
A HYPERGRAPH PARTITIONING MODEL FOR PROFILE1

MINIMIZATION2

SEHER ACER† , ENVER KAYAASLAN†‡ , AND CEVDET AYKANAT†3

Abstract. In this paper, the aim is to symmetrically permute the rows and columns of a given4
sparse symmetric matrix so that the profile of the permuted matrix is minimized. We formulate this5
permutation problem by first defining the m-way ordered hypergraph partitioning (moHP) problem6
and then showing the correspondence between profile minimization and moHP problems. For solving7
the moHP problem, we propose a recursive-bipartitioning-based hypergraph partitioning algorithm,8
which we refer to as the moHP algorithm. This algorithm achieves a linear part ordering via left-to-9
right bipartitioning. In this algorithm, we utilize fixed vertices and two novel cut-net manipulation10
techniques in order to address the minimization objective of the moHP problem. We show the11
correctness of the moHP algorithm and describe how the existing partitioning tools can be utilized12
for its implementation. Experimental results on an extensive set of matrices show that the moHP13
algorithm obtains smaller profile than the state-of-the-art profile reduction algorithms, which then14
results in considerable improvements in the factorization runtime in a direct solver.15

Key words. sparse matrices, matrix ordering, matrix profile, matrix envelope, profile mini-16
mization, profile reduction, hypergraph partitioning, recursive bipartitioning17

AMS subject classifications. 05C50, 05C85, 65F05, 65F50, 68R1018

1. Introduction. The focus of this work is to minimize the envelope size, i.e.,19

profile, of a given m × m sparse symmetric matrix A = (aij) through symmetric20

row/column permutation. The envelope of A, E(A), is defined as the set of index21

pairs in each row that lie between the first nonzero entry and the diagonal. That is,22

E(A) = {(i, j) : fc(i) ≤ j < i, i = 1, 2, . . . ,m},23

where fc(i) denotes the column index of the first nonzero entry in row i, i.e., fc(i) =24

min{j : aij 6= 0}. The size of the envelope of A is referred to as the profile of A, which25

is denoted by P (A). Note that profile can also be expressed as the sum of row widths26

in envelope, that is,27

P (A) = |E(A)| =
m∑
i=1

(i− fc(i)).28

Diaz et al. [16] describe a number of graph layout problems which are similar or29

equivalent to the profile minimization problem and the application areas of these30

problems.31

The profile minimization problem arises in various applications. The greatest at-32

tention given to this problem is from the scientific computing domain due to improving33

the performance of the sparse solvers. Basically, sparse Gaussian elimination bene-34

fits from an ordering of the input matrix with small profile in terms of both storage35

and number of floating-point operations [20, 37]. The computational complexity of36

envelope methods is proportional to the sum of squares of row widths. Similarly, the37

computational complexity of frontal methods is proportional to the sum of squares of38

front sizes, where the sum of the profile and the number of rows gives the sum of front39

sizes. While envelope methods are now outdated, frontal methods and their extensions40

such as multifrontal ones are still actively used. Davis et al. [14] list these methods in41

†Computer Engineering Department, Bilkent University, 06800, Ankara, Turkey
(acer@cs.bilkent.edu.tr, enver@cs.bilkent.edu.tr, aykanat@cs.bilkent.edu.tr)
‡Currently with Google Switzerland, 8002, Zürich, Switzerland

1

This manuscript is for review purposes only.

their recent and extensive survey on sparse direct methods. Besides direct methods,42

small profile is also shown to be desirable for improving the performance of iterative43

methods, including incomplete factorization preconditioners [12, 15, 19, 24, 39]. Fur-44

thermore, improving cache hit rates in sparse matrix computations can be considered45

as another application for this problem [9, 41]. In addition to the scientific computing46

domain, the profile metric and the corresponding minimization problem are found to47

be useful in applications from other domains such as bioinformatics, model checking,48

and visualization [6, 7, 26, 28, 33, 34].49

The profile minimization problem is NP-hard [32]. Heuristics proposed for solving50

this problem are plentiful in the literature. In the following, we summarize the most51

commonly-used profile reduction heuristics and refer the reader to the recent system-52

atic review in [5] for a more complete list. The earliest methods such as RCM [21],53

GPS [23], Gibbs-King [22], and Sloan [40] exploit the level structure obtained on the54

standard graph representation of the given matrix. Most of the successor methods use55

a spectral approach [4], which obtain better results compared to the earlier methods56

at the expense of higher ordering runtimes. These runtimes are improved by hy-57

brid methods [8, 29, 30, 35], which exploit both graph-based and spectral approaches58

in a multilevel framework. These algorithms include the one proposed by Hu and59

Scott [29], which obtains smaller profile values that the preceding algorithms. Reid60

and Scott [36] show that applying Hager’s exchange methods [27] as a post-processing61

step to the algorithm proposed by Hu and Scott [29] achieves even better results.62

The contributions of this paper are as follows. We first define an ordered version63

of hypergraph partitioning (HP) problem, which we referred to as the m-way ordered64

hypergraph partitioning (moHP) problem. Then, we formulate the profile minimiza-65

tion problem as an moHP problem. To our knowledge, this work is the first in the66

literature which formulates the profile minimization using an HP problem. For solving67

the moHP problem, we propose the moHP algorithm, which is based on the recursive68

bipartitioning (RB) paradigm. The moHP algorithm achieves a linear part ordering69

via left-to-right bipartitioning. In order to address the minimization objective of the70

moHP problem, the moHP algorithm utilizes fixed vertices within the RB framework71

and two novel cut-net manipulation techniques. We theoretically show that mini-72

mizing a cost metric in each RB step corresponds to minimizing the objective of the73

moHP problem. We also show how existing HP tools can be utilized in the proposed74

