
Parallel Computing 57 (2016) 1–24

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Reducing latency cost in 2D sparse matrix partitioning

models

�

Oguz Selvitopi a , Cevdet Aykanat a , ∗

Bilkent University, Computer Engineering Department, 06800, Ankara, Turkey

a r t i c l e i n f o

Article history:

Received 8 March 2015

Revised 11 December 2015

Accepted 21 April 2016

Available online 23 April 2016

MSC:

00-01

99-00,

Keywords:

Parallel iterative solvers

Nonsymmetric linear systems

Sparse matrix-vector multiplication

Sparse matrix partitioning

Latency overhead

Bandwidth overhead

a b s t r a c t

Sparse matrix partitioning is a common technique used for improving performance of

parallel linear iterative solvers. Compared to solvers used for symmetric linear systems,

solvers for nonsymmetric systems offer more potential for addressing different multiple

communication metrics due to the flexibility of adopting different partitions on the input

and output vectors of sparse matrix-vector multiplication operations. In this regard, there

exist works based on one-dimensional (1D) and two-dimensional (2D) fine-grain partition-

ing models that effectively address both bandwidth and latency costs in nonsymmetric

solvers. In this work, we propose two new models based on 2D checkerboard and jagged

partitioning. These models aim at minimizing total message count while maintaining a

balance on communication volume loads of processors; hence, they address both band-

width and latency costs. We evaluate all partitioning models on two nonsymmetric sys-

tem solvers implemented using the widely adopted PETSc toolkit and conduct extensive

experiments using these solvers on a modern system (a BlueGene/Q machine) success-

fully scaling them up to 8K processors. Along with the proposed models, we put practical

aspects of eight evaluated models (two 1D- and six 2D-based) under thorough analysis.

To the best of our knowledge, this is the first work that analyzes practical performance

of 2D models on this scale. Among evaluated models, the models that rely on 2D jagged

partitioning obtain the most promising results by striking a balance between minimizing

bandwidth and latency costs.

© 2016 Published by Elsevier B.V.

1. Introduction

Many scientific and engineering applications necessitate solving a linear system of equations. The methods used for this

purpose are categorized as direct and iterative methods. When the linear system is large and sparse, iterative methods are

preferred to their direct counterparts due to their speed and flexibility. Most widely used iterative methods for solving

large-scale linear systems are based on Krylov subspace iterations.

A single iteration in Krylov subspace methods usually consists of one or more Sparse Matrix–Vector multiplica-

tions (SpMV), dot product(s) and vector updates. In a distributed setting, SpMV operations require regular or irregular

point-to-point (P2P) communication depending on the sparsity pattern of the coefficient matrix in which each processor
� This work was supported by The Scientific and Technological Research Council of Turkey (TÜB ̇ITAK) under Grant EEEAG-114E545. This article is also

based upon work from COST Action CA 15109 (COSTNET).
∗ Corresponding author. Tel.: +90 (312) 290 1213; fax: +90 (312) 266 4047.

E-mail addresses: reha@cs.bilkent.edu.tr (O. Selvitopi), aykanat@cs.bilkent.edu.tr (C. Aykanat).

http://dx.doi.org/10.1016/j.parco.2016.04.004

0167-8191/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.parco.2016.04.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2016.04.004&domain=pdf
mailto:reha@cs.bilkent.edu.tr
mailto:aykanat@cs.bilkent.edu.tr
http://dx.doi.org/10.1016/j.parco.2016.04.004

2 O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24

sends/receives messages to/from a subset of processors. On the other hand, dot products necessitate global communication

that involves a reduction operation on one or a few scalars in which all processors participate. Vector updates usually do

not require any communication.

A common model to capture the cost of communicating a single message of m words consists of two major components

and is given by the formula t s + mt w

. Here, t s is the startup time and signifies the costs related to preparation of the message

(referred to as latency cost). The t w

component is the time required to transfer a single word between two processors and is

equal to the reciprocal bandwidth (referred to as bandwidth cost). Latency cost is proportional to the number of messages

whereas bandwidth cost is proportional to the number of words. Among these two components, latency costs prove to

be more vital for parallel performance as they are generally harder to avoid and improve [1] . Although both costs are

reduced within time, the gap between them gradually increases in favor of bandwidth costs with an approximately 20%

annual improvement over latency costs [1,2] . Furthermore, computation speeds evolve faster than communication speeds,

making communication costs more critical for performance. With the latest developments in the scientific computing field,

communication costs are likely to be a major factor in ranking fastest high performance computing (HPC) systems [3] . This

work focuses on reducing latency costs of parallel SpMV operations in the context of nonsymmetric iterative solvers. The

models and methods proposed in our work apply to matrices both with regular and irregular sparsity patterns. However,

the benefits are more evident for the irregular ones, which are usually harder to exploit.

1.1. Related work

Communication requirements of iterative solvers have been of interest for more than three decades. There are numerous

works on reducing communication overhead of global reduction operations in iterative solvers. Several works in this cate-

gory aim at decreasing the number of global synchronization points in a single iteration of the solver by reformulating it

[4–12] . Another important area of study is s -step Krylov subspace methods, which focus on further reducing the number of

global synchronization points by a factor of s by performing only a single reduction once in every s iterations [8,13–17] . The

performance gain of s -step methods comes at the cost of deteriorated stability and complications related to integration of

preconditioners. However, these methods recently gained popularity again and promising studies address these shortcom-

ings [13,16,18,19] . Another common technique is to overlap communication and computation with the aim of hiding global

synchronization overheads [20,21] . Especially with the introduction of nonblocking collective constructs in the MPI-3 stan-

dard, this technique is gaining attraction [22–24] . Overlapping is commonly used for SpMV operations as well. In addition, a

recent work proposed hierarchical and nested Krylov methods that constrain global reductions into smaller subsets of pro-

cessors where they are cheaper [25] . Another recent work uses the idea of embedding SpMV communications into global

reductions to avoid latency overhead of SpMV communications [26] .

The performance of iterative solvers is also addressed by minimizing communication costs related to parallel SpMV oper-

ations, which is also addressed by this work. There are studies that can handle sparse matrices that are well-structured and

have predictable sparsity patterns, generally arising from 2D/3D problems [16,27–29] . However, the studies in this field gen-

erally focus on combinatorial models that are capable of exploiting both regular and irregular patterns to obtain a good par-

tition of the coefficient matrix. In this regard, graph and hypergraph partitioning models are widely utilized with successful

partitioning tools such as MeTiS [30] , PaToH [31] , Scotch [32] , Mondriaan [33] . These models can broadly be categorized as

one-dimensional (1D) and two-dimensional (2D) partitioning models. In 1D models [30,31,34–39] , each processor is respon-

sible for a row/column stripe, whereas in 2D models, each processor may be responsible for a submatrix block (generally

defined by a subset of rows and columns) or as in the most general case, each processor may be responsible for an arbi-

trarily defined subset of nonzeros. Compared to 1D models, 2D models possess more freedom in partitioning the coefficient

matrix. Some works on 2D models do not take the communication volume into account, however they provide an upper

bound on the number of messages communicated [40–44] . On the other hand, there are 2D models that aim at reducing

volume, with or without providing a bound on the maximum number of messages [33,45–50] . 2D partitioning models in

the literature can further be categorized into three classes: checkerboard partitioning [47,49,50] (also known as coarse-grain

partitioning), jagged partitioning [45,49] and fine-grain partitioning [46,4 8,4 9] . Notably, a recent work [50] proposes a fast

2D partitioning for scale-free graphs via a two-phase approach. This method uses 1D partitioning to reduce volume in the

first phase and an efficient heuristic in the second phase to obtain a bound on the maximum number of messages. This

work differs from ours as it does not explicitly minimize the message count, instead, it uses a property of the Cartesian

distribution of the matrices to provide the mentioned upper bound.

1.2. Motivation and contributions

Most of the aforementioned and other existing partitioning models optimize the objective of minimizing total communi-

cation volume, which is an effort to reduce bandwidth costs. However, communication cost is a function of both bandwidth

and latency, with the latter being at least as important as the former, as the current trends indicate. The need for parti-

tioning models that also consider other cost metrics has been noted in other works [26,34] . There are a few notable works

that focus on different communication cost metrics. Balancing communication volume is one of them [33,51,52] . More im-

portant and overlooked work targets multiple communication metrics including latency [53] , on which this study is based.

Compared to [53] , this study concentrates more on practical aspects.

O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24 3

In this work, we claim and show that attempting to minimize a single communication objective hurts parallel perfor-

mance and achieving a tradeoff between bandwidth and latency costs is the key factor for achieving scalability. The basic

motivation is to employ a nonsymmetric partition in the solver. Note that in parallel SpMV operations of the form w = Ap,

one needs to partition the input vector p and the output vector w in addition to A . This can be achieved either by using

a symmetric partition where the same partition is imposed on both input and output vectors, or by using a nonsymmetric

partition where a distinct partition is employed for input and output vectors. The latter alternative is more appealing and

it should be adopted whenever convenient since it is more flexible and allows operating in a broader search space. A non-

symmetric partition can be utilized in nonsymmetric linear system solvers such as the conjugate gradient normal equation

error (CGNE) [54–56] and residual method (CGNR) [54–57] , and the standard quasi-minimal residual (QMR) [58] where the

coefficient matrix is square and nonsymmetric. The details of how to utilize nonsymmetric partitioning without incurring

communication during linear vector update operations are explained for CGNE and CGNR solvers in Appendix E . We con-

strain ourselves to nonsymmetric square matrices in this work, but all proposed models apply to certain iterative methods

that involve rectangular matrices as well.

Our work is based on [53] , which also achieves a nonsymmetric partition through a two-phase methodology with a

model called communication hypergraph . Our contributions and differences from [53] are as follows:

(i) We propose two new partitioning models for reducing latency which are based on 2D checkerboard and jagged par-

titioning. These models aim at reducing latency costs usually at the expense of increasing bandwidth costs. Similar

models have been investigated [48,53] , but they are based on 1D and 2D fine-grain models.

(ii) All proposed and investigated partitioning models are realized on two iterative methods CGNE and CGNR imple-

mented with the widely adopted PETSc toolkit [59] . We describe how to obtain a nonsymmetric partition on the

vectors utilized in these solvers using the communication hypergraph model and thoroughly evaluate partitioning re-

quirements of them via experiments. In this manner, we differ from [53] , in which the proposed methods were tested

with a code developed by the authors that contains only parallel SpMV computations.

(iii) We conduct extensive experiments for the mentioned iterative solvers. Although better suited to large-scale systems,

the communication hypergraph model was originally tested only for 24 processors on a local cluster and only for 1D

partitioning. In this work, we test and show this model’s validity on a modern HPC system (a BlueGene/Q machine)

successfully scaling up to 8K processors.

(iv) We compare one 1D-based, three 2D-based models (checkerboard, jagged and fine-grain), and these four models’

latency-improved versions, making a total of eight partitioning models. Among these, the 2D models are somewhat

overlooked in the literature, never being tested in a realistic setting on a large-scale system. Although their theoretical

merits are of no question, their practical merits are not appreciated. In our experiments, we put these methods’

practical aspects into a thorough analysis. The experiments show surprising results with 2D jagged partitioning and

its latency-improved version performing better in the majority of the matrices.

The rest of the paper is organized as follows: Section 2.1 and 2.2 describe the proposed partitioning models to reduce

the latency overhead of checkerboard and jagged models, respectively. These two sections describe basic checkerboard

and jagged models as well. We also briefly review the fine-grain model and its latency-improved version in Section 2.3 ,

since they are included in our experiments. We compare communication properties of all partitioning models in Section 3 .

Section 4 contains the results and discussions of the extensive large-scale experimental evaluation of eight partitioning mod-

els on a BlueGene/Q system with 28 matrices. Our experiments range from 256 to 8192 processors. Final remarks are given

in Section 5 . The presentation of the paper relies on the assumption that the reader is already familiar with the commu-

nication hypergraph model for 1D partitioning [53] . The unfamiliar reader can find a detailed background with explanatory

examples about the communication hypergraph model in Appendix D .

2. Reducing latency cost in 2D partitioning models

2D models work at a finer level of partitioning granularity compared to 1D models by allowing nonzeros of a single

row/column to be assigned to more than one processor. In this manner, they possess more flexibility in partitioning since

they do not constrain the search space by assigning all nonzeros of a row/column to the same processor. This leads them

to exploit existing partitioning tools better. 1D models necessitate a row-parallel/column-parallel algorithm (Appendix B),

whereas 2D models necessitate a row-column-parallel algorithm. The fundamental difference between them is that the for-

mer necessitates a single communication stage in parallel SpMV operations, which is either pre-communication if the matrix

is partitioned row wise, or post-communication if the matrix is partitioned column wise, whereas the latter necessitates two

distinct communication stages: one before the local SpMV computations (on the input vector in a pre -communication stage

via expand communication tasks) and one after the local SpMV computations (on the output vector in a post -communication

stage via fold communication tasks), For more details on implementation issues regarding 2D partitioning, see [49] .

In this section, we describe how to reduce latency overhead of 2D checkerboard and jagged partitioning models. For these

models, we assume a K = P × Q virtual processor mesh. A simple example depicting a matrix partitioned with these two

models is given in Fig. 1 . Compared to their original counterparts, the proposed models are likely to increase the bandwidth

costs by increasing communication volume. However, this issue is addressed by maintaining a balance on this metric. We

also briefly review the 2D fine-grain model and compare it to checkerboard and jagged models as we evaluate it in our

4 O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24

(a) Checkerboard (b) Jagged

Fig. 1. A sample of 2D checkerboard and jagged partitionings on a 16 = 4 × 4 virtual processor mesh.

experiments. Note that a model to reduce latency overhead of fine-grain partitioning has already been investigated [48] .

