperedges) among those vertices.
Every net n ∈ N connects a subset of vertices in V.
The vertices connected by a net n are called its pins
and denoted as Pins4n5 ⊆ V. The set of nets connect-
ing a vertex v is denoted as Nets4v5 = 8n ∈ N � v ∈

Pins4n59. Two vertices are said to be adjacent if they
are connected by at least one common net. That is, v ∈

Adj4u5 if there exists a net n such that u1 v ∈ Pins4n5.
A weight w4v5 and a cost c4n5 are assigned for each
vertex v and net n, respectively. Adjacency Adj4 · 5 and
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weight w4 · 5 operators easily extend to a set U of ver-
tices, that is, Adj4U5=

⋃

u∈U Adj4u5−U and w4U5 =
∑

u∈U w4u5.
A K-way vertex partition of H is denoted as

ç4V5 = 8V11V21 0 0 0 1VK9. Here, parts Vk ⊆ V, for
k = 1121 0 0 0 1K, are pairwise disjoint and mutually
exhaustive. In a partition ç of H, a net that con-
nects at least one vertex in a part is said to con-
nect that part. The connectivity set å4n5 of a net n is
defined as the set of parts connected by n. The con-
nectivity �4n5 = �å4n5� of a net n denotes the num-
ber of parts connected by n. A net n is said to be
cut if it connects more than one part (i.e., �4n5 > 1),
and uncut otherwise (i.e., �4n5 = 1). A vertex is
said to be a boundary vertex if it is connected by
at least one cut net. The cut and uncut nets are also
referred to as external and internal nets, respectively.
A4
Next4Vk5 denotes the set of external nets of part Vk,
that is, Next4Vk5= 8n ∈N � �4n5 > 11Pins4n5∩Vk 6= �9.
Next is used to refer to all external nets in a partition,
i.e., Next = 8n ∈N � �4n5 > 19.

For a K-way partition ç of a given hypergraph H,
the imbalance ratio ibr4ç5 is defined as follows:

ibr4ç5=
Wmax

Wavg
− 10

Here, Wmax = maxVk∈ç
8w4Vk59 and Wavg = Wtot/K,

where Wtot =w4V5.
There are various cut-size metrics for representing

the cost �4ç5 of a partition ç. Two most widely used
cut-size metrics are given as follows.

• Cut-net metric: The cut size is equal to the sum
of the costs of the cut nets.

�cut4ç5=
∑

n∈Next

c4n5 (1)

• Connectivity metric: Each cut net n contributes
4�4n5− 15c4n5 to the cut size.

�con4ç5=
∑

n∈Next

4�4n5− 15c4n5 (2)

Given these definitions, the K-way hypergraph par-
titioning problem is defined as follows.

Definition 1 (K-Way Hypergraph Partition).
Given a hypergraph H = 4V1N5, number of parts K,
a maximum imbalance ratio �, and a cut-size metric
�4 · 5; find a K-way partition ç of H that minimizes
�4ç5 subject to the balancing constraint ibr4ç5≤ �.

In Lengauer (1990), it is shown that K-way hyper-
graph partitioning is NP-hard.

Figure 1 shows a three-way partition of a sample
hypergraph H with 24 boundary vertices and 19 cut
nets. Note that in figures, circles denote vertices and
dots denote nets, where a number i in a circle denotes
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Figure 1 A Three-Way Partition of a Sample Hypergraph H

a vertex vi and a number j besides a dot denotes a
net nj . Note that only boundary vertices and cut nets
are numbered for the sake of simplicity. In Figure 1,
Pins4n195 = 8v201v211v239, å4n195 = 8V21V391�4n195 = 2,
and so on.

2.2. K-Way Hypergraph Partitioning
with Vertex Replication

For a given K-way partition ç of H, R4ç5 = 8R11R21
0 0 0 1RK9 denotes the replication set, where Rk ⊆V and
Rk ∩ Vk = �, for k = 1121 0 0 0 1K. That is, Rk denotes
the subset of vertices added to part Vk of ç as repli-
cated vertices. Note that replication subsets are pos-
sibly pairwise overlapping since a vertex might be
replicated in more than one part. The replication set
R4ç5 for a given partition ç of H induces the follow-
ing K-way hypergraph partition with vertex replication:

çr 4ç1R5

=
{

V r
1 = V1 ∪R11V

r
2 = V2 ∪R21 0 0 0 1V

r
K = VK ∪RK

}

0

Note that although Vk’s of ç are pairwise disjoint,
since Rk’s of R4ç5 are overlapping, V r

k ’s of çr are
overlapping as well. Previously defined �4 · 5 and
ibr4 · 5 functions are directly applicable to çr with-
out any changes. The total weight after replication is
defined as W r

tot =Wtot +
∑K

k=1 w4Rk5.
Given these definitions, the main problem ad-

dressed in this paper is defined as follows.

Problem 1 (Constrained Min-Cut Replication
(CMCR) for a Given K-Way Hypergraph Parti-
tion). Given a hypergraph H = 4V1N5, a K-way par-
tition ç of H, and a replication capacity ratio �; find a
K-way replication set R4ç5 that minimizes the cut size
�4çr 5 of the induced replicated partition çr subject to the
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Figure 2 Replication of v23 to V3 in the Sample HypergraphH Given in
Figure 1

replication capacity constraint of W r
tot ≤ 41 + �5Wtot and

the balancing constraint of ibr4çr 5≤ ibr4ç5.

In Figure 2, replication of vertex v23 from part V2 to
part V3 is depicted. After replication, nets n171n181n19
connecting v23 in V2, are replaced with new con-
nections to replicated v23 in V3. Consequently, nets
n171n181n19 are removed from the cut.

2.3. The Dulmage-Mendelsohn Decomposition
The Dulmage-Mendelsohn decomposition is a canon-
ical decomposition on bipartite graphs and described
in a series of papers (Dulmage and Mendelsohn 1963,
1958, 1959; Johnson et al. 1962). Later, Pothen and
Fan (1990) formalize this decomposition by a series of
lemmas and present further enhancements.

A bipartite graph G = 4V = R ∪ C1E5 is a graph
whose vertex set V is partitioned into two parts R
and C such that the edges in E connect vertices in
two different parts. A matching on a bipartite graph
is a subset of its edges without any common vertices.
A maximum matching is a matching that contains the
largest possible number of edges.

Definition 2 (The Dulmage-Mendelsohn De-
composition). Let M be a maximum matching for a
bipartite graph G = 4V = R ∪ C1E5. The Dulmage-
Mendelsohn decomposition canonically decomposes
G into three parts

ç=
{

VH =RH ∪CH1 VS =RS ∪CS1 VV =RV ∪CV

}

1

where RH , RS , RV and CH , CS , CV , respectively, are
subsets of R and C with the following definitions
based on M:

RV = 8vi ∈R � vi is reachable by an alternating path from
some unmatched vertex vj ∈R91

RH = 8vi ∈R � vi is reachable by an alternating path from
some unmatched vertex vj ∈C91

RS =R− 4RV ∪RH 51

CV = 8vi ∈C � vi is reachable by an alternating path from
some unmatched vertex vj ∈R91

CH = 8vi ∈C � vi is reachable by an alternating path from
some unmatched vertex vj ∈C91

CS =C − 4CV ∪CH 50

The following properties given in Pothen (1984),
Pothen and Fan (1990) regarding the RH , RS , RV and
CH , CS , RS subsets provide certain features related to
the structure of the Dulmage-Mendelsohn decompo-
sition. The sets RV , RS , and RH are pairwise disjoint;
similarly, the sets CV , CS , and CH are pairwise dis-
joint. A matching edge of M connects: a vertex in RV

only to a vertex in CV ; a vertex in RS only to a ver-
tex in CS ; and a vertex in RH only to a vertex in CH .
Vertices in RS are perfectly matched to the vertices
in CS . No edge connects: a vertex in CH to vertices
in RS or RV ; a vertex in CS to vertices in RV . Sets CH

and RV are the unique smallest sets that maximize the
�CH � − �RH � and �RV � − �CV � differences, respectively.
The subsets RH , RS , RV , and CH , CS , CV are indepen-
dent of the choice of the maximum matching M; hence
the Dulmage-Mendelsohn decomposition is a canoni-
cal decomposition of the bipartite graph.