RB-based algorithm.75

The rest of the paper is organized as follows. Section 2 provides background76

information. Section 3 presents the moHP problem and shows its correspondence77

to the profile minimization problem. Section 4 presents the proposed RB-based al-78

gorithm for solving the moHP problem, discusses its correctness, and describes the79

implementation of the proposed algorithm using existing partitioning tools. Section80

5 provides the experimental results in comparison with the state-of-the-art profile81

reduction algorithms and section 6 concludes.82

2. Preliminaries. A hypergraph H = (V,N) is defined as a set of n vertices83

V = {v1, v2, . . . , vn} and a set of m nets N = {n1, n2, . . . , nm}. In H, each net84

ni ∈ N connects a subset of vertices in V, which is denoted by Pins(ni). The vertices85

in Pins(ni) are also referred to as the pins of ni. Each vertex vi ∈ V is assigned86

a weight, which is denoted by w(vi). Each net ni ∈ N is assigned a cost, which is87

denoted by c(ni).88

Π = {V1,V2, . . . ,VK} is a K-way partition of H if the parts in Π are nonempty,89

mutually disjoint and exhaustive. For a given partition Π, a net ni is said to connect90

2

This manuscript is for review purposes only.

v5 v8 v1 v4 v3 v2

n5 n8 n1 n4 n3 n2

v6 v7

n6 n7

v1 v2 v3 v4 v5 v6 v7 v8

Fig. 1: An m-way ordered partition of a hypergraph H with m = 8 vertices.

a part Vk if it has pins in Vk, i.e., Pins(ni) ∩ Vk 6= ∅. Net ni is said to be cut if91

it connects multiple parts in Π, and uncut/internal, otherwise. The cutsize of Π is92

defined as the sum of the costs of the cut nets, that is93

(1) cutsize(Π) =
∑

ni∈Nc

c(ni),94

where Nc denotes the set of cut nets in Π. The weight W (Vk) of a part Vk is defined95

as the sum of the weights of the vertices in Vk, i.e., W (Vk) =
∑

vi∈Vk w(vi).96

Given K and ε values, the hypergraph partitoning (HP) problem is defined as the97

problem of finding a K-way partition of a given hypergraph so that the cutsize (1) is98

minimized and a balance on the weights of the parts is maintained by the constraint99

(2) W (Vk) ≤ (1 + ε)

∑K
j=1W (Vj)
K

for k = 1, 2, . . . ,K.100

Here, ε denotes the maximum allowable imbalance ratio on the weights of the parts.101

The HP problem with fixed vertices is a constrained version of the HP problem102

where for each part, a subset of vertices can be preassigned to that part before par-103

titioning in such a way that, at the end of the partitioning, they remain in the parts104

to which they are preassigned. These vertices are called fixed vertices. The set of105

vertices that are fixed to part Vk is denoted by Fk for k = 1, 2, . . . ,K. The rest of106

the vertices are called free vertices as they can be assigned to any part.107

If K = 2, then Π = {V1,V2} is also referred to as a bipartition. We use Π =108

〈VL,VR〉 to denote a bipartition in which the order of the parts is relevant. Here,109

VL and VR respectively denote the left and right parts. In case of bipartitoning with110

fixed vertices, FL and FR denote the sets of vertices that are fixed to VL and VR,111

respectively.112

For a given sparse matrix A, the row-net hypergraph H = (V,N) [10] is formed113

as follows. As hinted by the name, each row i in A is represented by a net ni in N .114

In a dual manner, each column j in A is represented by a vertex vj in V. For each115

nonzero entry aij in A, net ni connects vertex vj in H.116

3. The m-way ordered hypergraph partitioning formulation. In this sec-117

tion, we first define a variant of the HP problem, the moHP problem, and then show118

how the profile minimization problem can be formulated as an moHP problem.119

3.1. The m-way ordered hypergraph partitioning (moHP) problem. In120

the moHP problem, we use a special form of partition which is referred to as m-121

way ordered partition (Πmo). Consider a hypergraph H = (V,N) with m vertices,122

that is, V = {v1, v2, . . . , vm}. A partition of H is an m-way ordered partition if123

each part contains exactly one vertex and the parts are subject to an order. We124

use Πmo = 〈V1,V2, . . . ,Vm〉 to denote an m-way ordered partition. Figure 1 displays125

3

This manuscript is for review purposes only.

a sample m-way ordered partition of a hypergraph with m = 8 vertices. In this126

figure, V1 = {v5}, V2 = {v8}, and so on. Given an m-way ordered partition Πmo,127

the position of a vertex vi, φ(vi), is defined as the order of the part that contains vi.128

That is, φ(vi) = k if and only if Vk = {vi}. For example, φ(v1) = 3 in Figure 1. The129

leftmost vertex fi of a net ni is defined as the pin of ni with the minimum position.130

That is,131

fi = arg min
vj∈Pins(ni)

φ(vj).132

For example, f3 = v1 in Figure 1. The left span of a net ni, ls(ni), is defined as the133

difference between the positions of vertices vi and fi. That is,134

(3) ls(ni) = φ(vi)− φ(fi).135

Here, we assume that vi ∈ Pins(ni) for each ni ∈ N , thus, ls(ni) is nonnegative. For136

example, ls(n3) = 5− 3 = 2 in Figure 1.137

The cost of an m-way ordered partition Πmo is defined as the sum of the left138

spans of the nets in N . That is,139

(4) cost(Πmo) =
∑
ni∈N

ls(ni).140

For example, the cost of the m-way partiton in Figure 1 is 8. Note that the cost141

formulation in (4) is quite different than the traditional cutsize definition in (1).142