All proposed models are discussed on parallel w = Ap. However, the arguments are also valid for z = A

T r as communication

requirements of w = Ap and z = A

T r are the dual of each other and minimizing the objective function in w = Ap is equivalent

to minimizing the objective function in z = A

T r.

2.1. Checkerboard partitioning

Checkerboard partitioning is a two-phase process in which each phase utilizes a 1D partitioning model. The second phase

depends on the first phase by using information obtained in the first phase to determine multiple vertex weights utilized in

the second phase. For the rest of the section, we assume a 1D row wise partition in the first phase and a 1D column wise

partition in the second phase. For the arguments made in this section, an analogous discussion holds for the dual scheme

as well.

Consider a K = P × Q processor mesh and an n × n square matrix A . In the first phase, the column-net hypergraph

model H R

= (V R

, N C) is used to obtain a P -way partition �R

= {V 1 , . . . , V P } , which induces a P -way row wise partition

{R 1 , . . . , R P } of A . Here, R α denotes the set of rows that correspond to vertices in V α, for α = 1 , . . . , P . The rows in R α

form a row stripe A α whose size is n α × n , with n α = |V α| . At the end of the first phase, the assignment of rows of A is

determined by associating row stripe A α with the Q processors in row α of the processor mesh, P α, ∗.

In the second phase, the row-net hypergraph model H C = (V C , N R

) is used to obtain a Q -way partition �C = {V 1 , . . . V Q } ,
which induces a Q -way column wise partition {C 1 , . . . , C Q } of A . Here, C β denotes the set of columns that correspond to

vertices in V β, for β = 1 , . . . , Q . The columns in C β form column stripe A β whose size is n × n β , with n β = |V β | . At the

end of the second phase, we complete the assignment of columns of A and actually obtain a Q -way column wise partition

of each row stripe A α , forming Q submatrix blocks A α, 1 , . . . , A α,Q . Hence, (�R

, �C) defines an assignment for rows and

columns of A where processor P α, β is responsible for the set of rows in R α and the set of columns in C β . In other words,

nonzero a ij is assigned to P α, β if r i ∈ R α and c j ∈ C β .

This two-phase process aims at minimizing total communication volume for the pre- and post-communication stages

in the first and second phases, respectively, while maintaining computational load balance [47,49] . A notable property of

checkerboard partitioning is that it confines the communication in expand and fold operations to the processors in the

same column and row of the processor mesh, respectively. It achieves a Cartesian distribution of the matrix, in which each

processor owns an intersection of a subset of rows and a subset of columns. A row (column) is said to be coherent if

the nonzeros of this row (column) generate partial results for (require) the same w -vector (x -vector) element. Consider a

row r i that is assigned to R α at the end of the first phase. The coherency of this row is preserved at this point as it is

modeled by v i in H R

. In the second phase, the nonzeros of this row can be distributed among Q processors in row α of

the processor mesh, which is also the case for all other rows in R α . Hence, row coherency is respected in a coarse level

by assigning nonzeros of rows in R α to the processors in the same row of the processor mesh, P α, ∗. A coarse level here

implies that the nonzeros belonging to a subset of rows are distributed among the same subset of processors (in this case

among P processors in a specific column of the processor mesh). This provides the upper bound Q − 1 on the number of

messages communicated in the post-communication stage as there are Q processors in row α of the processor mesh. With

a similar argument, column coherency is also respected in a coarse level by assigning nonzeros of columns in C β to the

processors in the same column of the processor mesh, P ∗, β . This provides the upper bound P − 1 on the number of messages

communicated in the pre-communication stage as there are P processors in column β of the processor mesh. Hence, the

maximum number of messages handled by a single processor is bounded by P + Q − 2 . In checkerboard partitioning, the

second phase is performed with P -way multi-constraint [60,61] partitioning to balance computational loads.

O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24 5

Fig. 2. Formation of the communication matrix for the third column of the processor mesh (β = 3) to summarize expand operations in the pre-

communication stage.

2.1.1. Communication matrices

The expand communication tasks in the checkerboard model are bound to distinct columns of the processor mesh. For

this reason, to summarize the communication requirements of expand tasks in the pre-communication stage, we form Q

distinct communication matrices. Let p C β denote the vector elements that necessitate communication in column β of the

processor mesh, for 1 ≤ β ≤ Q . Note that at most P processors can participate in communicating p C β , confined to the set of

processors in P ∗, β . We summarize the communication operations in column β of the mesh with the P × | p C β | communica-

tion matrix M β . Rows of M β correspond to processors in P ∗, β and columns of M β correspond to expand tasks on p C β . There

exists a nonzero m αj ∈ M β if and only if there is a non-empty column segment in submatrix A α, β at the respective column.

The nonzeros in column j of M β represent the set of processors that participate in communicating p C β [j] , which is a subset

of processors in P ∗, β . The nonzeros in row α of M β represent the expand tasks processor P α, β participates in. Note that

vector elements corresponding to internal columns (those which have a single non-empty column segment in P row stripes)

do not incur communication and they are not included in M β . These vector elements should be assigned to the respective

processors to avoid unnecessary communication. An example in Fig. 2 is presented to illustrate the formation of communi-

cation matrix M β for the third column of the processor mesh (β = 3) to summarize the expand tasks. There are four input

vector elements that necessitate communication (denoted by p C β) and they form columns of M β . For instance, the first col-

umn of M β has nonzeros corresponding to processors P 1, 3 , P 2, 3 and P 4, 3 since in matrix A , there exist nonzero column

segments in the respective submatrix blocks. Two vector elements–second and fifth–corresponding to internal columns do

not incur communication and they are not included in M β ; these elements should be assigned to P 3, 3 and P 2, 3 , respectively,

to avoid unnecessary communication.

The fold communication tasks in checkerboard model are bound to distinct rows of the processor mesh. Following a

similar approach, we form P distinct communication matrices to summarize the communication requirements of fold tasks

in the post-communication stage. Let w C α denote the vector elements that necessitate communication in row α of the

processor mesh, for 1 ≤ α ≤ P . We summarize the communication operations in row α of the mesh with the | w C α | × Q

communication matrix M α , where there exists a nonzero m i β ∈ M α if and only if there is a non-empty row segment in

submatrix A α, β at the respective row. An example is presented in Fig. 3 to illustrate the formation of communication matrix

M α in the third row of the processor mesh (α = 3) to summarize the fold tasks. The dual of the discussions made for M β

in Fig. 2 follows also for M α .

We form a total of P + Q communication matrices to summarize communication requirements of checkerboard parti-

tioning. We can address the communication requirements of both pre- and post-communication stages independently since

communication operations in these stages are bound to distinct columns and rows of the processor mesh, respectively. For-

mation of these communication matrices is illustrated in Fig. 4 .

6 O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24

Fig. 3. Formation of the communication matrix for the third row of the processor mesh (α = 3) to summarize fold operations in the post-communication

stage.

2.1.2. Formation of communication hypergraphs

We form Q hypergraphs from Q communication matrices for the pre-communication stage. For each M β , a communi-

cation hypergraph H

CM

β
is formed using the row-net hypergraph model, for 1 ≤ β ≤ Q . The net set of H

CM

β
represents the

processors in column β (P ∗, β) of the processor mesh and the vertex set of H

CM

β
represents the expand tasks on p C β . Hence,

there are P nets and | p C β | vertices in H

CM

β
. A vertex v j in H

CM

β
is connected by the set of nets corresponding to processors

that communicate the respective vector element p C β [j] . In all Q communication hypergraphs, the total number of vertices

is equal to | p C | =

∑ Q
β=1

| p C β | and the total number of nets is equal to Q × P = K.

In a similar manner, we form P hypergraphs from P communication matrices for the post-communication stage. For each

M α , a communication hypergraph H

CM

α is formed using the column-net hypergraph model, for 1 ≤ α ≤ P . The net set of H

CM

α

represents the processors in row α (P α, ∗) of the processor mesh and the vertex set of H

CM

α represents the fold tasks on w C α .

Hence, there are Q nets and | w C α | vertices in H

CM

α . A vertex v i in H

CM

α is connected by the set of nets corresponding to the

processors that communicate the respective vector element w C α [i] . In all P communication hypergraphs, the total number of

vertices is equal to | w C | =

∑ P
α=1 | w C α | and the total number of nets is equal to P × Q = K.

In total, we form P + Q communication hypergraphs from P + Q communication matrices. This process is illustrated in

Fig. 4 .

2.1.3. Partitioning of the communication hypergraphs

We partition H

CM

β
to get a P -way partition �β = {V 1 , V 2 , . . . , V P } and obtain a distribution of expand tasks among P

processors in column β of the processor mesh for the pre-communication stage, for 1 ≤ β ≤ Q . The responsibility of the ex-

pand tasks represented by the vertices in V α ∈ �β is assigned to processor P α, β . Consider a net n α, β in H

CM

β
that represents

P α, β . The connectivity set of this net contains the parts that correspond to the processors each of which send a message to

P α, β . The size of this set can be at most P since H

CM

β
is partitioned into P , bounding the number of messages sent/received

by a single processor by P − 1 in the pre-communication stage. Hence, this feature of original checkerboard partitioning is

still respected. In partitioning H

CM

β
, the partitioning objective of minimizing cutsize corresponds to minimizing the number

of messages communicated in column β of the processor mesh in the pre-communication stage, and the partitioning con-

straint of maintaining balance among part weights corresponds to obtaining a balance on the communication volume loads

of these processors.

Similarly, we partition H

CM

α to get a Q -way partition �α = {V 1 , V 2 , . . . , V Q } and obtain a distribution of fold tasks among

Q processors in row α of the processor mesh for the post-communication stage, for 1 ≤ α ≤ P . H

CM

α is partitioned into Q ,

bounding the number of messages sent/received by a single processor by Q − 1 in the post-communication stage. Hence,

this feature of original checkerboard partitioning is also respected. The partitioning objective and the balancing constraint

are identical to those in partitioning H

CM

β
.

The formed P + Q hypergraphs can be independently partitioned since they do not depend on each other in any way. The

maximum number of messages handled by a single processor is still P + Q − 2 as in the original checkerboard partitioning.

As a result, we improve latency costs in each row/column of the processor mesh independently while respecting basic

characteristics of checkerboard partitioning.

O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24 7

Fig. 4. Minimizing latency cost in checkerboard partitioning model.

2.2. Jagged partitioning

Jagged partitioning consists of two phases. The first phase consists of a single 1D partitioning model, whereas the second

phase consists of multiple, independent and same type of 1D partitioning models. The second phase depends on the first

phase by using the partitioning information obtained in the first phase to determine vertex sets and vertex weights for the

models formed in the second phase. For the rest of the section, we assume a 1D row wise partition in the first phase and

a 1D column wise partition in the second phase. For the arguments made in this section, an analogous discussion holds for

the dual scheme as well.

Assume a K = P × Q processor mesh and an n × n square matrix A . The first phase of jagged partitioning is exactly the

same as the first phase of checkerboard partitioning: a column-net hypergraph model H R

= (V R

, N C) is used to obtain a

P -way partition �R

= {V 1 , . . . , V P } , which induces a row wise partition {R 1 , . . . , R P } of A . At the end of this phase, the rows

in row stripe A α are associated with the Q processors in row α of the processor mesh, P α, ∗.

In the second phase, we form a hypergraph H α for each row submatrix A α obtained in the former phase using the row-

net hypergraph model, for 1 ≤ α ≤ P . In total, P hypergraphs are formed. In this aspect, jagged partitioning differs from

checkerboard partitioning – which forms a single hypergraph in the second phase. The net set of H α represents rows of A α

and the vertex set of H α represents columns of A that have a nonzero column segment in A α . Hence, the same vertex can

appear in multiple hypergraphs since the corresponding column may have nonzero column segments in more than one row

stripes. These P hypergraphs are independently partitioned into Q parts to obtain a Q -way partition of each row stripe. At

the end of the second phase, for each row stripe A α , we obtain Q submatrix blocks A α, 1 , . . . , A α,Q by partitioning vertices

corresponding to columns of A α .

The first and the second phase aim to minimize the volume of communication in pre- and post-communication stages,

respectively, while maintaining computational load balance [47,49] . In contrast to checkerboard partitioning, the objective

in the second phase of the jagged partitioning is addressed independently by partitioning row stripes separately in distinct

hypergraphs. The jagged model also differs from the checkerboard model as it does not lead to a Cartesian distribution

8 O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24

of the matrix. Jagged partitioning is more flexible in this sense since it allows nonzeros of a column to be distributed

among any processor that is in distinct rows of the processor mesh – not just among the processors that are in the same

column of the mesh, as is the case for checkerboard partitioning. Hence, the column coherency is not preserved in the

assignment of columns. This leads to improved communication volume for expand tasks in the pre-communication stage

at the expense of increasing the upper bound on the number of messages handled by a single processor. In other words,

the jagged model sacrifices the coarse level coherency of columns and causes the number of messages handled by a single

processor in the pre-communication stage to be at most P × Q − Q = K − Q . In this stage, a processor may communicate

with any other processor except the processors that are in the same row of the processor mesh as this processor. On the

other hand, the coherency of rows owned by a processor is respected in a coarse level as in checkerboard partitioning.