For larger bipartite graphs, one might opt for a more
fine-grained decomposition. For this purpose, Pothen
and Fan (1990) further decompose RH , RS , RV and
CH , CS , CV sets into smaller subsets. For the sim-
plicity of the forthcoming discussions, the Dulmage-
Mendelsohn decomposition will be referred to as
coarse-grained decomposition and enhancements of
Pothen and Fan (1990) will be referred to as fine-grained
decomposition.

A5
GX denotes the subgraph of G induced by the ver-

tex subset X, where X stands for either H , S, or V . For
a given bipartite subgraph GX = 4VX = RX ∪ CX1EX5,
EX corresponds to the subset of edges in E that con-
nects vertices in parts RX and CX . The fine-grained
decomposition is formalized as follows.

Definition 3 (Fine-Grained Dulmage-Mendel-
sohn Decomposition). Let M be a maximum match-
ing for a bipartite graph G= 4V=R∪C1E5 and GH ,
GS , GV be bipartite subgraphs induced by the coarse-
grained decomposition of R and C sets into RH ,
RS , RV and CH , CS , CV subsets. Fine-grained decom-
position of bipartite subgraphs GH , GS , and GV is per-
formed as follows.

• Find connected components in subgraphs GH

and GV .
• Using GS , construct a new directed bipartite

graph G′
S , where matched edges are left undirected,
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and other unmatched edges are directed from CS

to RS . Find strongly connected components in G′
S .

Depending on the structure of the given bipartite
graph and maximum matching, the resulting fine-
grained decomposition is expected to provide many
more parts than its coarse-grained equivalent.

For a given bipartite graph G = 4V1E5, a max-
imum matching can be found in O4�E�

√

�V�5 time
due to the Hopcroft-Karp algorithm. In the coarse-
grained decomposition phase, a depth-first search is
performed for every unmatched vertex for finding
alternating paths. Thus, coarse-grained decomposi-
tion runs in O4�E�

√

�V�5 + O4�V�4�V� + �E�55 time,
that is, in O4�V�4�V� + �E�55 time. In the fine-grained
decomposition phase, connected components for GH

and GV can be found in O4�V�+�E�5 time via breadth-
first search and strongly-connected components in G′

S

can be found in O4�V� + �E�5 time via Tarjan’s algo-
rithm (Tarjan 1972). Hence, the decomposition phase
takes O4�V�4�V� + �E�55 time in total.

In Figure 3, application of coarse-grained and fine-
grained Dulmage-Mendelsohn decompositions are
demonstrated on a sample bipartite graph G =

4V=R∪C1E5. This sample hypergraph is composed
of 19 vertices and 17 undirected edges.

Figure 3(b) demonstrates a coarse-grained Dulmage-
Mendelsohn decomposition of G for a given maxi-
mum matching M. Here, matched edges are drawn
in black and VH , VS , and VV parts produced by the

(a) Sample
bipartite graph

(b) Coarse-grained
Dulmage-Mendelsohn

decomposition

(c) Fine-grained
Dulmage-Mendelsohn

decomposition
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Figure 3 The Dulmage-Mendelsohn Decomposition

coarse-grained decomposition are separated via bor-
ders. For instance, v3 is matched with v12, RH =

8v31v49 and CH = 8v111v121v131v141v159.
Figure 3(c) depicts a fine-grained decomposition of

the sample bipartite graph G in Figure 3(a). Here,
components are separated with dashed lines. For
instance, vertices v31 v111 v12 and edges between them
constitute a connected component in GH . As seen in
Figure 3(c), unmatched edges 4v51v175, 4v61v165, and
4v91v175 in GS are directed from CS to RS to con-
struct G′

S . There appear two strongly-connected com-
ponents in G′

S composed of vertices v51v61v161v17,
and v91v18.

3. Complexity Analysis
In this section, we investigate the complexity of the
CMCR problem and subproblems implicitly induced
by the vertex replication. In §3.1, we first prove that
CMCR is NP-hard, regardless of vertex weights and
net costs. Then in §3.2 we show that finding the cut
size of a K-way hypergraph partition with vertex
replication might turn out to be an NP-hard problem
depending on the used cut-size metric.

3.1. Complexity of Constrained
Min-Cut Replication

The first in-depth analysis of CMCR for directional
hypergraph models is given in Hwang (1994), where
a polynomial-time reduction from A6the PARTITION
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problem (Garey and Johnson 1990) to the CMCR
problem is presented. Moreover, they conjectured that
the CMCR remains NP-hard when all vertices and
nets have unit weights and costs, respectively. Alter-
native to the given proof in Hwang (1994), we present
a simpler proof based on polynomial-time Turing
reduction from the set-union knapsack problem to the
CMCR problem. Reduction is performed regardless of
the vertex weights and net costs, hence, it provides a
solution to the conjecture presented in Hwang (1994)
as well.

Before going into the details of the proof, we first
present the definition of the set-union knapsack (SUK)
problem (Goldschmidt et al. 1994) as follows.

Definition 4 (Set-Union Knapsack (SUK) Prob-
lem). Given a set of n items T = 81121 0 0 0 1n9 and
a set of m so-called elements L = 81121 0 0 0 1m9, each
item j ∈ T corresponds to a subset Lj of the element
set L. The items j ∈ T have nonnegative profits pj , j =

11 21 0 0 0 1n, and the elements i ∈ L have nonnegative
weights wi, i = 11 21 0 0 0 1m. The total weight of a set
of items is given by the total weight of the elements
of the union of the corresponding element sets. Find
a subset of the items with total weight not exceeding
the knapsack capacity while maximizing the profit.

The polynomial-time Turing reduction from SUK to
CMCR is presented in the following.

Theorem 1. Every SUK instance S is polynomial-time
Turing reducible to a CMCR instance C, that is, S ≤T C.

Proof. A SUK can be reduced to a CMCR with
a two-way hypergraph partition ç = 8V11V29, where
elements of the SUK instance correspond to the
vertices of V1 (i.e., V1 = 8v11v21 0 0 0 1 vm9) and items
correspond to the cut nets (i.e., Next4V25 = 8n11n21
0 0 0 1nn9). Since ç is a two-way hypergraph partition,
Next4V15=Next4V25. We create set V2 = 8v∗9 such that
the weight of v∗ exceeds the given replication capac-
ity and it is connected by the external nets of part V1,
i.e., v∗ ∈ Pins4n5 for ∀n ∈Next4V15. Since w4v∗5 > �Wtot,
only the replication of vertices in V1 to V2 is allowed.
A solution to this CMCR instance selects a subset R
of vertices in V1 maximizing the cost of the nets in
N ⊆ Next4V15 such that Pins4n5 = R ∪ 8v∗9 for ∀n ∈ N
and subject to w4R5≤ �Wtot. Hence, a solution to this
particular CMCR problem provides a solution to the
given SUK problem and transformation from SUK to
CMCR is performed in polynomial time. �

One should note that, because of the presented
two-way partition in the given proof, cut net and
connectivity cut-size metrics yield identical results.
In other words, for �4n5= 2,

�con4ç5=
∑

n∈Next

4�4n5− 15c4n5=
∑

n∈Next

c4n5= �cut4ç50

(a) Sample SUK instance
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Figure 4 Sample SUK to CMCR Transformation

Goldschmidt et al. (1994) prove that the SUK prob-
lem is NP-hard. Given that SUK is polynomial-time
Turing reducible to CMCR, the complexity of CMCR
can be stated as follows.

Corollary 1. The constrained min-cut replication
problem is NP-hard.

In Figure 4, an example for this Turing reduction
is shown. In Figure 4(a), item set T and element set
L are composed of n items and m elements, respec-
tively. Each item j in T is associated with an ele-
ment set Lj , which is a subset of L. The objective is
to maximize the profit of the covered items subject to
the upper bound on the total weight of the union of
the used elements. This SUK instance is mapped to a
CMCR instance in Figure 4(b). To enforce the replica-
tion direction from V1 to V2, v∗ is added to V2 such
that v∗ weighs much more than the given replication
capacity. The relation between items and element sub-
sets are respectively represented by vertices and nets
in Figure 4(b). That is, L1 = 8112139 in Figure 4(a)
is represented by net n1 connecting vertices v1, v2,
and v3 in Figure 4(b).