Definition 1. (The moHP problem) Consider a hypergraph H = (V,N) with143

vertex set V = {v1, v2, . . . , vm} and net set N = {n1, n2, . . . , nm}. Assume that144

vi ∈ Pins(ni) for each net ni ∈ N . Then, the moHP problem is the problem of finding145

an m-way ordered partition Πmo of H so that the cost given in (4) is minimized.146

3.2. Formulation. The following theorem shows how the profile minimization147

problem can be formulated as an moHP problem.148

Theorem 2. Let H(A) = (V,N) be the row-net hypergraph of an m ×m struc-149

turally symmetric sparse matrix A with aii 6= 0 for i = 1, 2, . . . ,m. An m-way ordered150

partition Πom of H(A) can be decoded as a row/column permutation P for A so that151

minimizing the cost of Πmo corresponds to minimizing the profile of the permuted152

matrix PAPT .153

Proof. Consider an m-way ordered partition Πmo of H(A), which is decoded as154

a row/column permutation for A in such a way that the order of row/column i in155

the permuted matrix PAPT is the position φ(vi) of vertex vi in Πmo. That is, the156

permutation matrix P is formulated as157

P =
[
p1 p2 · · · pm

]
,158

where pi is a column vector with all zeros except the φ(vi)’th entry being equal to159

1, for i = 1, 2, . . . ,m. Consider a row i in PAPT . Note that aii is the φ(vi)’th160

diagonal entry of PAPT . Let Ci denote the set of the columns in which row i has161

a nonzero entry. By the row-net hypergraph formulation, vj ∈ Pins(ni) if and only162

if j ∈ Ci. Since the order of each column j ∈ Ci in PAPT is set to be φ(vj), the163

column representing vertex fi has the first nonzero entry of row i in PAPT . Thus,164

the contribution of row i to the profile of PAPT is equal to the left span of ni in Πmo.165

Hence, the profile of PAPT is equal to the cost of Πmo. Therefore, minimizing the166

cost of Πmo corresponds to minimizing the profile of PAPT .167

4

This manuscript is for review purposes only.

5

8

1

4

3

2

6

7

5 8 1 4 3 2 6 7

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

v5 v8 v1 v4 v3 v2

n5 n8 n1 n4 n3 n2

v6 v7

n6 n7

v1

v2

v3

v4

v5

v6

v7

v8
n1

n2

n3

n4n5

n6

n7

n8

matrix A
row-net hypergraph H(A)

an m-way ordered partition of H(A)
permuted matrix PA P

T

v1 v2 v3 v4 v5 v6 v7 v8

Fig. 2: An illustration for the formulation of the profile minimization problem as an
moHP problem.

Figure 2 displays a sample 8× 8 structurally symmetric sparse matrix A with 22168

nonzero entries and the row-net hypergraph H(A) of A with 8 vertices, 8 nets and 22169

pins. The figure also displays an m-way ordered partition of H(A) and the permuted170

matrix PAPT induced by this partition. For example, consider row 3 in A. As seen171

in the figure, row 3 is ordered as the fifth row in PAPT since φ(v3) = 5. The left span172

of net n3, which represents row 3, is computed as ls(n3) = φ(v3)−φ(f3) = 5− 3 = 2.173

Note that the contribution of row 3 to the profile of PAPT is also 2, which is equal174

to ls(n3). The profile of PAPT is 8, which is equal to the cost of the given m-way175

ordered partition.176

4. Recursive-bipartitioning-based moHP algorithm. This section describes177

the proposed moHP algorithm, which aims at finding an m-way ordered partition178

of a given hypergraph with minimum cost. The moHP algorithm is based on the179

well-known recursive bipartitioning (RB) paradigm and adopts a left-to-right bipar-180

titioning approach. In this approach, a natural order is assumed on the parts of each181

bipartition and the final partitions of the left and right parts are combined in such182

a way that their respective orderings are preserved. Recall that the partitioning cost183

is defined as the sum of the left spans of the nets in (4). Within the left-to-right184

bipartitioning approach, the moHP algorithm utilizes fixed vertices in order to target185

the minimization of these left span values.186

4.1. Overall description. Algorithm 1 shows the initial invocation of the re-187

cursive moHP algorithm. This algorithm first forms the row-net hypergraph H(A) of188

the input m × m structurally symmetric sparse matrix A. In H(A), each vertex is189

assigned a unit weight and each net is assigned a unit cost, that is, w(vi) = 1 for each190

5

This manuscript is for review purposes only.

Algorithm 1 Initial call to the recursive moHP algorithm

Require: m×m struct. sym. sparse matrix A with nonzero diagonal entries
1: H(A) = (V,N)← row-net hypergraph of A
2: FL ← FR ← ∅
3: Πmo ← moHP(H(A),FL,FR) . Πmo = 〈V1,V2, . . . ,Vm〉
4: for i← 1 to m do
5: Order row/column i as the φ(vi)’th row/column in PAPT

6: return PAPT

Algorithm 2 moHP(H,FL,FR)

Require: Hypergraph H = (V,N), fixed-vertex sets FL and FR

1: if V contains exactly one free vertex, say vi then
2: Πmo ← 〈vi〉
3: else
4: Π← bipartition(H,FL,FR) . Π = 〈VL,VR〉
5: (HL,HR,FLR,FRL)← FORM(H,Π)
6: ΠL

mo ← moHP(HL,FL,FLR) . recursive invocation on HL

7: ΠR
mo ← moHP(HR,FRL,FR) . recursive invocation on HR

8: Πmo ← 〈ΠL
mo,Π

R
mo〉

9: return Πmo

vi ∈ V and c(ni) = 1 for each ni ∈ N . Then, the moHP algorithm is invoked on H(A)191

with empty fixed-vertex sets FL and FR, and at the end of this invocation, an m-way192

ordered partition Πmo of H(A) is returned. Πmo is then utilized to symmetrically193

permute the rows and columns of A in such a way that row/colum i is ordered as the194