This is because nonzeros of these rows are distributed among processors in the same row of processor mesh, P α, ∗, if

the respective processor is in row α. Hence, the number of messages handled by a single processor for fold tasks in the

post-communication stage is bounded by Q − 1 as there are Q processors in a single row of the processor mesh. Conse-

quently, the maximum number of messages handled by a processor can be at most (K − Q) + (Q − 1) = K − 1 in jagged

partitioning.

2.2.1. Communication matrices

The expand communication tasks in the jagged model are not bound to distinct columns of the processor mesh. For this

reason, we form a single communication matrix to summarize the communication requirements of expand tasks in the pre-

communication stage. Let p C denote the vector elements that necessitate communication. We summarize the communication

operations with the (K = P × Q) × | p C | communication matrix M R . Rows of M R correspond to all processors and columns of

M R correspond to expand tasks on p C . Consider two vector elements owned by the same processor. Although these two

elements can be communicated by at most P processors (each of which belongs to a distinct row of the processor mesh),

they do not necessarily need to be confined to the same column of the processor mesh. For this reason, we include all

processors in M R . The formation of M R essentially resembles that of 1D row-parallel w = Ap (D.1) : m kj � = 0 if and only if

column c j has a nonzero column segment in k th row stripe of A . Nonzeros in column c j ∈ M R represent the set of processors

that participate in communicating p C [j] and nonzeros in row r k ∈ M R represent the expand tasks P k participates in. The

difference is, however, as a consequence of jagged partitioning, each column in M R can have at most P nonzeros instead

of K . As usual, vector elements corresponding to internal columns are not included in M R since they do not necessitate

communication.

In contrast to expand tasks, the fold communication tasks are bound to distinct rows of the processor mesh. The com-

munication requirements of fold tasks in the post-communication stage are thus summarized by P distinct communication

matrices, M α , for 1 ≤ α ≤ P . The formation of these matrices is the same as the formation of matrices for summarizing

communication requirements of fold tasks in checkerboard partitioning. The semantics of nonzeros in rows and columns of

M α are identical to those of M α in checkerboard partitioning.

We form a total of P + 1 communication matrices to summarize communication requirements of jagged partitioning. We

can address the communication requirements of the post-communication stage independently using P matrices. However,

since communication operations in the pre-communication stage are not bound to the processors in the same column of

the processor mesh, the expand tasks are represented in a single matrix with all K processors. Formation of these commu-

nication matrices is illustrated in Fig. 5 .

2.2.2. Formation of the communication hypergraphs

For the pre-communication stage, we form a single communication hypergraph H

CM

R
from communication matrix M R

using the row-net hypergraph model. The net set of H

CM

R
corresponds to K processors and the vertex set of H

CM

R
corresponds

to expand tasks on p C . Hence, there are K nets and | p C | vertices in H

CM

R
. A vertex v j in H

CM

R
is connected by the set of nets

corresponding to processors that communicate the respective vector element p C [j]. Note that v j can be connected by at most

P nets, i.e., d j ≤ P .

For the post-communication stage, we form P communication hypergraphs from P communication matrices. The for-

mation of these communication hypergraphs is actually the same as for checkerboard partitioning. A communication hy-

pergraph H

CM

α is formed using the column-net hypergraph model for matrix M α , for 1 ≤ α ≤ P . The semantics of these

hypergraphs are also the same: the net set of H

CM

α represents the processors in row α of the processor mesh, P α, ∗, and

the vertex set of H

CM

α represents the fold tasks on w C α . Similarly, there are | w C | vertices and K nets in all communication

hypergraphs.

In total, we form P + 1 communication hypergraphs from P + 1 communication matrices. This process is illustrated in

Fig. 5 .

2.2.3. Partitioning of the communication hypergraphs

Communication hypergraph H

CM

R
is partitioned to obtain a K -way partition �R = {V 1 , V 2 , . . . , V K } to induce a distribution

of expand tasks in the pre-communication stage. The responsibility of the expand tasks represented by the vertices in V k
is assigned to processor P k . Consider a net n k in H

CM

R
that represents P k . The connectivity set of this net corresponds to

processors each of which send a message to P k . Since H

CM is partitioned into K parts, the size of this set can be at most

R

O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24 9

Fig. 5. Minimizing latency cost in jagged partitioning model.

K . Thus, the maximum number of messages sent/received by a single processor is K − 1 in the pre-communication stage

(note that it is K − Q in the original jagged partitioning). In partitioning H

CM

R
, the partitioning objective of minimizing cut-

size corresponds to minimizing the number of messages communicated in the pre-communication stage, and the partitioning

constraint of maintaining balance among part weights corresponds to obtaining a balance on the communication volume

loads of K processors.

Communication hypergraph H

CM

α is partitioned to obtain a Q -way partition �α = {V 1 , V 2 , . . . , V Q } , for 1 ≤ α ≤ P , to

induce a distribution of fold tasks in the post-communication stage among Q processors in row α of the processor mesh.

The partitioning of these communication hypergraphs have the same semantics with those in checkerboard partitioning.

The formed P + 1 hypergraphs can be partitioned independently, since they do not depend on each other in any way.

Note that the maximum number of messages handled by a single processor is slightly increased from K − 1 to K + Q − 2 ,

which is caused by the partitioning for distributing tasks in the pre-communication stage. However, the cases beyond this

are expected to be rare as a good partitioning tool will avoid them. As a result, we improve latency costs while respecting

most characteristics of the original jagged partitioning.

2.3. Fine-grain (nonzero-based) partitioning

We briefly review fundamental properties of fine-grain partitioning. This model is first proposed in [46] and its commu-

nication costs are improved in a later work using the CHG model [48] . Both of these models are included in our experiments.

The fine-grain model forms a hypergraph in which vertices represent nonzeros of A and nets represent rows and columns

of A . Nets corresponding to columns of A capture the communication volume incurred in the pre-communication stage,

while nets corresponding to rows of A capture the communication volume incurred in the post-communication stage. Par-

titioning this hypergraph into K parts induces a distribution of nonzeros of the matrix among K processors. This leads to a

completely arbitrary distribution of fine-grain computational tasks on a nonzero basis, where each vertex signifies a scalar

10 O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24

Fig. 6. Minimizing latency cost in fine-grain partitioning model.

multiplication with a single nonzero. Therefore, the fine-grain model respects neither row nor column coherence. In this

aspect, it accommodates the highest level of flexibility by not restraining the computational tasks to coarser levels (i.e.,

nonzeros of a row and/or column) compared to checkerboard, jagged and 1D models. As a result, a processor may com-

municate with any other processor. Thus, the maximum number of messages handled by a single processor is K − 1 in the

pre-communication stage and is also K − 1 in the post-communication stage, summing up to a total of 2(K − 1) messages.

The fine-grain model correctly minimizes the total communication volume while maintaining computational load balance.

For more details, see [46,49] .

The approach to improve communication requirements of the fine-grain model [48] consists of forming two communica-

tion matrices: one matrix for summarizing communication operations in the pre-communication stage and one matrix for

summarizing communication operations in the post-communication stage. Compare this to the formation of communication

matrices in the checkerboard and jagged models. We address the communication requirements in the checkerboard model

by separately forming a total of P + Q communication matrices since they are confined to distinct columns and rows of the

processor mesh. Also in the jagged model, we form P communication matrices for the post-communication stage. These are

not valid for the fine-grain model since the resulting partition is arbitrarily defined on the nonzeros of the matrix and any of

the K processors may communicate with any other processor in both pre- and post-communication stages. For this reason,

the whole set of processors and all vector elements that necessitate communication are included in two communication

matrices. The process for reducing the communication costs of the fine-grain model is illustrated in Fig. 6 .

3. Comparison of partitioning models

We compare the basic properties of the investigated partitioning models to aid the discussions of the results in experi-

ments. It is assumed that P = Q =

√

K in the P × Q processor mesh for ease of presentation.

Fig. 7 compares the partitioning models in terms of flexibility they provide during partitioning. 1D models lie at the left

extreme of the spectrum since they represent each row/column of the coefficient matrix with a single distinct vertex as an

atomic task. This leads to the assignment of all nonzeros of a row/column to an individual processor as a whole. Hence, 1D

O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24 11

Fig. 7. Comparison of models in terms of partitioning flexibility.

Table 1

Comparison of partitioning models in terms of latency overhead and partitioning granularity.

Number of messages Comm. stage 1D 2D partitioning models

Checkerboard Jagged Fine-grain

pre K − 1
√

K − 1 K −
√

K K − 1

max post N/A
√

K − 1
√

K − 1 K − 1

overall K − 1 2(
√

K − 1) K − 1 2(K − 1)

total overall K(K − 1) 2 K(
√

K − 1) K(K − 1) 2 K(K − 1)

Row/column coherency Either entire row or Coarse-level on both Coarse-level on either None

(Partitioning granularity) Entire column Rows and columns Rows or columns

models respect row/column coherency at the individual processor level. The fine-grain model lies at the right extreme of

the spectrum since in this model each vertex represents an atomic task corresponding to a single nonzero of the matrix.

This is the most flexible and the finest level of partitioning granularity available, where neither row nor column coherency

is preserved. So, in theory, nonzeros of a row/column can be distributed among K processors. Between these two extremes,

the checkerboard and jagged models strive to distribute nonzeros of a row/column among a subset of processors. By doing

so, they obtain a coarse-level row/column coherency at the processor mesh’s row/column level. The checkerboard model

leverages a coarse-level coherency in both partitioning phases whereas the jagged model leverages it in a single partitioning

phase.

Among these partitioning models, 2D models are expected to achieve lower bandwidth costs compared to 1D models

since they offer more flexibility in optimizing the objective of minimizing total communication volume. Among 2D models,

fine-grain is expected to obtain the best results in terms of bandwidth costs, whereas checkerboard is likely to obtain

the worst. The metrics related to latency costs (as upper bounds on the maximum number of messages) are presented

in Table 1 . Checkerboard has the lowest overhead with 2(
√

K − 1) maximum messages per processor, whereas fine-grain

has the highest overhead with 2(K − 1) . Although 1D and jagged models have the same upper bound K − 1 , in practice

jagged partitioning is more likely to achieve better results in this metric since it restricts the number of messages in both

stages of communication.

The discussions made so far in this section reflect the characteristics of the original partitioning models in which the

communication hypergraph model is not used. The original models completely focus on minimizing bandwidth costs, disre-

garding latency-related objectives. Using the communication hypergraph model as a further step reduces latency costs at the

expense of increasing bandwidth costs while respecting certain characteristics of the original models as much as possible.

Our experimental evaluation shows that latency should definitely be on the table to achieve scalable performance.

4. Experiments

We evaluate two 1D-based and six 2D-based models, that is, a total of eight partitioning models. The evaluated models

are based on 1D row wise partitioning (1D), checkerboard partitioning (CKBD), jagged partitioning (JGD) and fine-grain

partitioning (FG). Four of the evaluated models are the baseline models in which the communication tasks are assigned to

processors using a simple heuristic that aims at balancing the communication volume loads while respecting total volume

attained in the initial partitioning. This heuristic is also utilized in [53] and is an adaptation of the best-fit-decreasing

heuristic used in solving the NP-hard K -feasible Bin Packing (BP) problem [62] . These BP -enhanced baseline models are

referred to as 1D+BP , CKBD+BP , JGD+BP and FG+BP . These four baseline models aim to reduce two important volume-

related communication cost metrics, namely total volume and maximum volume. The remaining four evaluated models

are the CHG -enhanced versions in which the communication tasks are assigned to processors using the communication

hypergraph model. These CHG -enhanced models are referred to as 1D+CHG , CKBD+CHG , JGD+CHG and FG+CHG . These aim

to reduce total message count and maximum volume. Hence, we evaluate the merit of reducing a latency-related cost metric

in partitioning. We use PaToH [31,61] to partition the computational hypergraphs formed in the first phase of all models and

the communication hypergraphs formed in the second phase of the CHG -enhanced models.

We implemented CGNE and CGNR solvers via the PETSc toolkit [59] and utilized the mentioned models for partitioning

the coefficient matrix and vectors in these solvers. Since obtained runtime results for both solvers are similar, we only

present speedup results corresponding to CGNR. Note that the metrics regarding partitioning models (Section 4.1) such as

total volume, message count, etc. are the same for both solvers as they contain the same type of communication operations.

12 O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24

Table 2

Test matrices and their properties.