3.2. Cut Size of a Partition with Vertex Replication
Previous studies involving K-way hypergraph par-
tition with vertex replication doesn’t investigate the
effect of the cut-size metric on the complexity of
the problem. However, computation of the minimum
cut size for a given partition with vertex replication
can stand as a major problem depending on the cut-
size metric used. For instance, whereas the list of cut
nets is sufficient to compute the cut size for the cut-
net metric (Equation (1)), pin mapping of the nets
(i.e., which part should be used for a particular pin
of a cut net) are also needed for the computation of
the cut size for the connectivity metric (Equation (2)).
Hence, depending on the used cut-size metric, find-
ing the minimum cut size for a given partition with
vertex replication can be an intractable problem. With-
out vertex replication, since every vertex has a unique
copy and, hence, every net has a unique pin mapping,
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this decision problem does not arise. This issue is gen-
eralized in Problem 2.

Problem 2 (Cut Size of a Partition with Vertex
Replication). Given a partition with vertex replication
çr and a cut-size metric �4 · 5, find the minimum �4çr 5.

In terms of connectivity cut-size metric, even for
a single net, finding the pin mapping with the least
possible number of parts is a set-cover problem,
where pins correspond to the element universe and
parts correspond to the element sets. This problem is
known (Garey and Johnson 1990) to be NP-hard. This
facet of the hypergraph partition with vertex replica-
tion is stated in the following corollary.

Corollary 2. Finding the minimum connectivity cut
size of a K-way hypergraph partition with vertex replica-
tion is NP-hard.

It should also be noted that a majority of the pins
of a cut net tends to be fixed, that is, a majority of the
vertices are anticipated to not be replicated and have a
single copy in some particular part. After connecting
such fixed pins to the relevant parts, it is expected
that there remains a negligible number of pins that
needs to be considered for a suitable part association.
Hence, the problem might turn out to be relatively
tractable in practice. On the other hand, in case of an
excessive amount of cut nets, this association decision
can still stand as an intractable problem.

For the cut-net metric, since Equation (1) just
depends on the determination of cut nets, cuts ize can
be computed in linear time proportional to the size of
the total number of pins.

4. Constrained Min-Cut Replication
In this section, we propose an efficient and effective
approach for solving the CMCR problem. It is clear
that, given a K-way partition ç of H, only the bound-
ary vertices in ç have the potential of decreasing
the cut size via replication. Thus, only the bound-
ary vertices are considered for finding a good repli-
cation set R. To handle the balancing constraints on
the weights of the parts of the replicated partition,
we propose a part-oriented approach by investigating
the replication to be performed on each part (in some
particular order).

Consider a replication set Rk for a part Vk of ç. Note
that Rk has to maximize the reduction in the cut size
without violating the maximum weight constraint of
part Vk. It is also clear that replication of vertices Rk

into part Vk can only decrease the cut size because of
the external nets of part Vk. So, while searching for a
good Rk, we consider only the external nets of part
Vk and the boundary vertices of other parts that are
connected by the external nets of part Vk. That is, we
only consider the net set Next4Vk5 and the vertex set
Adj4Vk5 for finding an Rk.

Algorithm 1 (Find_Replication_Set4H1ç1W1�5)
1: çr

0 ←ç
2: for k ← 1 to K do
3: �k = 41 +�5Wavg −w4Vk5
4: Hk ← construct4H1 k1çr

k−15
5: Hcoarse

k ← coarsen4Hk5
6: Rk ← select4Hcoarse

k 1�k5
7: çr

k ← 8V1 ∪R11 0 0 0 1Vk ∪Rk1Vk+11 0 0 0 1VK9
8: update4k5
9: çr ←çr

K .

Algorithm 1 displays the general framework of our
approach. For each part Vk, we first compute the repli-
cation capacity �k such that the initial imbalance will
be preserved or improved after the replication. Details
of this replication capacity computation are deferred
to §4.4. Then, we construct the hypergraph Hk that is
used to determine the set of vertices Rk to be repli-
cated into part Vk and is referred to here as the bound-
ary adjacency hypergraph. Vertices of Hk correspond to
Adj4Vk5 and nets of Hk are derived from Next4Vk5. This
hypergraph construction process is described in §4.1.
After constructing Hk, a good Rk is selected from
the vertices of Adj4Vk5 via using an ILP approach
described in §4.2. To reduce the high computation cost
of ILP for large Hk, a coarsening scheme for Hk is
described in §4.3.

4.1. Boundary Adjacency Hypergraph
Construction

Without loss of generality, we describe here the
boundary adjacency hypergraph construction to be
performed in the kth iteration of our algorithm for
the purpose of deciding on the vertices to be repli-
cated into part Vk. Note that prior to this construction
process, the effects of the replication performed in
the previous iterations are reflected on çr

k−1 (line 7 of
Algorithm 1) and the boundary vertices and cut nets
are updated accordingly (line 8 of Algorithm 1). For
the simplicity of the forthcoming discussions, we use
Adj4Vk5 and Next4Vk5 to refer to the updated adjacency
vertex and external net sets of part Vk, respectively.
For example, consider an external net nj of part V` in
the original partition çr

0. During an earlier iteration
k < `, if all pins of net nj that lie in part V` are repli-
cated into part Vk, then net nj disappears in Next4V`5.
In such a case, those pins of net nj that lie in part
Vk and are only connected by net nj to part V` disap-
pear from Adj4V`5. This update procedure is given in
Algorithm 2.

Algorithm 2 (Update4k5)
1: for l ← 4k+ 15 to K do
2: for each net nj ∈Next4Vk5 do
3: if Pins4nj5∩Rk ∩V` 6= � then
4: for each vertex v ∈ 4Pins4nj5∩Vk5 do
5: if Nets4v5∩Next4V`5= 8nj9 then
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6: Adj4V`5= Adj4V`5− 8v9
7: Next4V`5=Next4V`5− 8nj9
8: å4nj5=å4nj5−V`

{optional for cut-net metric}.

Two distinct boundary adjacency hypergraphs are
required to encapsulate the cut-net (Equation (1)) and
connectivity (Equation (2)) cut-size metrics, which
will be referred to as Hcut

k = 4Vcut
k 1Ncut

k 5 and Hcon
k =

4Vcon
k 1Ncon

k 5, respectively. The construction proce-
dures of Hcut

k and Hcon
k are depicted in Algorithms 3

and 4, respectively. In these hypergraphs, the vertex
set is composed of Adj4Vk5, and the objective is to
find a set of vertices Rk ⊆ Adj4Vk5 to be replicated into
part Vk, such that the total cost of nets in Hk connected
by vertices in Rk is maximized without violating the
balance constraint imposed on Vk. The net set defini-
tion for Hcut

k and Hcon
k should be done according to

this maximization objective.

Algorithm 3 (Construct 4H1 k1çr
k−15 for Cut-Net

Metric)
1: Vcut

k ← Adj4Vk5
2: Ncut

k ←Next4Vk5
3: for each net nj ∈Next4Vk5 do
4: Pins4nj5← Pins4nj5−Vk

5: return Hcut
k ← 4Vcut

k 1Ncut
k 5.

For the cut-net metric, to reduce the cut-size con-
tribution of a net nj in Next4Vk5, the net nj should be
made internal to part Vk, which is possible only when
all pins of net nj in Adj4Vk5 are replicated into Vk.
(Consequently, the contribution of nj to �cut4ç

r 5 will
vanish.) Thus, the net set of Hcut

k is selected as the
external nets of part Vk (line 2 of Algorithm 3).
Because Hcut

k is used to find the set of vertices to
be replicated into part Vk, the boundary vertices of
part Vk are built from the pin list of the nets in Hcut

k ,
excluding the vertices that are already available in Vk

(lines 3–4 of Algorithm 3).