φ(vi)’th row/column in the permuted matrix PAPT .195

Algorithm 2 shows the basic steps of the recursive moHP algorithm. This algo-196

rithm takes a hypergraph H = (V,N) and fixed-vertex sets FL ⊆ V and FR ⊆ V as197

input and returns an m′-way ordered partition of H, where m′ denotes the number198

of free vertices in H. Note that m′ = m for the initial invocation of this algorithm.199

The base case and the recursive step of the moHP algorithm are covered in lines 1-2200

and 3-8, respectively. In the base case, i.e., when there is exactly one free vertex in201

V, the singleton partition 〈vi〉 is returned, where vi denotes that free vertex. In the202

recursive step, i.e., when there are multiple free vertices in V, an ordered bipartition203

Π = 〈VL,VR〉 of H is first obtained. In this bipartitioning, the objective is to minimize204

the left-cut-net metric (5), which is to be explained in section 4.2. The ε value to be205

used in this bipartitioning (see (2)) is investigated in section 5. After Π is obtained,206

the FORM algorithm is invoked in order to form new hypergraphs HL = (VL,NL)207

and HR = (VR,NR) as well as new fixed-vertex sets FLR and FRL. The details of the208

FORM algorithm are given in section 4.3. Then, the moHP algorithm is recursively209

invoked on hypergraphs HL and HR to respectively obtain m′L-way ordered partition210

ΠL
mo of HL and an m′R-way ordered partition ΠR

mo of HR, where m′L and m′R respec-211

tively denote the numbers of free vertices in HL and HR. Here, m′ = m′L + m′R.212

Finally, by concatenating ΠL
mo and ΠR

mo, an m′-way ordered partition Πmo of H is213

obtained and returned.214

As seen in the recursive invocations of the moHP algorithm in lines 6 and 7,215

the old fixed-vertex sets FL and FR associated with the current hypergraph H are216

6

This manuscript is for review purposes only.

nb

va

vb

nb

vc

vd

va

vb

net-left splitting

HL HR

VL VR

ng

ve

vf

vg

vh

vg

vh

ve

vf
ng

ng

vg

vh

ve

vf

HL HR

VL VR

(net n : left-cut)

net duplication

g
(net n : cut, but not left-cut)b

Fig. 3: Upper part: cut nets nb and ng. Net nb is not left-cut since vb ∈ VL, whereas
net ng is left-cut since vg ∈ VR. Lower part: net-left splitting and net duplication are
applied on nb and ng, respectively.

inherited to the new hypergraphs HL and HR. That is, the left-fixed-vertex set FL217

and the right-fixed-vertex set FR of H become the left-fixed-vertex set of HL and the218

right-fixed-vertex set of HR, respectively. In other words, the vertices that become219

fixed to the left/right part in an invocation of the moHP algorithm remain fixed to220

the left/right part in the further recursive invocations.221

4.2. Left-cut-net metric. Consider the ordered bipartition Π = 〈VL,VR〉 ob-222

tained in line 4 of Algorithm 2. Recall that a cut net is defined as a net connecting223

multiple parts. For encoding the minimization objective of the moHP problem in in-224

dividual bipartitioning steps, we introduce a special type of cut net, which is referred225

to as left-cut net. A net ni is said to be a left-cut net if vi is assigned to VR and at226

least one pin of ni is assigned to VL. Figure 3 displays sample cut nets, nb and ng,227

where ng is a left-cut net while nb is not.228

The set of the left-cut nets, which is denoted by N`c, is formulated as229

N`c = {ni : Pins(ni) ∩ VL 6= ∅ and vi ∈ Pins(ni) ∩ VR}.230

While obtaining the ordered bipartition Π of H, the objective is to minimize the231

left-cut-net metric, which is defined as the number of left-cut nets in Π, i.e.,232

(5) left-cut-net(Π) = |N`c|.233

Section 4.4 shows the correctness of this bipartitioning objective in terms of minimiz-234

ing the cost of the m-way ordered partition obtained by the moHP algorithm, whereas235

section 4.5 describes how existing partitioning tools can be utilized for encapsulating236

this bipartitioning objective.237

4.3. Forming HL and HR by novel cut-net manipulation techniques.238

Algorithm 3 displays the basic steps of the FORM algorithm. As input, it takes a239

hypergraph H = (V,N) and an ordered bipartition Π = 〈VL,VR〉 of H, and it returns240

new hypergraphs HL and HR with fixed-vertex sets FLR and FRL. This algorithm241

goes over each net ni in N and depending on the distribution of the pins of ni in Π,242

it includes ni in either net set NL or net set NR or both. If ni is internal to VL (i.e.,243

Pins(ni) ⊆ VL), then it is included in NL as is. Similarly, if ni is internal to VR (i.e.,244

Pins(ni) ⊆ VR), then it is included in NR as is. The moHP algorithm handles the245

7

This manuscript is for review purposes only.