Nonzeros

Number of per row per column

Matrix rows/cols nonzeros avg min max min max

venkat01 62,424 1,717,792 27 .52 16 44 16 44

mc2depi 525,825 2,100,225 3 .99 2 4 2 4

poisson3Db 85,623 2,374,949 27 .74 6 145 6 145

thermomech_dK 204,316 2,846,228 13 .93 7 20 7 20

stomach 213,360 3,021,648 14 .16 7 19 6 22

FEM_3D_thermal2 147,900 3,489,300 23 .59 12 27 12 27

laminar_duct3D 67,173 3,833,077 57 .06 1 89 3 89

xenon2 157,464 3,866,688 24 .56 1 27 1 27

iChem_Jacobian 274,087 4,137,369 15 .10 5 17 5 17

torso3 259,156 4,429,042 17 .09 7 22 6 21

tmt_unsym 917,825 4,584,801 5 .00 3 5 3 5

t2em 921,632 4,590,832 4 .98 1 5 1 5

Hamrle3 1,447,360 5,514,242 3 .81 2 6 2 9

largebasis 440,020 5,560,100 12 .64 4 14 4 14

Chevron4 711,450 6,376,412 8 .96 2 9 2 9

cage13 445,315 7,479,343 16 .80 3 39 3 39

PR02R 161,070 8,185,136 50 .82 1 92 5 88

atmosmodl 1,489,752 10,319,760 6 .93 4 7 4 7

kim2 456,976 11,330,020 24 .79 4 25 5 25

memchip 2,707,524 14,810,202 5 .47 2 27 1 27

Freescale1 3,428,755 18,920,347 5 .52 1 27 1 25

circuit5M_dc 3,523,317 19,194,193 5 .45 1 27 1 25

fem_hifreq_circuit 491,100 20,239,237 41 .21 12 110 12 110

rajat31 4,690,002 20,316,253 4 .33 1 1252 1 1252

CoupCons3D 416,800 22,322,336 53 .56 20 76 20 76

Transport 1,602,111 23,500,731 14 .67 5 15 5 15

ML_Laplace 377,002 27,689,972 73 .45 26 74 26 74

RM07R 381,689 37,464,962 98 .16 1 295 1 245

All models are tested with 28 matrices chosen from the UFL matrix collection [63] . The properties of these matrices are

presented in Table 2 . The evaluated models are tested on a BlueGene/Q system with varying number of processors K ∈ {256,

512, 1024, 2048, 4096, 8192}. A node on this system consists of 16 cores (single PowerPC A2 processor) with 1.6 GHz clock

frequency and 16 GB memory. The nodes are connected by a 5D torus chip-to-chip network. We only consider the case of

strong scaling.

For the pre-communication stages of CKBD+CHG and JGD+CHG , we opted not to apply the communication hypergraph

model since the partitioning corresponding to this stage leads to a number of very small communication hypergraphs in

which the number of communication tasks (that is, vertices) and the number of messages per processor are very low.

Hence, utilizing a dedicated tool to partition these hypergraphs often does not pay off. Instead, the simple aforementioned

heuristic is able to obtain comparable partition qualities in a shorter amount of time. Hence, the pre-communication stages

(expand tasks) of CKBD+BP and CKBD+CHG models, and JGD+BP and JGD+CHG models have the same quantities for the

statistics presented in Section 4.1 . However, for the post-communication stage, the respective quantities drastically differ in

these models as the benefits of using the communication hypergraph model are more apparent.

4.1. Bandwidth and latency costs of partitioning models

Table 3 displays the metrics related to latency and bandwidth costs for the evaluated models. The metrics related to

latency are highlighted under “Number of messages” columns and the metrics related to bandwidth are highlighted under

“Communication volume” columns. The statistics for both total and maximum metrics are presented. The columns “Expand”

and “Fold” in the table indicate the results obtained in the pre- and post-communication stages of 2D models, respectively.

Recall that the 1D models (1D+BP and 1D+CHG) have a single communication stage, which is the pre-communication stage

in our case. The values are averaged over 20 test matrices separately for each K . The communication volume statistics are in

terms of words. Note that the total/maximum number of messages and maximum volume of communication of CKBD+BP
and CKBD+CHG , and JGD+BP and JGD+CHG are the same since they use the same heuristic to distribute expand tasks.

Total communication volume of two successive K values (512 and 1024, 2048 and 4096, etc.) are the same for the models

that are based on checkerboard and jagged partitioning since these models have the same number of processor columns in

the corresponding processor mesh. For instance, at K =512 and K =1024 , the processor meshes are of sizes 32 × 16 and 32

× 32, respectively. We also present the average speedup values obtained by models to give an idea about the efficiency. A

more detailed and accurate discussion with performance profiles and speedup curves can be found in the next section.

O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24 13

Table 3

Average communication requirements and speedups.

Number of messages Communication volume

Total Maximum Total Maximum

K Model Expand Fold Sum Expand Fold Sum Expand Fold Sum Expand Fold Sum Speedup

1D+BP 2464 – 2464 17 .9 – 17 .9 164470 – 164470 728 – 728 143

1D+CHG 1640 – 1640 13 .5 – 13 .5 245514 – 245514 1234 – 1234 148

CKBD+BP 414 1728 2141 4 .8 6 .6 11 .4 38476 145554 184029 367 759 1125 142

256 CKBD+CHG 414 1423 1836 4 .8 5 .8 10 .5 38476 214657 253133 367 1176 1542 138

JGD+BP 850 1266 2117 10 .0 4 .9 14 .9 38476 112712 151188 311 599 910 158

JGD+CHG 850 1131 1982 10 .0 5 .0 15 .0 38476 165081 203557 311 959 1270 153

FG+BP 1959 1751 3710 15 .5 6 .8 22 .3 107993 48359 156352 546 275 821 150

FG+CHG 1513 1257 2770 12 .5 4 .6 17 .1 173449 74672 248121 847 377 1223 150

1D+BP 5683 – 5683 21 .6 – 21 .6 226127 – 226127 513 – 513 236

1D+CHG 3496 – 3496 15 .5 – 15 .5 327581 – 327581 829 – 829 231

CKBD+BP 1019 3590 4608 6 .4 6 .8 13 .1 57434 195114 252548 264 530 794 225

512 CKBD+CHG 1019 2885 3904 6 .4 6 .6 13 .0 57434 280548 337981 264 804 1067 220

JGD+BP 2088 2604 4692 11 .7 5 .6 17 .3 57434 147488 204922 220 405 626 247

JGD+CHG 2088 2267 4355 11 .7 4 .5 16 .2 57434 212002 269436 220 609 829 238

FG+BP 4261 3784 8045 17 .7 8 .0 25 .7 144 96 8 70492 215460 374 205 580 228

FG+CHG 3165 2622 5787 13 .8 4 .8 18 .6 228987 106423 335410 566 273 839 229

1D+BP 13201 – 13201 27 .0 – 27 .0 314109 – 314109 359 – 359 294

1D+CHG 7451 – 7451 16 .9 – 16 .9 441340 – 441340 568 – 568 343

CKBD+BP 1587 9624 11211 5 .9 9 .1 15 .0 57434 288909 346343 167 399 567 320

1024 CKBD+CHG 1587 6897 8484 5 .9 7 .1 13 .0 57434 404550 461984 167 534 701 320

JGD+BP 3571 6775 10346 11 .7 7 .4 19 .1 57434 223665 281099 138 314 452 354

JGD+CHG 3571 5266 8837 11 .7 5 .2 16 .9 57434 314303 371737 138 430 568 341

FG+BP 9286 8141 17427 20 .6 8 .5 29 .1 192165 103683 295848 252 153 405 318

FG+CHG 6537 5420 11957 15 .1 6 .1 21 .3 297236 152370 449606 376 201 577 327

1D+BP 30651 – 30651 30 .9 – 30 .9 437009 – 437009 256 – 256 355

1D+CHG 16028 – 16028 19 .0 – 19 .0 591207 – 591207 389 – 389 450

CKBD+BP 3885 21008 24892 7 .3 9 .4 16 .7 82863 395862 478725 116 277 393 421

2048 CKBD+CHG 3885 14275 18159 7 .3 8 .5 15 .8 82863 533056 615920 116 362 478 429

JGD+BP 8301 14621 22921 14 .1 7 .4 21 .5 82863 297989 380852 99 214 313 468

JGD+CHG 8301 10833 19134 14 .1 5 .6 19 .6 82863 404389 487252 99 284 383 457

FG+BP 20050 17669 37719 22 .3 10 .3 32 .6 251398 154339 405737 171 116 287 412

FG+CHG 13494 11272 24766 16 .3 8 .2 24 .5 379611 221040 600651 243 152 395 440

1D+BP 71313 – 71313 37 .0 – 37 .0 615662 – 615662 185 – 185 372

1D+CHG 36563 – 36563 21 .8 – 21 .8 810012 – 810012 267 – 267 530

CKBD+BP 6122 55186 61308 6 .7 13 .5 20 .3 82863 579257 662121 72 209 280 511

4096 CKBD+CHG 6122 32230 38352 6 .7 8 .7 15 .4 82863 747663 830526 72 252 324 556

JGD+BP 13440 38102 51543 12 .9 10 .4 23 .2 82863 449614 532477 62 163 225 584

JGD+CHG 13440 24711 38151 12 .9 6 .7 19 .5 82863 584 4 42 667306 62 203 264 586

FG+BP 43084 38239 81323 24 .8 11 .0 35 .7 326646 228666 555312 114 87 201 516

FG+CHG 28683 24606 53289 18 .0 8 .8 26 .7 486581 323623 810204 160 117 278 554

1D+BP 160507 – 160507 42 .9 – 42 .9 871090 – 871090 137 – 137 392

1D+CHG 81592 – 81592 26 .0 – 26 .0 1040719 – 1040719 175 – 175 560

CKBD+BP 14589 125660 140249 7 .9 15 .7 23 .6 115948 814437 930384 49 149 198 593

8192 CKBD+CHG 14589 70942 85531 7 .9 10 .7 18 .6 115948 1003817 1119764 49 171 220 667

JGD+BP 28838 85171 114009 13 .9 11 .4 25 .2 115948 618294 734242 43 114 157 683

JGD+CHG 28838 52882 81720 13 .9 6 .5 20 .3 115948 769539 885486 43 137 180 701

FG+BP 90483 81319 171801 26 .3 13 .3 39 .6 430725 327017 757741 77 65 142 591

FG+CHG 59692 52380 112072 19 .8 10 .1 29 .9 572597 432085 1004682 99 84 183 663

The bold values in five columns total/maximum number of messages (Sum), total/maximum communication volume (Sum) and Speedup indicate the

best values obtained by the respective model at a specific K .

The major factors that determine overall latency and bandwidth costs are the maximum number of messages and the

maximum volume of communication handled by a single processor, respectively. As seen in Table 3 , with increasing num-

ber of processors, the maximum number of messages increases sharply, whereas maximum volume decreases despite the

increase in total volume. For instance, for 1D+BP , when K increases from 256 to 8192 processors, the maximum number of

messages increases from 17.9 to 42.9, whereas maximum volume decreases from 728 to 137 words, on average. Hence, the

latency overhead on average increases by a factor of 2.4, whereas the bandwidth overhead on average decreases by a factor

of 5.3. Moreover, the total message count increases more sharply compared to total volume: 65.1 times versus 5.3 times.

These figures imply that with increasing number of processors, latency costs steadily become more important than band-

width costs in determining overall communication cost of parallel SpMV operations. Hence, reducing latency costs should

pay off with improved scalability, as will be seen in the following section. Observe that similar arguments hold for other

partitioning models as well.

14 O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24

Table 4

Comparison of partitioning models with communication hypergraphs normalized with respect to their baseline counterparts

averaged over all matrices for each K .

Number of messages Communication volume

Total Maximum Total Maximum

K Model Expand Fold Sum Expand Fold Sum Expand Fold Sum Expand Fold Sum

1D+CHG 0 .76 – 0 .76 0 .85 – 0 .85 1 .51 – 1 .51 1 .66 – 1 .66

256 CKBD+CHG 1 .00 0 .86 0 .89 1 .00 1 .01 0 .98 1 .00 1 .49 1 .41 1 .00 1 .54 1 .38

JGD+CHG 1 .00 0 .95 0 .98 1 .00 1 .21 1 .09 1 .00 1 .45 1 .35 1 .00 1 .53 1 .36

FG+CHG 0 .87 0 .85 0 .86 0 .96 0 .81 0 .90 1 .56 1 .51 1 .56 1 .53 1 .26 1 .47

1D+CHG 0 .72 – 0 .72 0 .84 – 0 .84 1 .48 – 1 .48 1 .62 – 1 .62

512 CKBD+CHG 1 .00 0 .85 0 .88 1 .00 1 .41 1 .08 1 .00 1 .46 1 .37 1 .00 1 .52 1 .35

JGD+CHG 1 .00 0 .92 0 .96 1 .00 0 .97 0 .97 1 .00 1 .42 1 .32 1 .00 1 .50 1 .33

FG+CHG 0 .85 0 .84 0 .84 0 .94 0 .80 0 .88 1 .55 1 .50 1 .54 1 .52 1 .23 1 .44

1D+CHG 0 .67 – 0 .67 0 .77 – 0 .77 1 .44 – 1 .44 1 .61 – 1 .61

1024 CKBD+CHG 1 .00 0 .78 0 .81 1 .00 1 .03 0 .97 1 .00 1 .44 1 .38 1 .00 1 .37 1 .27

JGD+CHG 1 .00 0 .86 0 .91 1 .00 0 .88 0 .94 1 .00 1 .41 1 .34 1 .00 1 .42 1 .29

FG+CHG 0 .81 0 .81 0 .80 0 .86 1 .37 0 .87 1 .53 1 .48 1 .51 1 .51 1 .24 1 .43

1D+CHG 0 .64 – 0 .64 0 .74 – 0 .74 1 .40 – 1 .40 1 .57 – 1 .57

2048 CKBD+CHG 1 .00 0 .74 0 .77 1 .00 1 .02 0 .99 1 .00 1 .39 1 .33 1 .00 1 .33 1 .23

JGD+CHG 1 .00 0 .82 0 .87 1 .00 0 .94 0 .95 1 .00 1 .37 1 .30 1 .00 1 .37 1 .25

FG+CHG 0 .77 0 .77 0 .77 0 .82 0 .96 0 .84 1 .51 1 .45 1 .49 1 .46 1 .32 1 .41

1D+CHG 0 .65 – 0 .65 0 .68 – 0 .68 1 .39 – 1 .39 1 .54 – 1 .54

4096 CKBD+CHG 1 .00 0 .66 0 .69 1 .00 0 .77 0 .84 1 .00 1 .35 1 .31 1 .00 1 .27 1 .19

JGD+CHG 1 .00 0 .74 0 .80 1 .00 0 .82 0 .90 1 .00 1 .33 1 .29 1 .00 1 .33 1 .23

FG+CHG 0 .77 0 .78 0 .77 0 .82 0 .85 0 .81 1 .50 1 .46 1 .49 1 .45 1 .38 1 .42

1D+CHG 0 .63 – 0 .63 0 .69 – 0 .69 1 .35 – 1 .35 1 .47 – 1 .47

8192 CKBD+CHG 1 .00 0 .64 0 .67 1 .00 0 .79 0 .84 1 .00 1 .30 1 .26 1 .00 1 .23 1 .16

JGD+CHG 1 .00 0 .69 0 .76 1 .00 0 .70 0 .85 1 .00 1 .29 1 .25 1 .00 1 .30 1 .21

FG+CHG 0 .76 0 .76 0 .76 0 .82 0 .75 0 .78 1 .47 1 .42 1 .45 1 .44 1 .40 1 .42

If we compare the partitioning models that do not use the communication hypergraph model among themselves (i.e.,