Algorithm 4 (Construct 4H1 k1çr
k−11�k5 for Con-

nectivity Metric)
1: Vcon

k ← Adj4Vk5
2: Ncon

k ← �

3: for each net nj ∈Next4Vk5 do
4: for each part V` ∈å4nj5 and V` 6= Vk do
5: Ncon

k ←Ncon
k ∪ 8n`

j 9
6: Pins4n`

j 5← Pins4nj5∩V`

7: return Hcon
k ← 4Vcon

k 1Vcon
k 5.

For the connectivity metric, to reduce the cut-size
contribution of a net nj in Next4Vk5, it is sufficient to
replicate a subset of the pins of net nj such that �4nj5
will decrease after the replication. Consequently, the
contribution of nj to �con4ç

r 5 will accordingly dimin-
ish as well. To encapsulate this connectivity cut-size
contribution of vertices in a part for an external net,
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Figure 5 Sample Boundary Adjacency Hypergraph Construction

we enhance Next4Vk5 through a net splitting operation
such that each external net nj ∈ Next4Vk5 is split into
�4nj5− 1 new nets. Splitting is performed as follows:
For each net nj in Next4Vk5, we traverse over the con-
nectivity set å4nj5 of nj and introduce a new net n`

j

for each part V` 6= Vk in å4nj5. The newly introduced
net n`

j is set to connect only those pins of nj that lie in
part V` (lines 4–6 of Algorithm 4). As a result of this
splitting operation, replicating the vertices connected
by n`

j now corresponds to removing V` from å4nj5, in
other words, decreasing �4nj5 by 1.

Figure 5 shows the boundary adjacency hyper-
graphs Hcut

1 (Figure 5(a)) and Hcon
1 (Figure 5(b)) of part

V1 in Figure 1 for cut-net and connectivity metrics,
respectively. Comparing Figure 1 with Figures 5(a)
and 5(b) show that V2’s and V3’s boundary vertices
v51v61 0 0 0 1 v19 that are connected by at least one exter-
nal net of V1, constitute the vertices of both Hcut

1
and Hcon

1 .
Comparing Figure 1 with Figures 5(a) and 5(b)

reveals that each of the external nets n11n21 0 0 0 1n13

of V1 incurs a single net in Hcut
1 . Similarly, each of

the external nets n11n21 0 0 0 1n6 and n111n121n13 of V1

that have a connectivity of two incurs a single net
in Hcon

1 . On the other hand, each of the external
nets n71n81n91n10 of V1 that have a connectivity of
3 = �4nj5, as a result of the net splitting operation,
incurs 2 = �4nj5−1 nets in Hcon

1 . For example, n7 with
Pins4n75= 8v101v141v151v169 connects both V2 and V3,
and it incurs two nets n2

7 and n3
7 in Hcon

1 , where
Pins4n2

75= 8v109 and Pins4n3
75= 8v141v151v169. Note that

n2
7 and n3

7 are simply shown as 72 and 73 in
Figure 5(b).
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To further understand the effect of the net split-
ting operation, consider net n9 in Next4V15. As seen
in Figure 5(a), net n9 of Hcut

1 connects the vertices
8v91v101v119. So, the cut-net cut size imposed by net
n9 can only be reduced if the vertices 8v91v101v119
are replicated into part V1. On the other hand, as
seen in Figure 1, the connectivity cut size imposed by
n9 can only be reduced if the vertices 8v91v109 from
V2 and/or 8v119 from V3 are replicated into part V1.
That is, the replication of vertices 8v91v109 or 8v119
into part V1 reduces �4n95 by 1, and the replication of
three vertices together into part V1 reduces �4n95 by 2.
To encapsulate this connectivity cut-size contribution
of vertices in parts V2 and V3, n9 is split into two nets
as n2

9 and n3
9 in Hcon

1 (see Figure 5(b)). Similarly, net
splitting is performed for nets n7, n8, n10 as well.

In the first iteration of Algorithm 1, since there are
no replicated vertices, each net splitting is unique
in Hcon

1 . However, in the following iterations (i.e.,
k > 1), net splittings are not necessarily unique for the
further Hcon

k constructions because of the replicated
vertices. That is, multiple copies of a vertex induce
multiple pin selection options for a net. And each dif-
ferent pin selection induces a different net splitting in
the boundary adjacency hypergraph. Figure 6 shows
this pin selection problem that occurs in the construc-
tion of Hcon

k , where vertex v4 is replicated into part Vm

in the mth iteration for m < k. Figures 6(b) and 6(c)
show two possible pin selections for net n1 that con-
nects v4. For the first mapping in Figure 6(b), repli-
cation of v4 and v5 appear to be necessary to remove
V` from å4n15, whereas, for the second mapping in
Figure 6(c), replication of v5 is sufficient for the same
purpose. As depicted in Figure 6, pin selections of
nets directly affect the number of vertices to be repli-
cated for removing a part from the connectivity list of
a particular net. A closer look at the problem would
lead to the fact that, as a direct implication of Corol-
lary 2, pin selection is a set cover problem, which is
NP-hard. In our model, for a net nj and a vertex vi ∈

Pins4nj5, if there exists a copy of vi in part Vk that

(a) n1 has multiple choices (denoted by
dashed lines) for connecting v4

(b) v4 of n1 is
selected from V�

(c) v4 of n1 is
selected from Rm
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Figure 6 Sample Net Splitting Problem

was previously replicated into Vk for the purpose of
decreasing the connectivity set of �4nj5, then nj selects
vi from part V r

k ; otherwise, it selects vi from part V`

that is provided by the initial partition. For instance,
in Figure 6, if v4 is replicated to part Vm in a previous
iteration to decrease �4n15, then n1 selects v4 from V r

m;
otherwise, it selects v4 from V`.

4.2. Vertex Selection in Boundary
Adjacency Hypergraph

In our approach, the boundary adjacency hypergraph
Hk = 4Vk1Nk5 is derived from the cut nets of part Vk

and the adjacent vertices to part Vk. Note that Hk is
built in such a way that replicating the pins of a net in
Nk has a direct effect on the partition cut size imposed
by part Vk. Hence, it is clear that only the replication
of vertices in Vk have the potential of decreasing the
cut size imposed by part Vk. In this section, our objec-
tive is the selection of an optimal subset Rk of vertices
in Vk that are to be replicated into part Vk. Optimal-
ity in this context is defined as, given a boundary
adjacency hypergraph Hk and a maximum replication
capacity �k, selecting a subset Rk of vertices in Vk

that maximize the sum of the costs of the nets cov-
ered under a given capacity constraint of w4Rk5≤ �k.
During the vertex selection procedure, a net nj in Nk

is said to be covered when all of its pins are selected
for Rk, that is, Pins4nj5 ⊆ Rk. In §3.1, we proved that
this maximization objective is an NP-hard problem.
In this section, we provide an ILP formulation for this
vertex selection objective as follows:

maximize
∑

nj∈Nk

c4nj5x4nj5 (3)

subject to �Pins4nj5�x4nj5

≤
∑

vi∈Pins4nj 5

y4vi51 ∀nj ∈Nk1 (4)

∑

vi∈Vk

w4vi5y4vi5≤�k1 (5)
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where

x4nj5=

{

1 if ∀vi ∈Pins4nj5 is selected1
0 otherwise1

y4vi5=

{

1 if vertex vi is selected1
0 otherwise0

Binary variable x4nj5 is set to 1, if all the pins of net
nj are selected to be replicated into part Vk, that is,
if nj is covered. Likewise, if vertex vi is selected for
replication, binary variable y4vi5 is set to 1. Objec-
tive (3) tries to maximize the sum of the cost of the
nets covered. Inequality (4) constrains a net nj to be
set covered when all of its pins are selected, that is,
x4nj5=1 if y4vi5=1 for ∀vi ∈Pins4nj5. In expression (5),
the sum of the weights of the selected vertices are
constrained by �k. Since there are no restrictions on
vertex replications, but inequality (5), this formulation
might produce redundant vertex replications as much
as �k allows. That is, for certain vertices vi, y4vi5 can
be set to 1, where vi doesn’t have any effect on the
covered nets. But once the set of x4nj5’s is computed,
necessary y4vi5 values can be extracted from Pins4nj5
without allowing any redundant vertex replications.