Algorithm 3 FORM(H,Π)

Require: Hypergraph H = (V,N), ordered bipartition Π = 〈VL,VR〉
1: NL ← NR ← ∅
2: FLR ← FRL ← ∅
3: for each ni ∈ N do
4: if Pins(ni) ⊆ VL then . ni is an internal net in VL
5: NL ← NL ∪ {ni}
6: else if Pins(ni) ⊆ VR then . ni is an internal net in VR
7: NR ← NR ∪ {ni}
8: else if vi ∈ VL then . ni is cut, but not left-cut: net-left splitting
9: Pins(ni)← Pins(ni) ∩ VL

10: NL ← NL ∪ {ni}
11: else . ni is left-cut: net duplication
12: leftpins← Pins(ni) ∩ VL
13: rightpins← Pins(ni) ∩ VR
14: NL ← NL ∪ {ni}
15: VL ← VL ∪ rightpins
16: FLR ← FLR ∪ rightpins . rightpins are copied to HL as right-fixed

17: NR ← NR ∪ {ni}
18: VR ← VR ∪ leftpins
19: FRL ← FRL ∪ leftpins . leftpins are copied to HR as left-fixed

20: HL ← (VL,NL)
21: HR ← (VR,NR)
22: return HL,HR,FLR,FRL

cut nets by two novel techniques as follows. If ni is a cut net, but not a left-cut one246

(i.e., vi ∈ Pins(ni)∩VL and Pins(ni)∩VR 6= ∅), then the net-left-splitting technique247

is applied. In this technique, even though ni has pins in both VL and VR, it is only248

included in NL with its pins that are assigned to VL. If ni is a left-cut net (i.e.,249

Pins(ni) ∩ VL 6= ∅ and vi ∈ Pins(ni) ∩ VR), then the net-duplication technique is250

applied. In this technique, ni is copied to both NL and NR with its complete pin set251

despite the fact that neither VL nor VR genuinely contains all of ni’s pins. In lines252

12 and 13 of the algorithm, leftpins and rightpins denote the sets of the pins of ni253

in VL and VR, respectively. The vertices in rightpins are added to vertex set VL and254

they are fixed to the right part of HL, i.e., included in FLR. In a dual manner, the255

vertices in leftpins are added to vertex set VR and they are fixed to the left part of256

HR, i.e., included in FRL. After all nets in N are considered, new hypergraphs HL257

and HR are formed by HL = (VL,NL) and HR = (VR,NR), respectively. As in H,258

each net in HL and HR is assigned a unit cost. Each free vertex in HL and HR is259

assigned a unit weight, whereas each fixed vertex is assigned a zero weight. Finally,260

hypergraphs HL and HR and fixed-vertex sets FLR and FRL are returned.261

Figure 3 illustrates an example for each of the net-left splitting and net duplication262

techniques. In the figures throughout the paper, fixed vertices are denoted by triangles263

pointing a direction, whereas free vertices are denoted by circles. Each vertex fixed264

to the left part is denoted by a triangle pointing left, whereas each vertex fixed to the265

right part is denoted by a triangle pointing right. Note that for any net ni, vertex vi266

is special compared to the other pins of ni since the part assignment of vi determines267

8

This manuscript is for review purposes only.

whether cut net ni is left-cut or not. Therefore, the connection of ni to vi is drawn268

thicker in the figures for any net ni.269

Figure 4 displays an example for the moHP algorithm run on the hypergraph270

given in Figure 2. In Figure 4, each rectangular shape with a green border and a white271

background denotes a hypergraph to be bipartitioned during the moHP algorithm,272

whereas each rectangular shape with a yellow background denotes a part in an ordered273

bipartition. To be able to refer the individual hypergraphs, we label them with a274

Matlab-like notation according to their coverage on the parts of the resulting m-way275

ordered partition. For example, the initial hypergraph H is labeled with H1:8 since276

it covers all eight parts in the resulting m-way ordered partition, while the left and277

right hypergraphs obtained by bipartitioning H1:8 are labeled with H1:4 and H5:8,278

respectively. Each left-cut net in the figure is shown in a gray background. Consider279

the ordered bipartition Π of H1:8. Note that nets n1, n3, and n4 are cut in Π, whereas280

only n3 is left-cut among them. Then, left-cut-net(Π) = 1 for this bipartition. Since281

n1 and n4 are cut but not left-cut, the net-left splitting technique is applied on them,282

that is, they are only included in the left hypergraph HL = H1:4 with their respective283

pins assigned to the left part VL. Since n3 is left-cut, the net duplication technique is284

applied on it, that is, n3 is included in both hypergraphs HL = H1:4 and HR = H5:8.285

Due to the net duplication, the vertices in rightpins = {v3, v6} are added to the left286

hypergraph H1:4 as right-fixed, whereas the vertices in leftpins = {v4, v1} are added287

to the right hypergraph H5:8 as left-fixed.288

4.4. Correctness of the moHP algorithm. In this section, Theorem 7 shows289

that minimizing the left-cut-net metric (5) in each bipartition of the moHP algorithm290

corresponds to minimizing the cost (4) of resulting m-way ordered partition. Before291

that, we provide a brief discussion on the special pins and give some definitions and292

lemmas to be used in Theorem 7.293

We first show that vi ∈ Pins(ni) for each net ni during the entire moHP al-294

gorithm. Note that vi ∈ Pins(ni) for each net in the initial row-net hypergraph.295

Consider a net ni in a hypergraph H = (V,N) on which the moHP algorithm is in-296

voked and assume that vi ∈ Pins(ni) for each ni ∈ N . If ni is included in HL or HR297

as is (lines 5 and 7 in Algorithm 3), then vi ∈ Pins(ni) trivially. If net-left splitting298

is applied on ni (lines 9-10 in Algorithm 3), then vi ∈ Pins(ni) since vi ∈ VL. If net299

duplication is applied on ni (lines 12-19 in Algorithm 3), then vi ∈ Pins(ni) for both300

copies of ni in HL and HR since the whole pin set of ni is duplicated to HL and HR.301

For the nets in the moHP algorithm, we introduce four different states that indi-302

cate the connections of the nets to fixed vertices. We call a net ni303

(i) free, if it connects no fixed vertices,304

(ii) left-anchored, if it connects some left-fixed vertices but no right-fixed ones,305