1D+BP , CKBD+BP , JGD+BP and FG+BP) in terms of total communication volume, we see from Table 3 that JGD+BP ob-

tains the best results, whereas CKBD+BP obtains the worst results. FG+BP is expected to achieve the best results in this

metric since it offers the highest flexibility by performing the partitioning on a nonzero basis – the finest granularity avail-

able. However, the reason why JGD+BP achieves slightly better results than FG+BP in this metric is related not to models

themselves but to the shortcomings of recursive bisectioning used in partitioning. The shortcomings of recursive biparti-

tioning are well known for high partitioning values [64,65] . For example at K = 4096 , FG+BP directly partitions the input

matrix into 4096 parts whereas JGD+BP first partitions it into 64 parts, and for each of these parts, it partitions them into

64 parts again to obtain a 4096-way partition. Hence, by using smaller partition values compared to FG+BP , JGD+BP is

relatively able to mitigate the drawbacks of recursive bisection. The poor performance of CKBD+BP in this metric is due to

the use of multi-constraint partitioning. This limits the search space drastically, where the higher the number of constraints,

the harder it is to get good quality partitions as the search space narrows down with increasing number of constraints.

However, this is a tradeoff for CKBD+BP as it often achieves good results in total message count, which are comparable to

those of JGD+BP at lower processor counts. At higher processor counts, like 4096 and 8192, JGD+BP achieves better results

in total message count. This is again because the high number of constraints at high values of K leads to poor total volume

in CKBD+BP , which in turn affects the total message count as a side effect by causing an increase. As expected, the smallest

maximum number of messages is obtained by CKBD+BP as it bounds the communication to specific rows and columns of

the processor mesh in both stages of communication. FG+BP is often the worst in terms of total and maximum number of

messages because it causes increases in these metrics in order to reduce total volume.

To aid the assessment of benefits of the communication hypergraph, we present Table 4 . In this table, each latency-

improved (CHG -enhanced) model’s performance metrics are normalized with respect to those of their baselines. In other

words, the results of 1D+CHG are normalized with respect to those of 1D+BP , the results of CKBD+CHG are normalized

with respect to those of CKBD+BP , etc. The normalization is performed on a matrix basis and the averages of these normal-

ized values over 28 matrices are given separately for each K . As seen from the table, CHG -enhanced models improve the total

message count drastically, as minimizing this metric is one of the main objectives in these models. For example at 2048 pro-

cessors, 1D+CHG achieves 36% improvement over 1D+BP , CKBD+CHG achieves 23% improvement over CKBD+BP , JGD+CHG
achieves 13% improvement over JGD+BP , and FG+CHG achieves 23% improvement over FG+BP . However, this comes at the

cost of increased total volume. Again at 2048 processors, 1D+CHG increases the total volume by 40%, CKBD+CHG by 33%,

JGD+CHG by 30%, and FG+CHG by 49%. The crucial observation, however, is that the message count improvements of par-

titioning models that rely on the communication hypergraph model tend to increase with increasing number of processors.

For example, 1D+CHG achieves a 24% improvement over 1D+BP at K = 256 in total message count and this improvement be-

comes 37% at K = 8192 . This improvement increases from 11% to 33%, 2% to 24%, and 14% to 24% for CKBD+CHG , JGD+CHG

O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24 15

Table 5

Average partitioning times (sequential, in seconds).

1D+BP CKBD+BP JGD+BP FG+BP

32.43 33.79 21.68 114.22

CHG 1.68 0.98 1.13 1.98

and FG+CHG , respectively. This implies that the benefits obtained using the communication hypergraph model are more

prominent at higher processor counts. Note that for CKBD+CHG and JGD+CHG , normalized total message average is closer

to fold message average rather than expand message average, which is also the case for normalized average volume. This

is because the message count and communication volume in the post-communication stage are much higher than the pre-

communication stage in these models. This is also where the communication hypergraph model is expected to perform

well.

The models that use the communication hypergraph model improve the maximum number of messages as well. This is

a consequence of the reduction in total message count. In Table 3 , if we compare partitioning models in this metric, it can

be seen that CKBD+CHG obtains the best results which is usually followed by JGD+CHG . For example, at 8192 processors on

average, the maximum number of messages handled by a single processor for CKBD+CHG is only 18.6 and for JGD+CHG it is
only 20.3. These values are followed by CKBD+BP with 23.6 and JGD+BP with 25.2. When we examine the other important

metric the maximum volume in Table 4 , it is seen that the models that rely on the communication hypergraph model close

the gap with their baseline counterparts with increasing K . For instance, when K increases from 256 to 8192 processors, the

increase in maximum volume incurred by the use of the communication hypergraph model decreases from 66%, 38%, 36%

and 47% to 47%, 16%, 21% and 42% in 1D+CHG , CKBD+CHG , JGD+CHG and FG+CHG , respectively, compared to their baseline

counterparts. This is an important benefit of the communication hypergraph model since it strives for balancing volume.

The sequential partitioning times of the evaluated models are given in Table 5 averaged over all matrices and K values.

The CHG times (indicated via CHG row) include only the partitioning times of the communication hypergraphs formed

for the respective model. As expected, the fine-grain model has the highest partitioning time as the hypergraphs formed

in this model are typically larger. The partitioning times of the communication hypergraphs are quite low compared to

the respective original partitionings since they are small as they contain only the vertices that correspond to the vector

elements that necessitate communication. Note that CKBD+CHG , JGD+CHG and FG+CHG form a number of communication

hypergraphs that can independently be partitioned, hence the partitioning of them can easily be parallelized. A more healthy

comparison of partitioning overhead for 2D models can be found in [49] .

4.2. Speedup analysis

For a detailed comparison of the partitioning models in terms of parallel solver running times/speedups, we present

the runtime performance profiles in Fig. 8 . Performance profiles provide a better understanding of the characteristics of

the compared models as they capture the relative performance of the compared models more accurately [66] . A point x ,

y in a profile reads as the respective model is within a x factor of the best result in a y fraction of the test instances. In

other words, the closer the performance profile of a scheme to the y -axis, the better it is. A test instance in our case is

the parallel solver running time obtained for a specific matrix and K . We compare the performances of partitioning models

for all K values in Fig. 8 a and for K ∈ 4096, 8192 in Fig. 8 b. The former contains 168 instances and the latter contains 56

instances.

When we compare the models considering all K values in Fig. 8 a, JGD+BP is clearly the best performing model followed

by JGD+CHG . JGD+BP obtains the best results for more than 40% of the test cases and exhibits very good performance

for a very large fraction of the test cases. These two models are followed by two models that use the communication

hypergraph: 1D+CHG and FG+CHG . Except the jagged model, applying the communication hypergraph seems to improve

performance of the partitioning models as 1D+CHG , CKBD+CHG and FG+CHG perform better than 1D+BP , CKBD+BP and

FG+BP , respectively. 1D+BP obtains the worst results, proving itself to be not a viable partitioning model compared to the

2D models as long as the communication hypergraph is not used for it.

Fig. 8 b is presented to better assess the benefits of using the communication hypergraph model. As discussed, latency

gets more important with increasing K and it is expected that the models using the communication hypergraph model

should be performing better as K increases. If we consider the performances of partitioning models at only 4096 and 8192

processors, it can be seen from the figure that the models that use the communication hypergraph improve the performance

much more compared to the case when all K values are considered. In other words, for example, if we compare CKBD+BP
and CKBD+CHG in Fig. 8 a and Fig. 8 b the performance difference between them increases in favor of CKBD+CHG in Fig. 8 b.

This can be observed for all partitioning models, i.e., by comparing 1D+BP and 1D+CHG , CKBD+BP and CKBD+CHG , JGD+BP
and JGD+CHG , FG+BP and FG+CHG in Fig. 8 a and Fig. 8 b. This is also validated as JGD+CHG can be said to be the best

performing model in Fig. 8 b followed by JGD+BP . These two models are again followed by two models that use the com-

munication hypergraph: FG+CHG and CKBD+CHG . These figures show that the communication hypergraph proves to be a

valuable method for achieving scalability.

16 O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24

Fig. 8. Runtime performance profiles of eight partitioning models.

We present the obtained speedup values of eight evaluated models in Fig. 9 . Among 28 matrices, we present the

speedups of 12 matrices here to keep the discussions simpler. The rest are given in Appendix G . The number of proces-

sors varies from 256 to 8192. The experiments are performed with the CGNR solver which is implemented via the PETSc

toolkit.

As seen from the speedup curves, the models that adopt the communication hypergraph model often exhibit better

scalability compared to their baseline counterparts. Moreover, the difference gets more prominent with increasing number

of processors as latency becomes the determining factor for performance. When we compare 1D+BP with 1D+CHG , 1D+CHG
achieves superior scalability in all matrices. In 2D models, applying the communication hypergraph model usually improves

scalability. For example, in matrices circuit5M_dc , CoupCons3D , fem_hifreq_circuit , Freescale1 , memchip ,
ML_Laplace , rajat31 and RM07R , the partitioning models CKBD+CHG , JGD+CHG and FG+CHG improve performance

of their baseline counterparts CKBD+BP , JGD+BP and FG+BP , respectively. In the remaining matrices, latency-improved

versions of 2D models either achieve close or slightly worse performance. This is mainly due to the fact that in these

matrices, the latency costs obtained in the initial partitionings are already very low due to the characteristics of these

matrices and further trying to improve them does not pay off since, at the other hand, the bandwidth costs are increased.

In terms of speedup values, it can be said that 2D models generally exhibit better scalability than 1D models. In most

of the matrices, the best of 2D models exhibits better scalability than the best of 1D models, by obtaining lower runtime

results. With increasing number of processors, this difference becomes more obvious. This can be attributed to the fact that

2D models have more flexibility in partitioning, which leads them to optimize communication objectives better.

Among all models, the performance of JGD+BP and JGD+CHG is especially worth to note. On average, these two models

achieve quite good performance in terms of speedup. In matrices atmosmodl , Chevron4 and kim2 , JGD+BP obtains

better speedup values. The communication costs of these matrices are largely determined by bandwidth costs rather than

by latency costs. From this point of view, FG+BP might be expected to achieve the best results. However, FG+BP usually

causes high latency costs, even in the case of these matrices which are not latency bound. JGD+BP , on the other hand,

obtains slightly worse bandwidth costs while drastically improving latency costs compared to FG+BP , finding a balance

between FG+BP and CKBD+BP , hence performing best in these matrices.

In the remaining nine matrices, the latency-improved versions of 2D models obtain better scalability. The JGD+CHG
model is almost always among the two best performing models. When comparing CKBD+CHG , JGD+CHG and FG+CHG ,
although CKBD+CHG has the lowest maximum number of messages, it has the highest maximum volume, whereas JGD+CHG
obtains slightly worse maximum number of messages compared to CKBD+CHG and has the lowest maximum volume among

these three models. Hence it is able to strike a good balance between minimizing latency and bandwidth costs, which leads

to better scalability. Although FG+CHG has low bandwidth costs, its high latency costs cause it to perform relatively poorly

among these models (for example for rajat31 matrix, the maximum number of messages of FG+CHG at 4096 processors

is around hundreds).

A noteworthy case is seen for the cage13 matrix. This matrix is characterized with its very high latency cost. For ex-

ample, at K = 8192 the maximum number of messages is 345 for 1D+BP . In such matrices, bounding and reducing the

O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24 17

 100

 200

 300

 400

 500

 600

 700

256 512 1024 2048 4096 8192

sp
ee

du
p

Number of processors

atmosmodl

 0

 50

 100

 150

256 512 1024 2048 4096 8192
Number of processors

cage13

 200

 300

 400

 500

 600

 700

256 512 1024 2048 4096 8192
Number of processors

Chevron4

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

256 512 1024 2048 4096 8192

sp
ee

du
p

Number of processors

circuit5M_dc

 100

 200

 300

 400

 500

 600

 700

 800

 900

256 512 1024 2048 4096 8192
Number of processors

CoupCons3D

 200

 300

 400

 500

 600

 700

 800

 900

256 512 1024 2048 4096 8192
Number of processors

fem_hifreq_circuit

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

256 512 1024 2048 4096 8192

sp
ee

du
p

Number of processors

Freescale1

 200

 300

 400

 500

 600

 700

 800

256 512 1024 2048 4096 8192
Number of processors

kim2

 200

 400

 600

 800

 1000

 1200

 1400

256 512 1024 2048 4096 8192
Number of processors

memchip

 200

 400

 600

 800

 1000

256 512 1024 2048 4096 8192

sp
ee

du
p

Number of processors

ML_Laplace

 200

 400

 600

 800

 1000

 1200

 1400

256 512 1024 2048 4096 8192
Number of processors

rajat31

 100

 200

 300

 400

 500

 600

 700

 800

 900

256 512 1024 2048 4096 8192
Number of processors

RM07R

Fig. 9. Speedup curves.