In the given ILP formulation, for each boundary
adjacency hypergraph Hk, there are �Vk�+�Nk� vari-
ables for x4nj5’s and y4vi5’s, and �Nk�+1 constraints
(inequalities (4) and (5)), and a single maximization
objective.

The ILP model formalized in expressions (3), (4),
and (5) provides the optimal net selection scheme
for a given boundary adjacency hypergraph Hk and
a maximum replication capacity �k. In §3.1, we saw
that this optimization objective corresponds to the
set-union knapsack problem, which is known to be
NP-hard. Because of the intractability of the prob-
lem, from a practical point of view, this formulation is
anticipated to consume a significant amount of time
as the sum of the input variables (�Vk� and �Nk�)
grows excessively in size. To reduce this high compu-
tation cost of the ILP phase, preprocessing procedures
are introduced next and applied to each constructed
Hk before vertex selection.

1. Remove infeasible nets (that �k isn’t sufficient to
replicate all of its pins) and the vertices that are only
connected by such nets.

2. Coarsen boundary adjacency hypergraphs.
3. Restrict ILP solver running time to a certain

duration.

4.3. Coarsening of Boundary
Adjacency Hypergraph

To reduce the high computation cost of the ILP phase,
we propose an effective coarsening approach based
on the Dulmage-Mendelsohn decomposition. At the

kth iteration of the algorithm, we coarsen the bound-
ary adjacency hypergraph Hk to Hcoarse

k . Then, instead
of Hk, we pass this Hcoarse

k to the ILP solver.
The Dulmage-Mendelsohn decomposition operates

on bipartite graphs, hence, each boundary adjacency
hypergraph Hk = 4Vk1Nk5 is represented in terms of
its bipartite graph equivalent Gk = 4Vk =Rk∪Ck1Ek5
for coarsening. Vertices Vk and nets Nk in Hk con-
stitute the Rk and Ck sets in Gk, respectively. That
is, for a vertex vi ∈Vk there is a corresponding ver-
tex vvi

∈Rk and for a net nj ∈Nk there is a correspond-
ing vertex vnj

∈Ck. Pins between nets and vertices
constitute the edge set Ek of Gk. That is, for a net
nj ∈Nk and vi ∈Pins4nj5 there is an undirected edge
4vvi

1vnj
5 in Ek. Note that this Hk to Gk projection is

performed in linear time in the order of O4�Vk�+

�Nk�+�Pins4Nk5�5 and is easily reversible.
Vertex selection in boundary adjacency hyper-

graphs is constrained by the total weight of the
selected vertices for replication and its objective is
to maximize the cost of the covered nets. Thus,
our objective in the coarsening phase is to clus-
ter vertices and nets in such a way that the ver-
tex groups with similar net coverage characteristics
get clustered together. Characterization in this con-
text is intuitively estimated as a ratio between the
number of vertices in the cluster and the nets cov-
ered by these vertices. That is, clusters with small
number of vertices covering a large number of nets
correspond to the high-quality replications; clusters
with average number of vertices covering an aver-
age number of nets correspond to the mid-quality
replications; and, clusters with large number of ver-
tices covering a small number of nets correspond to
the low-quality replications. As described in §2.3, the
Dulmage-Mendelsohn decomposition states that CH

and RV are the unique smallest sets that maximize the
�CH �−�RH � and �RV �−�CV � differences and �RS �=�CS �.
We showed that every boundary adjacency hyper-
graph Hk can be represented as a bipartite graph Gk.
Hence, we can use Dulmage-Mendelsohn decompo-
sition to encapsulate the replication characteristics of
the original hypergraph into its coarsened represen-
tation, where components in RH correspond to high-
quality replications, components in RS correspond to
mid-quality replications, and components in RV cor-
respond to low-quality replications.

Note that Dulmage-Mendelsohn decomposition
does not take vertex weights and net costs into
account, hence, one might argue that it might be pos-
sible to produce better coarsening results by utiliz-
ing other clustering algorithms in the literature. This
issue is investigated in the conducted experiments
and results are detailed in §5.5.

In §2.3, it is shown that the coarse- and
fine-grained Dulmage-Mendelsohn decompositions
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run in O4�V�4�V�+�E�55 time in total. In the
case of Gk = 4Vk =Rk∪Ck1Ek5 bipartite graph rep-
resentation of the boundary adjacency hyper-
graph, this bound translates to O4�Vk�4�Vk�+�Ek�55.
And from the relation between Rk, Ck and
Vk, Nk, it becomes O44�Vk�+�Nk�54�Vk�+�Nk�+
∑

nj∈Nk
�Pins4nj5�55. Note that it is further possible to

slightly lower this bound by running the decomposi-
tion for each connected component of the input bipar-
tite graph separately.

Figure 7(a) demonstrates a simplified drawing of
the boundary adjacency hypergraph Hcon

1 given in
Figure 5(b). Figure 7(b) demonstrates the coarse-
and fine-grained Dulmage-Mendelsohn decomposi-
tion of Hcon

1 . Note that for simplicity in Figure 7(b),
because components of Hcon

1 related with parts V2 and
V3 are disjoint, Dulmage-Mendelsohn decomposition
is performed separately. That is, due to each net and
vertex related with part V1 and V2, there are two
RH sets, two CH sets, etc. Components in Figure 7(b)
constitute the new vertices and nets in Figure 7(c).

(a) Simplified �1
con in

Figure 5(b)

(b) Internals of the fine-grained
Dulmage-Mendelsohn

decomposition for �1
con

(c) Coarsened �1
con
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Figure 7 Fine-Grained Dulmage-Mendelsohn Decomposition of Hcon
1

For instance, the 3rd component composed of ver-
tices v141v15 and nets n3

7, n3
8 in Figure 7(b) constitutes

the vertex v3 and net n3 in the coarsened hypergraph
in Figure 7(c).

4.4. Replication Capacity
The maximum replication capacity �k represents the
amount of replication allowed into part Vk. Note that
the maximum replication capacity �k of each part Vk

directly affects the contribution of Rk to the parti-
tion imbalance. That is, even a single miscalculated �k

might result in a significant change in the imbalance
of the whole partition. Hence, the maximum replica-
tion capacity of each part must be chosen in such a
way that, after the replication, imbalance of the parti-
tion is preserved and the replication capacity is con-
sumed to reduce the cut size as much as possible.
For this purpose, we set �k to 41+�5Wavg −w4Vk5 for
each part Vk. That is, we aim to increase the weight
of part Vk (i.e., w4Vk5) to the average weight of a part
after all available replication capacity is consumed
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(i.e., 41+�5Wavg). Because replication introduces new
vertices to the parts, this scheme will just increase the
weight of the parts that are smaller than 41+�5Wavg.
Here we prove that either the partition imbalance is
preserved after the replication or extra measures can
be taken to satisfy the imbalance constraint.

• If 41+�5Wavg <Wmax, after the replication, Wavg is
expected to increase, and Wmax stays the same. Hence,
balance will stay the same even in the worst case,
that is, no replication; otherwise, balance will be
improved.

• Otherwise, if 41+�5Wavg ≥Wmax, we can follow
two approaches:

1. We have enough room to raise the total weight
of each part to 41+�5Wavg. That is, even if the repli-
cation does not consume all available capacity and
increases the imbalance, we can reduce the final
imbalance to its initial value by making arbitrary ver-
tex replications without considering any optimization
objectives.

2. If arbitrary vertex replications incur extra costs
(e.g., cloning gates in an integrated circuit), at each
kth iteration, we can calibrate �k so that the imbal-
ance ibr4çr

k5 of the produced partition çr
k will stay

below the initial imbalance ibr4ç5. In addition to
41+�5Wavg −w4Vk5 upper bound, a lower bound can
be computed as follows, which provides a range for
�k to be picked within throughout the replication to
preserve the final imbalance.

ibr4ç5≥ ibr4çr
k51

Wmax

Wavg
−1 ≥ 41+�5Wavg ·

(

1
K

[k−1
∑

`=1

w4V r
` 5+w4Vk5

+�k+

K
∑

`=k+1

w4V`5

])−1

−11

(6)
Wmax

Wavg
≥

K41+�5Wavg
∑k−1

`=1w4V r
` 5+�k+

∑K
`=kw4V`5

1

�k ≥
K41+�5W 2

avg

Wmax
−

k−1
∑

`=1

w4V r
` 5

−

K
∑

`=k

w4V`50

In Equation (6), we know that the maximum part
weight will be less than or equal to 41+�5Wavg given
in the numerator. Note that the smaller values will
have a positive impact and decrease the imbalance.
In the denominator, we compute the average part
weight by summing over the existing part weights
including the replications performed so far.