(iii) right-anchored, if it connects some right-fixed vertices but no left-fixed ones,306

(iv) left-right-anchored, if it connects some left-fixed and some right-fixed vertices.307

Recall that new fixed vertices are only introduced by the net duplication operation308

and fixed vertices remain fixed in the descendant invocations of the moHP algorithm.309

Hence, if a net ni is right-anchored or left-right-anchored, it implies that ni became310

left-cut in a bipartition performed in an earlier invocation, and among the two copies311

of ni formed after that bipartition, this copy is the one added to the left hypergraph312

connecting right-fixed vertices that include vi. Therefore, for each right-anchored or313

left-right-anchored net ni, the special pin of ni, i.e., vi, is among its right-fixed pins.314

With a dual reasoning, for each free or left-anchored net ni, the special pin of ni is315

9

This manuscript is for review purposes only.

v5

v8 v1

v4 v2

n5

n8

n1

n4

n3

n2

v7

n7

v6

v3

n6

v5

v8 v1

v4

n5

n8

n1

n3

v3n4
v3 v2

v6 v7

n2

n7

n6n3

v5

v8 v1

v4

n5

n1

n8

n3

v3 v6

v2 v7

n3

n6

n2

n7

v5

v8

n5

n1

n8

v1

v4

n3

n4

n1
v2

v3

n2

n6n3

n7

n6

n7

v6

v7

v5

n4

v8
n1

n5

n8 v1

n1

v4

n3

n4 v3n3 n7

n2
v2

n6

v6
v7

n6

n7

v1

v2

v3

v4

v5

v6

v7

v8
n1

n2

n3

n4n5

n6

n7

n8

v5 v8 v1 v4 v3 v2 v6 v7

v6

v4

v1

v3

v6

v4

v1

v4

v1

v3

v6

v6

v7

v3

v2

v8v1

v1 v8

v3
v6 v4

v1 v6
v7 v3

v2

bipartition

FORM

bipartition bipartition

V1 V2 V3 V4 V5 V6 V7 V8

H1:8

H1:4 H5:8

H1:2 H3:4 H5:6
H7:8

bipartition bipartition bipartition bipartition

FORM FORM

Fig. 4: An example run of the moHP algorithm on the hypergraph given in Figure 2.
Left-cut nets are shown in gray background.

10

This manuscript is for review purposes only.

left-right-anchored

left-anchored

free

right-anchored

not left-cut

left-cut,

added in H not left-cut or

left cut, added in H

left-cut

left-cut, added in HLleft-cut, added in HR

L

not left-cut or

left cut, added in H R

left-cut,

added in HL R

Fig. 5: The state diagram for the states of net ni in the moHP algorithm.

among its free pins. Finally, for each free or right-anchored net ni, pin fi is among316

its free pins.317

Figure 5 displays a state diagram for the states of a net ni changing through the318

recursive invocations of the moHP algorithm. Note that all nets are free in the initial319

invocation of the moHP algorithm, so is ni. Since the pins of ni become fixed vertices320

only after applying net duplication on ni, ni stays free as long as it does not become321

left-cut. If ni becomes left-cut, net duplication copies it to HL and HR so that it322

becomes right-anchored and left-anchored in HL and HR, respectively. Similar to323

the free nets, left-anchored and right-anchored nets do not change their states until324

they become left-cut. If a left-anchored net ni becomes left-cut, then, it becomes325

left-right-anchored in HL while remaining left-anchored in HR after net duplication.326

In a dual manner, if a right-anchored net ni becomes left-cut, then, it becomes left-327

right-anchored in HR while remaining right-anchored in HL after net duplication.328

Left-right-anchored nets are doomed to become left-cut in all further bipartitionings,329

hence, a left-right-anchored net ni remains in the same state in both HL and HR.330

The recursive invocations of the moHP algorithm forms a hypothetical full binary331

tree, which is referred to as an RB tree [2, 3, 38]. Each node in the RB tree represents332

a hypergraph H on which the moHP algorithm is invoked. If H contains a single333

free vertex, which is the base case of the moHP algorithm, then the corresponding334

node is a leaf node, otherwise, it has one left and one right child nodes, respectively335

representing HL and HR obtained in line 5 of Algorithm 2. The RB tree rooted at the336

node corresponding to hypergraph H is denoted by T H. Figure 4 displays a sample337

RB tree with m = 8 leaf nodes.338

Given a net ni in a hypergraph H = (V,N) and an RB tree T H, let µ(ni, T H)339

denote the number of bipartitions in T H in which ni is left-cut. In the following340

lemmas and theorem, we abuse the notation and use Π ∈ T H to refer to the fact that341

bipartition Π is performed in one of the nodes of T H. The following lemmas provide342

the formulation of µ(ni, T H) for each different state of ni. Each of Lemmas 3, 4, and 5343

is used in the proof(s) of the subsequent lemma(s), whereas Lemma 6 is used in344

the proof of Theorem. Although we skip the proofs of these lemmas and refer the345

reader to the Appendix for them, we present all of the lemmas in this section for the346

sake of completeness. In these lemmas, V̂ denotes the set of free nodes in H, i.e.,347

V̂ = V − (FL ∪ FR).348

Lemma 3. If ni is left-right-anchored in H, then µ(ni, T H) is equal to the number349

11

This manuscript is for review purposes only.