18 O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24

message count works better than by solely reducing it. As seen in Fig. 9 , the two models that do so, CKBD+BP and

CKBD+CHG , achieve better scalability.

Judging from performance profiles and speedup curves, we can safely recommend the use of the JGD+CHG model when

latency costs prove vital in performance, and JGD+BP model when latency and bandwidth costs are comparable. Although

other models may perform better for specific matrices in some cases, it can be said that JGD+BP and JGD+CHG will not

perform too inferior even in these cases (for example, circuit5M_dc matrix).

5. Conclusions

This work focused on reducing latency costs of parallel sparse-matrix vector operations by proposing and utilizing several

models based on 1D and 2D matrix partitioning. The latency costs are improved by using the communication hypergraph

models, where the main motivation is to minimize the number of messages communicated in parallel operations. The de-

scribed and tested models are realized with CGNE and CGNR solvers via the PETSc toolkit on a modern HPC system. We

compared a total of eight partitioning models, scaling them up to 8K processors.

The results of extensive experiments indicate that along with the bandwidth costs, latency costs should certainly be

considered in order to achieve scalable performance. Solely addressing a single of them hurts scalability and leads to poor

performance. Our findings indicate that among the partitioning models, the 2D jagged model and its latency-improved

version obtain the most promising results. This superior performance is the result of obtaining a good balance between

minimizing latency and bandwidth costs.

Acknowledgements

We acknowledge PRACE (Partnership for Advanced Computing In Europe) for awarding us access to resource Juqueen

(Blue Gene/Q) based in Germany at Jülich Supercomputing Centre.

Appendix A. Hypergraph partitioning

A hypergraph H = (V, N) consists of a set of vertices V and a set of nets N [67] . Each net n j ∈ N connects a subset of

vertices, which are referred to as pins of n j . The set of nets that connect vertex v i is denoted by Nets (v i) . The degree of a

vertex is equal to the number of nets that connect this vertex, i.e., d i = | Nets (v i) | . A weight value w i is associated with each

vertex v i .
Given a hypergraph H = (V, N) , � = {V 1 , V 2 , . . . , V K } is called a K -way partition of vertex set V if each part V k is non-

empty, parts are pairwise disjoint and the union of K parts is equal to V . In �, a net is said to connect a part if it connects

at least one vertex in that part. The set of parts connected by a net n j is called its connectivity set and is denoted by

�(n j). The connectivity λ(n j) = | �(n j) | of n j is equal to the number of parts connected by this net. Net n j is said to be an

internal net if it connects only one part (λ(n j) = 1), and an external net if it connects more than one part (λ(n j) > 1). In

�, the weight of a part is the sum of the weights of vertices in that part. In the hypergraph partitioning (HP) problem, the

objective is to minimize the cutsize , which is defined as cutsize (�) =

∑

n j ∈N (λ(n j) − 1) . This objective function is known

as the connectivity-1 cutsize metric and is widely used in the scientific computing community [31,68,69] . The partitioning

constraint is to satisfy a balance on part weights, (W max − W a v g) /W a v g ≤ ε, where W max and W a v g are the maximum and the

average part weights, respectively, and ε is the user-defined imbalance ratio. The HP problem is known to be NP-hard [70] .

Nonetheless, there exist successful HP tools such as PaToH [31] , hMeTiS [60] and Mondriaan [33] .

Appendix B. Communication requirements of 1D partitioning

In 1D partitioning, n × n matrix A is partitioned either row wise or column wise. Assume that A is permuted into a K ×
K block structure as follows:

A BL =

⎡

⎢ ⎢ ⎣

A 11 A 12 . . . A 1 K

A 21 A 22 . . . A 2 K

. . .
. . .

. . .
. . .

A K1 A K2 . . . A KK

⎤

⎥ ⎥ ⎦

,

where K denotes the number of processors in the parallel system and the size of block A kl is n k × n l . In row wise parti-

tioning, processor P k is responsible for the k th row [A k 1 . . . A kK] of size n k × n . In column wise partitioning, processor P k is

responsible for the k th column block [A

T
1 k

. . . A

T
Kk

] T of size n × n k . Throughout this section, without loss of generality, we

assume a row wise partition of A .

The vectors in an iterative solver should be partitioned conformally in order to avoid redundant communication dur-

ing linear vector operations. For example, in the conjugate gradient solver, all vectors are partitioned conformally. In some

solvers, we can utilize distinct vector partitions that separately apply to certain vectors. For example in CGNE and CGNR, it

is possible to utilize two distinct partitions on the vectors. This enables utilization of a nonsymmetric partition for the co-

efficient matrix (see Appendix E for the details). The main motivation for adopting a nonsymmetric partition is that instead

O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24 19

Fig. B10. Row-parallel matrix-vector and column-parallel matrix-transpose-vector multiplication.

of enforcing the same partition on all vectors in the solver, we have more freedom by using a different partition on each

distinct vector space – which accommodates more potential for reducing communication overheads in parallelization.

In a parallel iterative solver, inner product operations necessitate global collective communications whereas matrix-vector

or matrix-transpose-vector multiplications necessitate P2P communications. Consider parallel w = Ap and z = A

T r multiplies.

An example for these operations is illustrated in Fig. B.10 for K = 4 processors. Without loss of generality, assume that P k
is responsible for the k th row stripe of A , and thus the k th column stripe of A

T . Note that a row wise partition on A

induces a column wise partition on A

T (Appendix E). Here, w = Ap is performed with the row-parallel algorithm while

z = A

T r is performed with the column-parallel algorithm. The row-parallel algorithm necessitates a pre-communication stage

in which the input vector elements are communicated. Each P k sends the input vector elements that correspond to the

nonzero column segments in off-diagonal blocks A ik , 1 ≤ i � = k ≤ K . This is also referred to as the expand operation since

the same vector element can be sent to multiple processors. The vector elements that correspond to the columns which

have at least one nonzero column segment in off-diagonal blocks (called coupling columns) necessitate expand operations.

In Fig. B.10 a, eight elements of the input vector (p [3], p [4], p [7], p [8], p [9], p [12], p [15], p [16]) need to be communicated.

For example, P 3 sends p [12] to P 2 and P 4 , which need this element in their local computations. On the other hand, the

column-parallel algorithm necessitates a post-communication stage in which the partial results of the output vector elements

are communicated. Each P k receives the output vector entries that correspond to the nonzero row segments in off-diagonal

blocks A kj , 1 ≤ j � = k ≤ K . This is also referred to as the fold operation since the partial results for the same vector element

can be received from multiple processors. The vector elements that correspond to the rows which have at least one nonzero

row segment in off-diagonal blocks (called coupling rows) necessitate fold operations. In Fig. B.10 b, eight elements of the

output vector (z [3], z [4], z [7], z [8], z [9], z [12], z [15], z [16]) need to be communicated. For example, P 3 receives partial results

for z [12] from P 2 and P 4 to compute the final value of z [12]. Observe that the communication of p [12] in the row-parallel

algorithm is the dual of the communication of z [12] in the column-parallel algorithm.

It is possible to obtain 1D partitioning of sparse matrices using column-net and row-net hypergraph models. The details

of these two models are given in Appendix C .

Appendix C. Two computational hypergraph models for 1D partitioning

There are several ways of obtaining a 1D row wise/column wise partitioning of coefficient matrix A . We briefly discuss

two hypergraph models since they are central to the models proposed in this work. These models are also referred to as

computational hypergraph models.

The column-net hypergraph model H R

= (V R

, N C) can be used to obtain a row wise partitioning of A [31] . In this model,

vertex set V R

represents the rows of A and net set N C represents the columns of A . There is a vertex v i ∈ V R

for each row

r i and there is a net n j ∈ N C for each column c j . Net n j connects a subset of vertices that correspond to the rows that have

a nonzero element in column c j , i.e., v i ∈ n j if and only if a ij � = 0. The weight w i of vertex v i is equal to the number of

nonzeros in row r and represents the computational load associated with v .
i i

20 O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24

The row-net hypergraph model H C = (V C , N R

) can be used to obtain a column wise partitioning of A [31] . In this model,

vertex set V C represents the columns of A and net set N R

represents the rows of A . There is a vertex v j ∈ V C for each column

c j and there is a net n i ∈ N R

for each row r i . Net n i connects a subset of vertices that correspond to the columns that have

a nonzero element in row r i , i.e., v j ∈ n i if and only if a ij � = 0. The weight w j of vertex v j is equal to the number of nonzeros

in column c j and represents the computational load associated with v j .
Partitioning hypergraphs H C and H R

with the objective of minimizing cutsize corresponds to minimizing total communi-

cation volume incurred in parallel sparse-matrix vector multiplication while maintaining the partitioning constraint on part

weights corresponds to maintaining a balance on computational loads of processors.

Appendix D. Communication hypergraph model for 1D partitioning

The communication hypergraph (CHG) model [53] is a means of distributing communication tasks among processors

with the aim of minimizing latency. A communication task is defined as a subset of processors that are involved in com-

municating a data object with a certain size. The CHG model strives to reduce the total number messages usually at the

expense of increasing communication volume. However, although it increases the volume, it tries to obtain a balance on

it. Reducing latency is a key factor to achieve scalability in large-scale systems as we show with our experiments. In this

section, we review the CHG model for reducing latency overhead of 1D partitioned parallel w = Ap and z = A

T r multiplies.

D.1. Communication matrix

As the first step, we form communication matrices M R and M C to summarize the communication requirements of row-

parallel w = Ap and column-parallel z = A

T r, respectively. For row-parallel w = Ap, let p C denote the p -vector elements that

necessitate communication (via expand tasks). Communication matrix M R is then a K × | p C | matrix where the rows of M R

correspond to processors and the columns of M R correspond to expand communication tasks. In M R , m kj � = 0 if and only if

the corresponding coupling column c j has a nonzero column segment in the k th row stripe of A . For example in A (Fig. B.10 a),

column 12 has a nonzero at the second row stripe, thus there exists a nonzero at the corresponding entry in M R in Fig. D.11

at the intersection of row P 2 and column 12. The nonzeros of column c j ∈ M R signify the set of processors that participate

in communicating p C [j]. The nonzeros of row r k ∈ M R signify all expand tasks that P k takes part in. In Fig. D.11 , the third

row in M R has nonzero elements corresponding to columns 4, 12 and 15, indicating that P 3 is involved in communicating

p [4], p [12] and p [15]. Hence, a nonzero m kj ∈ M R actually implies that P k participates in the communication of p C [j].

For column-parallel z = A

T r, let z C denote the z -vector elements that necessitate communication (via fold tasks). Com-

munication matrix M C is then a | z C | × K matrix where the rows of M C correspond to fold communication tasks and the

columns of M C correspond to processors. In M C , m ik � = 0 if and only if the corresponding coupling row r i has a nonzero row

segment in the k th column stripe of A

T . For example in A

T (Fig. B.10 b), row 12 has a nonzero at the second column stripe,

thus there exists a nonzero at the corresponding entry in M C in Fig. D.11 at the intersection of row 12 and column P 2 . The

nonzeros of row r i ∈ M C signify the set of processors that participate in communicating z C [i]. The nonzeros of column c k ∈
Fig. D11. Formation of the communication hypergraph from a communication matrix, and a four-way partition on this hypergraph. Matrices M R and M C

summarize the communication requirements of w = Ap and z = A T r operations illustrated in Fig. B.10 .

O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24 21

M C signify all fold tasks that P k takes part in. In Fig. D.11 , the third column in M C has nonzero elements corresponding to

rows 4, 12 and 15, indicating that P 3 is involved in communicating z [4], z [12] and z [15]. Hence, a nonzero m ik ∈ M C actually

implies that P k participates in the communication of z C [i].

D.2. Formation of communication hypergraph

The communication matrix is then used to form a hypergraph called communication hypergraph . We apply the row-net

hypergraph model to communication matrix M R (vertices = columns, nets = rows) to obtain the communication hypergraph

H

CM

R
and we apply the column-net hypergraph model to communication matrix M C (vertices = rows, nets = columns) to

obtain the communication hypergraph H

CM

C
. The vertex and net set of both hypergraphs are the same (see Fig. D.11). In both

hypergraphs, nets correspond to processors (there are K of them) and vertices correspond to communication tasks (there

are | p C | = | z C | of them). However, the semantics of these hypergraphs differ: the vertices in H

CM

R
represent expand tasks in

w = Ap, while the vertices in H

CM

C
represent fold tasks in z = A

T r. A net n k in both hypergraphs connects the set of vertices

that correspond to communication tasks P k participates in. Each vertex v i is associated with a weight that signifies the

volume of communication incurred by the corresponding expand or fold task. This value is generally equal to one less than

the number of the nets v i is connected by, i.e., d i − 1 .