In a majority of the undirectional hypergraph
models (particularly, in information retrieval systems

and geospatial databases), vertex replications do not
incur any extra costs, and furthermore, are likely to
improve the overall performance. For instance, ver-
tex replications increase the probability of vertices’
availability in a database system and as a result of
this, multiple copies of vertices provide a potential
to decrease the cache misses. Hence, considering the
nature of the problem at hand, we use selective ver-
tex replications to preserve the imbalance. That being
said, calibration of �k might be used as well. Note that
in both cases, the initial imbalance will be preserved.

In our model, at the kth iteration of the algorithm,
we try to raise w4Vk5 to 41+�5Wavg, which corre-
sponds to the part weight of an optimally balanced
partition. Hence, after the replication, a significant
reduction in the partition imbalance ratio is highly
expected. This observation unsurprisingly holds with
the experimental results as well.

5. Experimental Results
In this section, experimental results evaluated for var-
ious data set collections with different model con-
figurations are presented. First, in §5.1, experimental
data set collections are detailed. Next, implementa-
tion details are given in §5.2. In §5.3, we present the
results regarding the initial partitions of the data sets.
Then, in §5.4, the replication results for cut size and
imbalance reductions are given. Next, in §§5.5 and 5.6,
we discuss the effect of coarsening and part-ordering
schemes. Finally, we discuss the running time con-
straints in §5.7.

Note that for a fully detailed specification of all
available data sets, partitioning and replication results
for various parameters and their graphical compar-
isons, please consult the provided online supplement
(available as supplemental material at http://dx.doi
.org/10.1287/ijoc.2013.0567).

5.1. Data Set Collection
There are various hypergraph models successfully
incorporated into spatial database (Shekhar et al. 2002,
Demir et al. 2008) and information retrieval (Boley
et al. 1999, Hotho et al. 2006) systems. For experi-
mentation purposes, we use sample hypergraphs from
these domains and investigate the effect of replication
in these hypergraph models.

To investigate the effect of replication in spatial
databases, a wide range of real-life road network (RN)
data sets are collected from U.S. Tiger/Line (Bureau
2002) [Minnesota including seven counties Anoka,
Carver, Dakota, Hennepin, Ramsey, Scott, Washing-
ton; San Francisco; Oregon; New Mexico; Wash-
ington], U.S. Department of Transportation (2004)
[California Highway Planning Network], and
Brinkhoff’s network data generator (Brinkhoff 2002)
[Oldenburg; San Joaquin]. Hypergraphs for RN data
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Table 1 A7Data Set Properties

Type H �V� �N� �Pins � dN
avg cavg dV

avg wavg

RN California 141185 331414 941857 208 607 607 5304
Minnesota 461103 781371 2391422 301 1301 502 5305
NewMexico 5561115 7811219 212701120 209 809 401 4905
Oldenburg 51389 131003 321945 205 804 601 4609
Oregon 6011672 8111166 213321870 209 905 309 4803
SanFrancisco 2131371 3191305 9671917 300 901 405 5105
SanJoaquin 221987 441944 1311603 209 803 507 5205
Washington 6521063 8241650 214271615 209 1108 307 4900
Wyoming 3171100 5121754 114431433 208 900 406 4900

IR CalGovernor 921279 301805 310041908 9705 100 3206 100
Facebook 416181974 661568 1412771456 21405 100 301 100
Wikipedia 113501762 701115 4312851851 61704 100 3200 100
Stanford 2811903 2811903 213121497 802 100 802 802

sets are constructed according to the clustering model
presented by Demir et al. (2008).

To examine the effect of replication in informa-
tion retrieval (IR) systems, text crawls are down-
loaded from the StanfordA8WebBase project (2006, 2010)
[CalGovernor, Facebook, Wikipedia] and University
of Florida Sparse Matrix Collection (Davis and Hu
2011) [Stanford]. In these information retrieval data
sets, hypergraphs are constructed in such a way that
terms correspond to vertices and documents cor-
respond to nets. This construction scheme directly
reflects the utilization of hypergraph models in infor-
mation retrieval literature and a detailed explanation
is given by Cambazoglu and Aykanat (2006).

In Table 1, properties of the hypergraphs extracted
from the collected data sets are presented. Here, �Pins�
denotes the total number of pins in N of the related
hypergraph, that is, �Pins�=

∑

nj∈N
�Pins4nj5�. The dN

avg

and dV
avg columns represent average net and vertex

degrees, respectively. Likewise, cavg and wavg denote
average net costs and vertex weights, respectively.
In Table 1, hypergraphs are grouped according to
their domains (RN and IR) and sorted in increasing
�Pins� order.

Compared to IR hypergraphs, RN hypergraphs
have relatively small average net degrees. This gives
the intuition that in RN data sets, covering a net
requires less vertex replications compared to IR data
sets. Moreover, a high amount of replication capac-
ity �Wavg (i.e., ��V�wavg) is anticipated to result in
more net coverage, and consequently, more decrease
in the cut size. Hence, low values of �V�wavg are pre-
sumed to produce relatively poorer replication results.
For instance, this observation is highly expected to
hold for Oldenburg and CalGovernor data sets, where
�V�wavg values are relatively low.

5.2. Implementation Details
Experiments are carried out on a Debian GNU/Linux
6.0.5 (x86_64) system running on an Intel Xeon

(2.4 GHz) Processor. During tests, ANSI C sources
are compiled using gcc bundled with release 4.3
of GNU Compiler Collections, where CFLAGS is set
to -O3-pipe-fomit-frame-pointer. IBM ILOG CPLEX
12.1 is used in single-threaded mode to solve ILP
problems. PaToH (Catalyurek and Aykanat 1999)
v3.1 is used with default parameters for initial par-
titioning of the data sets. Coarsening is disabled
for boundary adjacency hypergraphs where the total
number of pins are less than or equal to 30.

5.3. Initial K-Way Hypergraph Partitioning
In a two-phase approach, it is assumed that an initial
partition of the hypergraphs is a priori provided. For
this purpose, we partition the hypergraphs according
to the connectivity cut-size metric for two different
K values (128 and 256). In Table 2, partition proper-
ties of the hypergraphs are given. Here, �4ç5 denotes
the connectivity cut size of the partition; ibr4ç5 stands
for imbalance ratio multiplied by 100; �N∗� and �V∗�

columns denote the total number of cut nets and
boundary vertices, respectively. Likewise, dN∗

avg and
dV∗

avg represent average cut net and boundary vertex
degrees; c∗

avg and w∗
avg denote average cut net costs

and boundary vertex weights, respectively. A close
look at Table 2 will reveal peaks in imbalance ratios
for particular hypergraphs, i.e., San Joaquin, Minne-
sota, Stanford. These peaks come from the fact that
such hypergraphs consist of a custom family of ver-
tices with excessively high weights. Hence, the parti-
tioner cannot move the vertices in a proper manner
between parts to preserve the imbalance.