of free nodes in H minus one, that is,350

µ(ni, T H) = |V̂| − 1.351

352

Lemma 4. If ni is right-anchored in H, then µ(ni, T H) is equal to the number of353

free nodes in H that are ordered after fi in Πmo, that is,354

µ(ni, T H) = |{v ∈ V̂ : φ(v) > φ(fi)}|.355

356

Lemma 5. If ni is left-anchored in H, then µ(ni, T H) is equal to the number of357

free nodes at H that are ordered before vi in Πmo, that is,358

µ(ni, T H) = |{v ∈ V̂ : φ(v) < φ(vi)}|.359

360

Lemma 6. If ni is free in H, then µ(ni, T H) is equal to the number of free nodes361

in H that are ordered between fi and vi in Πmo inclusive minus one, that is,362

µ(ni, T H) = |{v ∈ V̂ : φ(fi) ≤ φ(v) ≤ φ(vi)}| − 1.363

364

Theorem 7. Consider a hypergraph H = (V,N) on which the moHP algorithm365

is initially invoked, where V = {v1, v2, . . . , vm}, N = {n1, n2, . . . , nm}, and vi ∈366

Pins(ni) for each net ni ∈ N . Minimizing the left-cut-net metric in each bipartition367

performed in the moHP algorithm corresponds to minimizing the cost of the resulting368

m-way ordered partition Πmo of H.369

Proof. Consider an m-way ordered partition Πmo of H obtained by the moHP370

algorithm and the left span of a net ni in H. Note that all nets in H are free, so is371

ni. Recall that ls(ni) is defined as φ(vi)− φ(fi) in (3), then,372

ls(ni) = φ(vi)− φ(fi) = |{v ∈ V : φ(fi) ≤ φ(v) ≤ φ(vi)}| − 1.373

Then, by Lemma 6,374

(6) ls(ni) = µ(ni, T H),375

Recall that in (4), cost(Πmo) is defined as the sum of the left spans of the nets in H,376

then by (6),377

cost(Πmo) =
∑
ni∈N

ls(ni) =
∑
ni∈N

µ(ni, T H).378

Since µ(ni, T H) is equal to the number of bipartitions in T H in which ni is left-cut,379

it can also be expressed as380

µ(ni, T H) =
∑

Π∈T H:ni∈NΠ
`c

1.381

Here, NΠ
lc denotes the set of left-cut nets in Π. Then, cost(Πmo) can be formulated382

as383

cost(Πmo) =
∑
ni∈N

µ(ni, T H) =
∑
ni∈N

∑
Π∈T H:ni∈NΠ

`c

1 =
∑

Π∈T H

∑
ni∈NΠ

`c

1

=
∑

Π∈T H

left-cut-net(Π).
384

12

This manuscript is for review purposes only.

vi vj vk

ni

vi vj vk

ni

v
L

v
R

ni

in H in H

Fig. 6: Net ni in H and the net pair (n′i, ni) added to H′ for ni.

Since cost(Πmo) =
∑

Π∈T H left-cut-net(Π), minimizing the left-cut-net metric in each385

bipartition in the moHP algorithm corresponds to minimizing the cost of the resulting386

m-way partition.387

4.5. Minimizing left-cut-net metric. Currently, no existing tool is able to bi-388

partition a given hypergraph with the objective of minimizing the left-cut metric (5).389

For this reason, in this section, we formulate the bipartitioning problem with the ob-390

jective of minimizing the left-cut-net metric as an ordinary hypergraph bipartitioning391

problem with the objective of minimizing the usual cutsize (1).392

Let H = (V,N) be a hypergraph which is bipartitioned in line 4 of Algorithm 2.393

We first transform H into an extended hypergraph which is denoted by H′ = (V ′,N ′).394

In this transformation, we introduce new vertices vL and vR to the extended vertex set395

V ′ in addition to the existing ones in V. That is, V ′ = V ∪ {vL, vR}. Vertices vL and396

vR are respectively fixed to the left and right parts, so, the fixed-vertex sets F ′L and397

F ′R of H′ are obtained from the fixed-vertex sets FL and FR of H by F ′L = FL∪{vL}398

and F ′R = FR∪{vR}, respectively. Moreover, for each net ni ∈ N , we add an updated399

version of ni and a new net n′i to the extended net set N ′. Net ni is updated by the400

addition of vR to its pin set, that is, Pins(ni) ← Pins(ni) ∪ {vR}. The new net n′i401

connects only vi and vL, that is, Pins(n′i) = {vi, vL}. Figure 6 displays an example402

net ni in H and the net pair (ni, n
′
i) added to H′ for ni.403

A bipartition Π′ = 〈V ′L,V ′R〉 of the extended hypergraph H′ can be decoded as a404

bipartition Π = 〈VL,VR〉 of H by simply removing the newly added vertices vL and405

vR from Π′. Note that vL ∈ V ′L and vR ∈ V ′R due to being fixed to the respective406

part, hence, VL = V ′L − {vL} and VR = V ′R − {vR}. The following theorem shows407

the correspondence between the cutsize (1) of the bipartition Π′ of the extended408

hypergraph H′ and the left-cut-net metric (5) of the ordered bipartition Π = 〈VL,VR〉409

of H.410

Theorem 8. Let H = (V,N) be a hypergraph which is bipartitioned in line 4 of411

Algorithm 2 and let H′ = (V ′,N ′) be the corresponding extended hypergraph. Consider412

a bipartition Π′ = 〈V ′L,V ′R〉 of H′ and the bipartition Π = 〈VL,VR〉 of H induced by413

Π′. Then, minimizing the cutsize of the bipartition Π′ (1) corresponds to minimizing414

the left-cut-net metric in Π (5).415

Proof. We first show the following:416

• both ni and n′i are cut in Π′ if ni is left-cut in Π (Case 1),417

• one of ni and n′i is cut in Π′, otherwise (Case 2).418

(Case 1). Assume that ni is left-cut in Π. Then, vi ∈ VR and there exists419

vj ∈ Pins(ni) such that vj ∈ VL. It is clear that j 6= i. Then, vi ∈ V ′R and vj ∈ V ′L420

in Π′. Thus, n′i is cut in Π′, since it connects both V ′L and V ′R, respectively due to421

pins vL ∈ V ′L and vi ∈ V ′R. Similarly, ni is cut in Π′ since it connects both V ′L and422