D.3. Partitioning of the communication hypergraph

Obtaining a K -way partition � = {V 1 , V 2 , . . . , V K } on H

CM

R
or H

CM

C
induces a communication task distribution for parallel

matrix-vector or matrix-transpose-vector multiplies. Without loss of generality, assume that processor P k is associated with

part V k . Expand or fold communication tasks represented by the vertices in V k are assigned to P k by making this processor

responsible for storing vector elements that necessitate these tasks. For instance in Fig. D.11 , since v 12 ∈ V 3 , P 3 is held

responsible for storing p [12] and z [12], and expand and fold tasks necessitated by these elements. Consider a net n k in H

CM
R

with the connectivity set �(n k). All parts except V k in this set correspond to the processors that send a message to P k , hence,

λ(n k) − 1 (or λ(n k) if V k / ∈ �(n k)) is equal to the number of messages P k receives . In a dual manner, consider the same net

in H

CM

C
again with the connectivity set �(n k). All parts except V k in this set correspond to the processors that receive a

message from P k , hence, λ(n k) − 1 (or λ(n k) if V k / ∈ �(n k)) is equal to the number of messages P k sends . In Fig. D.11 , the

connectivity sets of nets are as follows: �(n 1) = {V 1 , V 2 } , �(n 2) = {V 2 , V 3 V 4 } , �(n 3) = {V 1 , V 3 } and �(n 4) = {V 1 , V 3 , V 4 } ,
making a total of (λ(n 1) − 1 = 1) + (λ(n 2) − 1 = 2) + (λ(n 3) − 1 = 1) + (λ(n 4) − 1 = 2) = 6 messages. In [53] , it is proven

that partitioning a communication hypergraph with the aim of minimizing cutsize minimizes the total message count, while

maintaining a balance among part weights preserves a balance on the communication volume.

By applying the CHG model, we obtain a different partition on rows and columns of the coefficient matrix and thus on

its input and output space (for details, see Appendix F). Adopting a different partition finds its application in nonsymmetric

sparse iterative solvers that allow distinct partitions on vectors and can be used to improve their scalability.

Appendix E. Partitioning vectors in CGNE and CGNR solvers

We describe why it is possible to use different partitions on the vectors used in CGNE and CGNR solvers. For other

solvers, refer to [71] . We make the distinction between input and output space for the vectors in the solver. A vector is said

to be in the input space of A if it is multiplied with A or it participates with the vectors in the input space of A through

linear vector operations. On the other hand, a vector is said to be in the output space of A if it is obtained by multiplying A

with another vector or it participates with the vectors in the output space of A through linear vector operations.

Algorithm 1 : CGNE and CGNR.

Set initial x 0
r 0 = b − Ax 0
p 0 = A

T r 0
for i = 0 , 1 , . . . do 1

αi = 〈 r i , r i 〉 / 〈 p i , p i 〉 � CGNE 2

αi = 〈 A

T r i , A

T r i 〉 / 〈 Ap i , Ap i 〉 � CGNR

x i +1 = x i + αi p i 3

r i +1 = r i − αi Ap i 4

βi = 〈 r i +1 , r i +1 〉 / 〈 r i , r i 〉 � CGNE 5

βi = 〈 A

T r i +1 , A

T r i +1 〉 / 〈 A

T r i , A

T r i 〉 � CGNR

p i +1 = A

T r i +1 + βi p i 6

We present CGNE and CGNR algorithms in Algorithm 1 . In each iteration of the solvers, there are two inner

products, three SAXPY operations (for forming vectors p , r , x), one matrix-vector multiply of the form w = Ap and one

matrix-transpose-vector multiply of the form z = A

T r. In w = Ap, vectors p and w are in the input and output space of A ,

22 O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24

 50

 100

 150

 200

 250

256 512 1024 2048 4096 8192

sp
ee

du
p

Number of processors

FEM_3D_thermal2

 100

 200

 300

 400

 500

 600

 700

256 512 1024 2048 4096 8192
Number of processors

Hamrle3

 50

 100

 150

 200

 250

256 512 1024 2048 4096 8192
Number of processors

iChem_Jacobian

 0

 50

 100

 150

256 512 1024 2048 4096 8192
Number of processors

laminar_duct3D

 200

 300

 400

 500

 600

 700

 800

256 512 1024 2048 4096 8192

sp
ee

du
p

Number of processors

largebasis

 100

 150

 200

 250

 300

 350

 400

256 512 1024 2048 4096 8192
Number of processors

mc2depi

 50

 100

 150

 200

 250

 300

 350

 400

 450

256 512 1024 2048 4096 8192
Number of processors

poisson3Db

 100

 150

 200

 250

 300

 350

 400

256 512 1024 2048 4096 8192
Number of processors

PR02R

 100

 150

 200

 250

256 512 1024 2048 4096 8192

sp
ee

du
p

Number of processors

stomach

 200

 300

 400

 500

 600

 700

 800

256 512 1024 2048 4096 8192
Number of processors

t2em

 150

 200

 250

 300

 350

 400

 450

 500

 550

256 512 1024 2048 4096 8192
Number of processors

thermomech_dK

 200

 300

 400

 500

 600

 700

 800

256 512 1024 2048 4096 8192
Number of processors

tmt_unsym

 100

 150

 200

 250

 300

256 512 1024 2048 4096 8192

sp
ee

du
p

Number of processors

torso3

 200

 400

 600

 800

 1000

256 512 1024 2048 4096 8192
Number of processors

Transport

 40

 60

 80

 100

 120

 140

 160

256 512 1024 2048 4096 8192
Number of processors

venkat01

 100

 150

 200

 250

 300

256 512 1024 2048 4096 8192
Number of processors

xenon2

Fig. G12. Speedup curves for the remaining 16 matrices.

O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24 23

respectively. In z = A

T r, vectors r and z are in the input and output space of A

T , respectively. Consider a row wise (column

wise) partition of A . This induces a column wise (row wise) partition on A

T . Hence, the input space of A coincides with the

output space of A

T , and vice versa. This implies that the partition on vector p is conformal with the partition on vector z ,

and the partition on vector w is conformal with the partition on vector r . Since x is involved in linear vector operations

with vector p (line 3), it should be partitioned conformally with vectors p and z to avoid unnecessary communication. As a

result, we can have two distinct vector partitions in CGNE and CGNR: one on vectors p , z and x , and another one on vectors

w and r .

Appendix F. Obtaining different vector partitions using communication hypergraph model

The communication hypergraph (CHG) model can be regarded as a post-processing phase to distribute the communica-

tion tasks. Although any partitioning model could be used, assume that the column-net computational hypergraph model

is used in the first phase for w = Ap (Appendix C). As computational tasks are represented by vertices that correspond to

rows of the matrix, partitioning this hypergraph actually induces a partition of the rows of the matrix. The result of this

partitioning determines the communication tasks in the second phase. Applying the CHG in the second phase induces a par-

tition of the columns of the matrix since communication tasks represented by the vertices are expand-type tasks performed

on input vector elements. Hence, in the first phase, we minimize the communication volume by obtaining a partition of

the rows, and in the second phase we minimize the number of messages by obtaining a different partition of the columns.

An example of these two phases can be traced from Figs. B.10 a and D.11 . Assume that the result of the first phase is the

partition obtained on A in Fig. B.10 a. Here, P 3 owns rows 8, 9, 10, 11, 12 and columns 10, 11, 12. The column partition is

subject to change after applying the CHG model, which assigns vertices 8 and 12 to V 3 , thus assigning columns 8 and 12

to P 3 . Since columns 10 and 11 do not necessitate communication, they are not included in the CHG model and directly

assigned to P 3 at the end of the first phase. As a result, P 3 owns columns 8, 10, 11, 12. Hence, we obtained a nonsymmetric

partition of the rows and columns assigned to P 3 .

Appendix G. Additional speedup curves

We provided 12 speedup curves in Section 4.2 . In this section, we provide 16 speedup curves that belong to the remain-

ing matrices in Fig. G.12 . Note that these curves do not change the findings of the paper and they are added here for the

sake of completeness.

References

[1] D.A. Patterson , Latency lags bandwith, Commun. ACM 47 (2004) 71–75 .

[2] S. L. Graham, M. Snir, C. A. Patterson (eds.), Getting Up to Speed, The Future of Supercomputing, The National Academies Press, 2006.

[3] J. Dongarra, M.A. Heroux, Toward a new metric for ranking high performance computing systems, Technical Report, SAND2013-4744, Sandia National
Laboratories, 2013.

[4] H.M. Bücker, M. Sauren, A parallel version of the unsymmetric Lanczos algorithm and its application to QMR, Technical Report KFA-ZAM-IB-9606,
Central Institute for Applied Mathematics, Research Center Julich, Germany, 1996.

[5] T.-X. Gu , X.-Y. Zuo , X.-P. Liu , P.-L. Li , An improved parallel hybrid bi-conjugate gradient method suitable for distributed parallel computing, J. Comput.
Appl. Math. 226 (2009) 55–65 .

[6] L. Yang, R.P. Brent, The improved BiCGStab method for large and sparse unsymmetric linear systems on parallel distributed memory architectures, in:

Algorithms and Architectures for Parallel Processing, 2002. Proceedings. Fifth International Conference on, 2002, pp. 324–328, doi: 10.1109/ICAPP.2002.
1173595 .

[7] T.P. Collignon , M.B. van Gijzen , Minimizing synchronization in IDR(s), Numer. Linear Algebra with Appl. 18 (2011) 805–825 .
[8] A. Chronopoulos , C. Gear , S-step iterative methods for symmetric linear systems, J. Comput. Appl. Math. 25 (1989) 153–168 .

[9] G. Meurant , Multitasking the conjugate gradient method on the CRAY X-MP/48, Parallel Comput. 5 (1987) 267–280 .
[10] E.F. D’Azevedo, V.L. Eijkhout, C.H. Romine, Conjugate gradient algorithms with reduced synchronization overheads on distributed memory processors,

Technical Report, 56, Lapack Working Note, 1993.

[11] Y. Saad , Practical use of polynomial preconditionings for the conjugate gradient method, SIAM J. Sci. Statis. Comput. 6 (1985) 865–881 .
[12] L.T. Yang, R.P. Brent, in: The Improved BiCG Method for Large and Sparse Linear Systems on Parallel Distributed Memory Architectures Proceedings

of the 16th International Parallel and Distributed Processing Symposium, IPDPS ’02, IEEE Computer Society, Washington, DC, USA, 2002, p. 315 . http:
//dl.acm.org/citation.cfm?id=645610.661567

[13] Z. Bai , D. Hu , L. Reichel , A newton basis GMRES implementation, IMA J. Numer. Anal. 14 (1994) 563–581 .
[14] A.T. Chronopoulos , S-step iterative methods for (non)symmetric (in)definite linear systems, SIAM J. Numer. Anal. 28 (1991) 1776–1789 .

[15] A. Chronopoulos , C. Swanson , Parallel iterative S-step methods for unsymmetric linear systems, Parallel Comput. 22 (1996) 623–641 .

[16] M. Hoemmen , Communication-avoiding Krylov Subspace Methods, Ph.D. thesis, Berkeley, CA, USA, 2010 . AAI3413388.
[17] W.D. Joubert , G.F. Carey , Parallelizable restarted iterative methods for nonsymmetric linear systems. part I: Theory, Int. J. Comput. Math. 44 (1992)

243–267 .
[18] E. Carson, N. Knight, J. Demmel, Avoiding communication in two-sided krylov subspace methods, Technical Report, UCB/EECS-2011-93, EECS Depart-

ment, University of California, Berkeley,2011, http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-93.html .
[19] L. Grigori, S. Moufawad, Communication avoiding ILU0 preconditioner, Rapport de recherche, RR-8266, INRIA, 2013, http://hal.inria.fr/hal-00803250 .

[20] J.W. Demmel , M.T. Heath , H.A. van der Vorst , Parallel numerical linear algebra, Acta Numer. 2 (1993) 111–197 .

[21] E. de Sturler , H.A. van der Vorst , Reducing the effect of global communication in GMRES(m) and CG on parallel distributed memory computers, Appl.
Numer. Math. 18 (1995) 441–459 .

[22] T. Hoefler , P. Gottschling , A. Lumsdaine , W. Rehm , Optimizing a conjugate gradient solver with non-blocking collective operations, Parallel Comput. 33
(2007) 624–633 .

[23] P. Ghysels , T. Ashby , K. Meerbergen , W. Vanroose , Hiding global communication latency in the GMRES algorithm on massively parallel machines, SIAM
J. Sci. Comput. 35 (2013) C48–C71 .

http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0001
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0001
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0002
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0002
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0002
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0002
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0002
http://dx.doi.org/10.1109/ICAPP.2002.1173595
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0004
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0004
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0004
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0005
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0005
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0005
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0006
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0006
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0007
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0007
http://dl.acm.org/citation.cfm?id=645610.661567
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0009
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0009
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0009
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0009
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0010
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0010
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0011
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0011
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0011
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0012
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0012
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0012
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0013
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0013
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0013
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-93.html
http://hal.inria.fr/hal-00803250
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0014
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0014
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0014
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0014
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0015
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0015
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0015
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0016
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0016
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0016
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0016
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0016
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0017
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0017
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0017
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0017
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0017

24 O. Selvitopi, C. Aykanat / Parallel Computing 57 (2016) 1–24

[24] P. Ghysels , W. Vanroose , Hiding global synchronization latency in the preconditioned conjugate gradient algorithm, Parallel Comput. 40 (2014)
224–238 . 7th Workshop on Parallel Matrix Algorithms and Applications.