5.4. Replication Results
In Table 3, replication results are listed for hyper-
graph partitions given in Table 2. Here, �4%5 denotes
the reduction in connectivity cut size in percent-
ages, i.e., �4%5= 41−�4çr 5/�4ç55×100. Here, part
visit ordering scheme and ILP phase time limit are
set to O1 and �=1, respectively. For the rest of the
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Table 2 Properties of Hypergraph Partitions

Type K H �4ç5 ibr 4ç5 �N∗� dN∗

avg c∗

avg �V∗� dV∗

avg w ∗

avg

RN 128 California 201877 607 31557 302 507 21918 702 5600
Minnesota 391633 402 31660 303 1007 31322 609 5807
NewMexico 441304 407 61510 300 608 61874 504 5109
Oldenburg 151805 405 21034 208 707 11537 701 5004
Oregon 501172 503 61930 300 702 71350 503 5105
SanFrancisco 451089 700 61263 303 702 61195 602 5605
SanJoaquin 271834 2403 31674 303 704 31124 702 5706
Washington 591526 601 61593 301 900 71121 504 5302
Wyoming 461231 500 61622 300 700 61648 506 5101

256 California 351246 406 51669 302 600 41594 702 5600
Minnesota 661437 3805 51999 303 1100 51540 607 5809
NewMexico 711904 505 101432 301 609 101996 505 5205
Oldenburg 241328 802 31112 208 705 21294 700 5001
Oregon 771832 406 101760 301 702 111437 504 5200
SanFrancisco 721240 1006 91900 303 702 91914 602 5606
SanJoaquin 441470 9207 51705 302 705 41821 701 5704
Washington 921628 1506 101169 302 901 111093 504 5307
Wyoming 711645 605 101110 300 701 101306 506 5104

IR 128 CalGovernor 1991548 506 241825 11805 100 921268 3206 100
Facebook 3181957 104 581301 23502 100 416111075 301 100
Wikipedia 110431753 402 691047 62309 100 113501588 3200 100
Stanford 151993 94800 91297 11407 100 1691643 1009 1009

256 CalGovernor 2981092 603 261417 11201 100 921278 3206 100
Facebook 4221341 102 611826 22509 100 416171288 301 100
Wikipedia 114681648 409 691491 62102 100 113501735 3200 100
Stanford 241003 77606 121441 9308 100 1721207 1009 1009

article, unless otherwise noted, these default values
will be assumed. Discussions of these parameters
are presented in §§5.6 and 5.7. A9

ibr4%5 represents
the reduction in imbalance ratio in percentages, i.e.,
ibr4%5= 41−ibr4çr 5/ibr4ç55×100. Fields �N 4%5 and
�P 4%5 investigate the effect of coarsening on the
overall cut-size reduction; �N 4%5 denotes the reduc-
tion in connectivity cut size in percentages, where
coarsening is totally turned off; and �P 4%5 repre-
sents the best achieved connectivity cut-size reduc-
tion in percentages that is chosen among all PaToH
coarsening algorithms. The other two columns pro-
vide insight to the characteristics of the generated
boundary adjacency hypergraphs and the effect of
coarsening. That is, �Pins4Hk5� denotes the aver-
age of the total number of pins of each Hk, i.e.,
�Pins4Hk5�= 4

∑K
k=1
∑

nj∈Nk
�Pins4nj5�5/K, and �Pins4%5�

denotes the reduction in pin count after coarsening,
i.e., �Pins4%5�= 41−�Pins4Hcoarse

k 5�/�Pins4Hk5�5×100.
In Table 3, since dN∗

avg values are approximately the
same for the whole RN collection, in a majority of
the tests, �V� variable dominates the effect on the
quality of the replication. That is, compared to other
RN hypergraphs, low �V� values of Oldenburg hyper-
graph results in low quality replications because of
the low replication capacity of ��V �wavg. On the other
hand, for RN hypergraphs with high �V� values—e.g.,
Wyoming, NewMexico, Oregon, and Washington—
replication removed almost every external net from

the cut. By looking at imbalance and cut-size reduc-
tions in Table 3, RN hypergraphs appear as a per-
fect candidate for replication and yield remarkably
promising results. That is, with diminutive amounts
of replication, it is possible to remove almost all exter-
nal nets from the cut by replication in RN hypergraph
partitions.

For IR data sets, since dN∗

avg values of the partitions
are much larger than those of the RN hypergraphs,
covering nets require many more vertex replica-
tions. Consequently, high replication percentages are
a common practice in IR systems. To address this
issue, replication is evaluated with relatively higher
� values of 10% and 20% for IR data sets. Com-
pared to RN hypergraph partitions, both �V� and dN∗

avg
values are quite varying among IR hypergraph par-
titions and both have a more prominent effect on
the quality of the replication. For instance, high �V�

and low dN∗

avg values are the major drivers behind the
remarkably successful replication results for Facebook
hypergraph partitions. On the other hand, compared
to Facebook, replication outcomes are slightly poorer
for Wikipedia hypergraph partitions because of the
low �V� and high dN∗

avg values. As results in Table 3
point out, given enough replication capacity, depend-
ing on the hypergraph and partition characteristics
(�V�, dN∗

avg, etc.), replication in IR data sets is capable of
removing a notable majority of the external nets from
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Table 3 Replication Results

Type � K H �4%5 ibr 4%5 �N 4%5 �P 4%5 �Pins4Hk 5� �Pins4%5�

RN 0001 128 California 1600 1507 1601 1009 5500 7006
Minnesota 3605 2406 3604 2703 6307 7601
NewMexico 9907 2200 9907 9907 8209 2703
Oldenburg 1002 2209 1002 702 1907 2508
Oregon 10000 1907 10000 10000 9003 2209
SanFrancisco 7608 1501 7701 7006 8600 5101
SanJoaquin 1906 501 1906 1500 5300 7006
Washington 10000 1702 10000 10000 8900 2903
Wyoming 9801 2100 9801 9701 8505 3306

256 California 905 2206 905 601 1907 2202
Minnesota 2501 306 2409 1601 6209 7509
NewMexico 10000 1809 10000 10000 6807 3004
Oldenburg 506 1301 506 406 1304 306
Oregon 10000 2205 10000 10000 7509 3900
SanFrancisco 4905 1004 4906 4305 7304 6309
SanJoaquin 1304 201 1303 901 3705 6304
Washington 10000 703 10000 10000 7304 3108
Wyoming 6808 1602 6901 6209 7106 5201

IR 0010 128 CalGovernor 401 10000 500 106 7160608 9307
Facebook 4508 10000 2806 1608 628154401 9808
Wikipedia 1208 10000 406 304 31134136704 9806
Stanford 5101 1000 5107 2206 2116708 9102

256 CalGovernor 104 10000 204 009 1198501 9007
Facebook 4502 10000 3101 1807 423151208 9803
Wikipedia 709 10000 505 404 555178804 9708
Stanford 4005 1003 4100 2002 1108107 8602

0020 128 CalGovernor 907 10000 609 400 34165208 9602
Facebook 5901 10000 3802 2600 576162001 9808
Wikipedia 2209 10000 604 309 51516164607 9902
Stanford 6508 1804 7009 3409 2191606 8905

256 CalGovernor 405 10000 503 205 6142208 9208
Facebook 5806 10000 4000 2708 383179601 9804
Wikipedia 1703 10000 901 608 21199180703 9801
Stanford 5309 1808 5407 2909 1160901 8307

the cut while also providing almost perfect imbalance
improvements.

5.5. Coarsening Results
In Table 3, the last two columns provide information
about the average size of the constructed boundary
adjacency hypergraphs and the contraction percent-
age due to the coarsening, that is, �Pins4Hk5� and
�Pins4%5�, respectively. Coarsening reduces the size
of the constructed boundary adjacency hypergraphs
by 43.9% for RN data sets, and 94.5% for IR data
sets, on average. This significant difference between
the contraction percentages of RN and IR collections
are because of the connected component construc-
tion mechanism of the Dulmage-Mendelsohn decom-
position. That is, boundary adjacency hypergraphs
with high dN∗

avg values as in IR hypergraph partitions,
result in more tightly-coupled vertices in the bipartite
graphs passed to the coarsening phase. And in the
coarsening, bipartite graphs with high vertex degrees
result in less number of connected components. At
first glance, such bipartite graphs are anticipated to

end up with low-quality clusters during coarsening,
that is, a significant amount of information loss is
expected compared to the case where there would be
no clustering at all. But as test results point out, which
will be detailed further next, Dulmage-Mendelsohn
decomposition successfully encapsulates the replica-
tion characteristics of the individual clusters even
with excessive contraction ratios.

As experimental results point out, the Dulmage-
Mendelsohn decomposition performs quite effectively
in terms of the hypergraph coarsening quality. That is,
the sizes of the coarsened hypergraphs are quite
small, whereas produced hypergraphs retain the char-
acteristics of the actual pins and edges in terms
of replication quality. However, that being said, the
Dulmage-Mendelsohn decomposition does not take
vertex weights and net costs into account. More-
over, bipartite graphs with high vertex degrees might
end up with low-quality clusters because of the con-
traction mechanism based on connected component
extraction. Hence, it raises the question: could it
be possible to produce a more effective coarsening
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phase by taking mentioned constraints into account?
To investigate this issue we adopted 17 different
state-of-the-art coarsening algorithms (HCM, PHCM,
MANDIS, AVEDIS, CANBERRA, ABS, GCM, SHCM,
HCC, HPC, ABSHCC, ABSHPC, CONC, GCC, SHCC,
NC, MNC) that are implemented in PaToH. Moreover,
a pseudocoarsening scheme is introduced where no
coarsening is performed at all to establish a baseline.
Using these clustering algorithms, we then repeated
the whole replication procedure and observed their
effects on the final cut size. These results are given in
the �N 4%5 and �P 4%5 columns of Table 3.

When the results in �4%5 and �P 4%5 columns of
Table 3 are to be compared, Dulmage-Mendelsohn
decomposition on the average achieves a cut-size
reduction of 1.81 times better than the average of the
best achieved results among PaToH coarsening algo-
rithms. In the case where coarsening is turned off, for
relatively small data sets (e.g., RN, CalGovernor, and
Stanford) �4%5 and �N 4%5 values are almost equiv-
alent. This evidences that the Dulmage-Mendelsohn
decomposition successfully achieves to preserve the
replication characteristics of the initial hypergraph.
The advantage of coarsening is more prominently
observable for large data sets such as Facebook and
Wikipedia. This is because a time-limited ILP phase
is anticipated to achieve better cut-size reductions
when given smaller hypergraphs. This observation
holds with the experimental results: In terms of cut-
size reduction for Facebook and Wikipedia data sets,
replication with the Dulmage-Mendelsohn coarsen-
ing scheme on the average performs 1.97 times better
than the case where coarsening is totally turned off.
As presented results indicate, Dulmage-Mendelsohn
decomposition shows remarkable results for preserv-
ing the replication characteristics of the initial hyper-
graph. Moreover, the lower degree improvements in
the cut size for the case where coarsening is turned
off confirms the necessity of coarsening for large
data sets.

5.6. Part Visit Orderings
In the proposed model, because parts are processed
in some particular order, ordering of the parts plays
an important role on the final quality of the repli-
cation scheme. That is, consider a net nj such that
å4nj5=8V`1Vk9 and w4Pins4nj5∩V`5<w4Pins4nj5∩Vk5.
In such a case, one definitely would prefer to cover
net nj by consuming the least possible amount of the
given replication capacity, that is, by replicating ver-
tices from V` to Vk, hence part Vk is expected to be
processed first for covering net nj . On the other hand,
considering the massive amount of vertex connections
scattered among parts, complexity of this ordering
decision increases proportional to the total number of
cut nets, boundary vertices, and their degrees.

To investigate the effect of part visit orderings on
the final cut size, three different ordering schemes
O11O21O3 are adopted in the conducted experiments.
In the first scheme O1, parts are ordered by increas-
ing average net degrees of their boundary adjacency
hypergraphs. This scheme conveys the ordering that
aims to reduce the cut size as much as possible in the
earlier iterations. In the second scheme O2, parts are
sorted in increasing weight order. This second order-
ing tries to maximize the balance at the end of the
replication. And in the last scheme O3, parts are cho-
sen randomly to establish a baseline for the compari-
son of the evaluated part visit orderings.

In the conducted experiments, different part visit
orderings resulted in minor variances on the final
quality of the replication. That is,

√

1
n

∑

i

[

�i4%1Ok5−�i4%1O`5
]2

≤40561

where �i4%1Ok5 denotes the connectivity cut-size
reduction in percentages using ordering scheme Ok for
k∈8112139. Subscript i is used to address the sample
space formed of different K and � settings of avail-
able data sets; n denotes the size of this sample space.
Being that said, in a majority of the tests, ordering
scheme O1 performed at the top in terms of the cut-
size reduction. Further investigation of the empiri-
cal results point out that the ILP phase coupled with
the coarsening performs quite effectively in terms of
consuming the available replication capacity and, as
a result of this, different part visit orderings do not
have a significant impact on the final cut size and
imbalance.

5.7. The Effect of Running Time
In an efficient two-phase model implementation, time
spent in the replication phase is anticipated to be
upper bounded by a constant factor of the running
time spent in the initial partitioning phase empow-
ered by state-of-the-art hypergraph partitioning tools.
In our proposed replication phase, selection of the
vertices from boundary adjacency hypergraphs is
anticipated to dominate the total running time due to
the NP-hardness of the problem. As a first step, we
introduced a polynomial time coarsening scheme to
minimize this duration. Later, we put an upper bound
on the maximum running time of the ILP solver such
that the total amount of time spent for ILP runs can-
not exceed a constant factor of the time spent in the
partitioning phase.

Let Tpart denote the time spent for partitioning
the hypergraph. In the conducted experiments, Tilp =

�Tpart/K is used to upper bound the time spent for
a single ILP run. (Replication results given in Table 3
are evaluated for �=1, that is, the total time spent for
ILP is upper bounded by the partitioning runtime.)
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To investigate the effect of ILP runtime on the final
replication quality, experiments are evaluated with
different � settings. In a majority of the tests, increas-
ing � did not provide an impact as expected and
resulted in minor improvements in the final cut size.
That is,

max
∣

∣�i4%1�k5−�i4%1�`5
∣

∣≤10011

max
∣

∣�N
i 4%1�k5−�N

i 4%1�`5
∣

∣≤110511

for �k1�`∈8112149. Here, �i4%1�k5 denotes the cut-size
reduction in percentages using Dulmage-Mendelsohn
decomposition, where � is set to �k. Likewise,
�N
i 4%1�k5 denotes the cut-size reduction in percent-

ages without any coarsening and � is set to �k. (Sub-
script i is used to address the sample space formed of
different K and � settings of available data sets.)

This negligible amount of quality difference be-
tween varying � configurations of �4%1�5 holds with
the fact that a majority of the ILP running time is
generally known to be consumed to prove the opti-
mality of the so far found solution and iteratively
make small improvements in the branches being pro-
cessed of the whole branch-and-bound procedure.
Hence, a good quality solution is expected to be pro-
duced in a small amount of time at the beginning.
This observation is more prominent with our findings
that the ILP phase performed with compact hyper-
graphs produced by Dulmage-Mendelsohn decom-
position as input, achieves to find a good quality
solution even when � is set to 1. On the other hand,
as boundary adjacency hypergraphs get denser, the
complexity of the constraints in the ILP formulation
linearly increases. In such a case, increasing the �
might turn out to be a viable option. Although bound-
ary adjacency hypergraphs constructed from IR data
sets appear to be excessively denser, in the conducted
experiments, coarsening does a good job at contract-
ing these hypergraphs before passing them to ILP, and
considerably diminishes the effect of the dense input
data. Since this optimization does not exist for the case
where coarsening is turned off, increasing � yields
improvements up to 11.51% in the cut-size reduction
for �N 4%1�5. To sum up, in our proposed two-phase
approach, giving the same amount of time to the first
and second phases is sufficient for the replication to
perform in an efficient and effective way.

6. Conclusion
Motivated by the problem of hypergraph partitioning
with vertex replication, we first presented a detailed
complexity analysis of the problem, and then pro-
posed a part-oriented approach based on a unique
blend of ILP and coarsening schemes. As detailed
in the previous sections, we provided a succinct

proof of the problem itself and implied subproblems
that are found to be NP-hard. Later, we proposed
a part-oriented approach with a novel coarsening
scheme utilizing the Dulmage-Mendelsohn decompo-
sition. In the experiments, we compared our model
with different configurations and observed the effect
of the change in the results. Conducted experiments
showed that the proposed model provides high qual-
ity results in practical execution times.
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