[25] L.C. Mcinnes , B. Smith , H. Zhang , R.T. Mills , Hierarchical Krylov and nested Krylov methods for extreme-scale computing, Parallel Comput. 40 (2014)
17–31 .

[26] O. Selvitopi, M. Ozdal, C. Aykanat, A novel method for scaling iterative solvers: Avoiding latency overhead of parallel sparse-matrix vector multiplies,
2014, doi: 10.1109/TPDS.2014.2311804.

[27] G. Ballard , J. Demmel , O. Holtz , O. Schwartz , Minimizing communication in numerical linear algebra, SIAM J. Matrix Anal. Appl. 32 (2011) 866–901 .

[28] J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yelick, Avoiding communication in sparse matrix computations, in: Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on, 2008, pp. 1–12, doi: 10.1109/IPDPS.2008.4536305 .

[29] M. Mohiyuddin, M. Hoemmen, J. Demmel, K. Yelick, Minimizing communication in sparse matrix solvers, in: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, SC ’09, pp. 36:1–36:12, ACM, New York, NY, USA, 2009, doi: 10.1145/1654059.1654096 .

[30] G. Karypis , V. Kumar , A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1998) 359–392 .
[31] U. Çatalyurek , C. Aykanat , Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication, IEEE Trans. Parallel Distrib.

Syst. 10 (1999) 673–693 .
[32] F. Pellegrini, J. Roman, Scotch: a software package for static mapping by dual recursive bipartitioning of process and architecture graphs, in: H. Liddell,

A. Colbrook, B. Hertzberger, P. Sloot (Eds.), High-Performance Computing and Networking, volume 1067 of Lecture Notes in Computer Science, Springer

Berlin Heidelberg, 1996, pp. 4 93–4 98, doi: 10.1007/3- 540- 61142- 8 _ 588 .
[33] B. Vastenhouw , R.H. Bisseling , A two-dimensional data distribution method for parallel sparse matrix-vector multiplication, SIAM Rev. 47 (2005) 67–95 .

[34] B. Hendrickson , T.G. Kolda , Graph partitioning models for parallel computing, Parallel Comput. 26 (20 0 0) 1519–1534 .
[35] W.J. Camp , S.J. Plimpton , B.A. Hendrickson , R.W. Leland , Massively parallel methods for engineering and science problems, Commun. ACM 37 (1994)

30–41 .
[36] O.C. Martin , S.W. Otto , Partitioning of unstructured meshes for load balancing, Concurrency: Practice and Experience 7 (1995) 303–314 .

[37] U. Çatalyurek, C. Aykanat, Decomposing irregularly sparse matrices for parallel matrix-vector multiplication, in: Proceedings of the Third International

Workshop on Parallel Algorithms for Irregularly Structured Problems, IRREGULAR ’96, Springer-Verlag, London, UK, 1996, pp. 75–86 . http://dl.acm.org/
citation.cfm?id=646010.676990.

[38] C.-W. Ou , S. Ranka , Parallel incremental graph partitioning, Parallel and Distributed Systems, IEEE Transactions on 8 (1997) 884–896 .
[39] A. Grama , G. Karypis , V. Kumar , A. Gupta , Introduction to Parallel Computing, 2nd, Addison-Wesley Longman Publishing Co., Inc., Boston, MA , USA ,

2002 .
[40] A. Ogielski , W. Aiello , Sparse matrix computations on parallel processor arrays, SIAM J. Sci. Comput. 14 (1993) 519–530 .

[41] J.G. Lewis, R.A. van de Geijn, Distributed memory matrix-vector multiplication and conjugate gradient algorithms, in: Proceedings of the 1993

ACM/IEEE conference on Supercomputing, Supercomputing ’93, ACM, New York, NY, USA, 1993, pp. 4 84–4 92, doi: 10.1145/169627.169788 .
[42] B. Hendrickson , R. Leland , S. Plimpton , An efficient parallel algorithm for matrix-vector multiplication, Int. J. of High Speed Comput. 7 (1995) 73–88 .

[43] A . Buluç, K. Madduri, Parallel breadth-first search on distributed memory systems, in: Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’11, ACM, New York, NY, USA, 2011, doi: 10.1145/2063384.2063471 .

[44] A . Yoo, A .H. Baker, R. Pearce, V.E. Henson, A Scalable Eigensolver for Large Scale-Free Graphs Using 2D graph partitioning Proceedings of 2011 In-
ternational Conference for High Performance Computing, Networking, Storage and Analysis, SC’11, ACM, New York, NY, USA, 2011 . pp. 63:1–63:11.

http://doi.acm.org/10.1145/2063384.2063469

[45] U.V. Çatalyürek , Hypergraph Models for Sparse Matrix Partitioning and Reordering, 1999 Ph.D. thesis .
[46] U. Çatalyürek, C. Aykanat, A fine-grain hypergraph model for 2D decomposition of sparse matrices, in: Proceedings of the 15th International Parallel

& Distributed Processing Symposium, IPDPS ’01, IEEE Computer Society, Washington, DC, USA, 2001a, p. 118 . http://dl.acm.org/citation.cfm?id=645609.
663255

[47] U. Çatalyürek, C. Aykanat, A hypergraph-partitioning approach for coarse-grain decomposition, in: Proceedings of the 2001 ACM/IEEE Conference on
Supercomputing, SC ’01, ACM, New York, NY, USA, 2001b, p. 28, doi: 10.1145/582034.582062 .

[48] B. Uçar, C. Aykanat, Minimizing communication cost in fine-grain partitioning of sparse matrices, in: A. Yazıcı, C. Ş ener (Eds.), Computer and In-

formation Sciences - ISCIS 2003, volume 2869 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2003, pp. 926–933, doi: 10.1007/
978- 3- 540- 39737- 3 _ 115 .

[49] U.V. Çatalyürek , C. Aykanat , B. Uçar , On two-dimensional sparse matrix partitioning: Models, methods, and a recipe, SIAM J. Sci. Comput. 32 (2010)
656–683 .

[50] E.G. Boman, K.D. Devine, S. Rajamanickam, Scalable matrix computations on large scale-free graphs using 2D graph partitioning, in: Proceedings of
the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’13, ACM, New York, NY, USA, 2013, doi: 10.1145/

2503210.2503293 .

[51] R.H. Bisseling , W. Meesen , Communication balancing in parallel sparse matrix-vector multiply, Electron. Trans. Numer. Anal. 21 (2005) 47–65 .
[52] U.V. Çatalyürek, M. Deveci, K. Kaya, B. Uçar, UMPA: a Multi-objective, multi-level partitioner for communication minimization, in: D.A. Bader, H. Mey-

erhenke, P. Sanders, D. Wagner (Eds.), Graph Partitioning and Graph Clustering 2012, volume 588 of Contemporary Mathematics, AMS, 2013, pp. 53–66,
doi: 10.1090/conm/588/11704 .

[53] B. Uçar , C. Aykanat , Encapsulating multiple communication-cost metrics in partitioning sparse rectangular matrices for parallel matrix-vector multi-
plies, SIAM J. Sci. Comput. 25 (2004) 1837–1859 .

[54] R.W. Freund , G.H. Golub , N.M. Nachtigal , Iterative solution of linear systems, Acta Numerica 1 (1992) 57–100 .
[55] N. Nachtigal , S. Reddy , L. Trefethen , How fast are nonsymmetric matrix iterations? SIAM J. Matrix Anal. Appl. 13 (1992) 778–795 .

[56] Y. Saad , Iterative Methods for Sparse Linear Systems, 2nd, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2003 .

[57] H. Elman , Iterative methods for large, sparse, nonsymmetric systems of linear equations., Dissertation Abstracts Int. Part B: Sci. Eng. [DISS. ABST. INT.
PT. B- SCI. & ENG.], 43 (1982) 1982 .

[58] R. Freund , N. Nachtigal , QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numerische Mathematik 60 (1991) 315–339 .
[59] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F.

Smith, H. Zhang, PETSc Users Manual, Technical Report ANL-95/11 - Revision 3.5, Argonne National Laboratory, 2014. http://www.mcs.anl.gov/petsc .
[60] G. Karypis , R. Aggarwal , V. Kumar , S. Shekhar , Multilevel hypergraph partitioning: applications in VLSI domain, IEEE Trans. Very Large Scale Integr.

Syst. 7 (1999) 69–79 .

[61] C. Aykanat , B.B. Cambazoglu , B. Uçar , Multi-level direct k-way hypergraph partitioning with multiple constraints and fixed vertices, J. Parallel Distrib.
Comput. 68 (2008) 609–625 .

[62] E. Horowitz , S. Sahni , Fundamentals of Computer Algorithms, Computer Science Press, Rockville, MD, USA, 1978 .
[63] T.A. Davis , Y. Hu , The University of Florida sparse matrix collection, ACM Trans. Math. Softw. 38 (2011) 1:1–1:25 .

[64] G. Karypis, V. Kumar, Multilevel k-way hypergraph partitioning, in: Proceedings of the 36th Annual ACM/IEEE Design Automation Conference, DAC ’99,
ACM, New York, NY, USA, 1999, pp. 343–348, doi: 10.1145/309847.309954 .

[65] H.D. Simon , S.-H. Teng , How good is recursive bisection? SIAM J. Sci. Comput. 18 (1997) 1436–1445 .

[66] E.D. Dolan , J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program. 91 (2002) 201–213 .
[67] C. Berge , Graphs and Hypergraphs, Elsevier Science Ltd, 1985 .

[68] C. Aykanat , A. Pinar , U.V. Çatalyürek , Permuting sparse rectangular matrices into block-diagonal form, SIAM J. Sci. Comput. 25 (2004) 1860–1879 .
[69] B. Uçar , C. Aykanat , Revisiting hypergraph models for sparse matrix partitioning, SIAM Rev. 49 (2007) 595–603 .

[70] T. Lengauer , Combinatorial Algorithms for Integrated Circuit Layout, John Wiley & Sons, Inc., New York, NY, USA, 1990 .
[71] B. Uçar , C. Aykanat , Partitioning sparse matrices for parallel preconditioned iterative methods, SIAM J. Sci. Comput. 29 (2007) 1683–1709 .

http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0018
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0018
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0018
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0018
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0019
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0019
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0019
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0019
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0019
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0020
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0020
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0020
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0020
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0020
http://dx.doi.org/10.1109/IPDPS.2008.4536305
http://dx.doi.org/10.1145/1654059.1654096
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0023
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0023
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0023
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0024
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0024
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0024
http://dx.doi.org/10.1007/3-540-61142-8_588
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0026
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0026
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0026
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0027
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0027
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0027
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0028
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0028
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0028
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0028
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0028
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0029
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0029
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0029
http://dl.acm.org/citation.cfm?id=646010.676990
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0031
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0031
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0031
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0032
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0032
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0032
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0032
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0032
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0033
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0033
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0033
http://dx.doi.org/10.1145/169627.169788
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0035
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0035
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0035
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0035
http://dx.doi.org/10.1145/2063384.2063471
http://doi.acm.org/10.1145/2063384.2063469
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0038
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0038
http://dl.acm.org/citation.cfm?id=645609.663255
http://dx.doi.org/10.1145/582034.582062
http://dx.doi.org/10.1007/978-3-540-39737-3_115
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0042
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0042
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0042
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0042
http://dx.doi.org/10.1145/2503210.2503293
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0044
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0044
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0044
http://dx.doi.org/10.1090/conm/588/11704
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0046
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0046
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0046
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0047
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0047
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0047
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0047
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0048
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0048
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0048
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0048
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0049
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0049
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0050
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0050
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0051
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0051
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0051
http://www.mcs.anl.gov/petsc
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0052
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0052
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0052
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0052
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0052
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0053
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0053
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0053
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0053
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0054
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0054
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0054
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0055
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0055
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0055
http://dx.doi.org/10.1145/309847.309954
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0057
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0057
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0057
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0058
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0058
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0058
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0059
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0059
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0060
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0060
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0060
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0060
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0061
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0061
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0061
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0062
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0062
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0063
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0063
http://refhub.elsevier.com/S0167-8191(16)30013-8/sbref0063

	Reducing latency cost in 2D sparse matrix partitioning models
	1 Introduction
	1.1 Related work
	1.2 Motivation and contributions

	2 Reducing latency cost in 2D partitioning models
	2.1 Checkerboard partitioning
	2.1.1 Communication matrices
	2.1.2 Formation of communication hypergraphs
	2.1.3 Partitioning of the communication hypergraphs

	2.2 Jagged partitioning
	2.2.1 Communication matrices
	2.2.2 Formation of the communication hypergraphs
	2.2.3 Partitioning of the communication hypergraphs

	2.3 Fine-grain (nonzero-based) partitioning

	3 Comparison of partitioning models
	4 Experiments
	4.1 Bandwidth and latency costs of partitioning models
	4.2 Speedup analysis

	5 Conclusions
	 Acknowledgements
	Appendix A Hypergraph partitioning
	Appendix B Communication requirements of 1D partitioning
	Appendix C Two computational hypergraph models for 1D partitioning
	Appendix D Communication hypergraph model for 1D partitioning
	D.1 Communication matrix
	D.2 Formation of communication hypergraph
	D.3 Partitioning of the communication hypergraph

	Appendix E Partitioning vectors in CGNE and CGNR solvers
	Appendix F Obtaining different vector partitions using communication hypergraph model
	Appendix G Additional speedup curves
	 References