V ′R, respectively due to pins vj ∈ V ′L and vi ∈ V ′R.423

13

This manuscript is for review purposes only.

v3

v2

v6

v7

n3

v4v1

v3 v2

v6 v7

n2

n7

n6

n3

v4

v1

n6

n2

n7

n3

n6

n2

n7

v
L

v
R

v3 v6

v2 v7

n3

n6

n2

n7

v4

v1

bipartition

v3 v6

v2 v7

v4
v1

v
R

v
L

n3

n6

n6

n7

n7

n2

n3

n2

∏
∏

H5:8 H5:8

Fig. 7: H5:8 in Figure 4, its extended hypergraph H′5:8, bipartition Π′ of H′5:8, and
the bipartition Π of H5:8 induced by Π′.

(Case 2.a). Next, assume that ni is not left-cut in Π and vi ∈ VL. Then, vi ∈ V ′L424

in Π′. Thus, n′i is not cut in Π′, since it connects only V ′L, i.e., both of its pins (vi425

and vL) reside in V ′L. On the other hand, ni is cut in Π′, since it connects both V ′L426

and V ′R, respectively due to pins vi ∈ V ′L and vR ∈ V ′R.427

(Case 2.b). Finally, assume that ni is not left-cut in Π and vi ∈ VR. If there428

existed any pins of ni in VL, then ni would be left-cut, hence, all pins of ni reside in429

VR in Π. Note that vR is added to the pin set of ni in H′ and vR ∈ V ′R. Then ni is430

not cut in Π′, since all pins of ni reside in V ′R. On the other hand, n′i is cut in Π′,431

since it connects both V ′L and V ′R, respectively due to pins vL ∈ V ′L and vi ∈ V ′R.432

Since there exist two cut nets in Π′ for each left-cut net in Π, and one cut net in433

Π′ for each other net in H, the cutsize of Π′ is equal to the left-cut-net metric in Π434

plus the number of nets in H, that is,435

cutsize(Π′) = left-cut-net(Π) + |N |.436

Since |N | is fixed, minimizing the cutsize of Π′ (1) corresponds to minimizing the437

left-cut-net metric in Π (5).438

Figure 7 displays hypergraph H5:8 given in Figure 4, its extended hypergraph439

H′5:8, a bipartition Π′ of H′5:8, and the bipartition Π of H5:8 induced by Π′. In this440

figure, the left-cut nets in Π and their corresponding cut nets in Π′ are shown in a gray441

background. Observe that cutsize(Π′) = 6, where left-cut-net(Π) = 2 and |N | = 4,442

hence, cutsize(Π′) = |N |+ left-cut-net(Π).443

5. Experiments. In this section, we provide the implementation details of the444

proposed moHP algorithm and the experimental results that compare the perfor-445

mance of the moHP algorithm against those of the state-of-the-art profile reduction446

algorithms on an extensive dataset. Our experiments are three-fold:447

14

This manuscript is for review purposes only.

• sensitivity-analysis experiments that compare six different parameter settings448

for the moHP algorithm in terms of profile and runtime (section 5.3),449

• experiments that compare the moHP algorithm against three baseline algo-450

rithms in terms of profile and runtime (section 5.4), and451

• experiments that compare the moHP algorithm against the best baseline al-452

gorithm in terms of the factorization performance in a direct sparse solver453

(section 5.5).454

All experiments are conducted on a Linux workstation equipped with four 18-core455

CPUs (Intel Xeon Processor E7-8860 v4) and 256 GB of memory.456

5.1. Implementation. Recall that in the proposed moHP algorithm, recursion457

stops when the current hypergraph contains exactly one free vertex. However in our458

implementation, we allow the flexibility of early stopping when the number of free459

vertices in the current hypergraph is smaller than or equal to a threshold, which is460

denoted by t. We refer to this scheme as early stopping. Note that early stopping461

with t = 1 is equivalent to the original moHP algorithm. Using t > 1 results in462

an ordered partition with multiple vertices in each part. This partition induces a463

partial permutation on the rows/columns of the input matrix in such a way that464

the rows/columns corresponding to the vertices in part Vk are ordered before those465

corresponding to the vertices in part Vk+1 and after those corresponding to the vertices466

in part Vk−1. In order to determine the internal orderings of the resulting row/column467

blocks, we adapt and use the weighted greed heuristic proposed for profile reduction468

in [27]. In the original version of this heuristic, a row/column which maximizes a469

weight function is selected at each iteration and ordered in the right/bottom of the470

matrix. In our algorithm, we run this heuristic once for each row/column block so471

that the selection only considers the rows/columns inside the corresponding block.472

The motivation for early stopping is that the quality of the bipartitions obtained473

by multi-level partitioning tools on very small hypergraphs may not always worth474

the total runtime of these many bipartitionings on small hypergraphs. Early stop-475

ping enables us to exploit the trade-off between the quality and the runtime of the476

proposed algorithm. Note that the early-stopping scheme with t = α saves at least477

logα recursion levels from incurring bipartitioning overhead while losing the merit of478

performing these unrealized recursion levels. Hence, using a larger threshold results479

in a faster reordering with a larger profile. The experimental results that compare480

the performance of the moHP algorithm for varying threshold values are given in481

section 5.3.482

Since the ultimate goal of the proposed model is to obtain an ordering rather483

than a balanced partitioning, we use a loose balance constraint, i.e., a large ε value484

in (2), in the bipartitionings performed in the proposed algorithm. Using a looser485

constraint widens the solution space, hence is likely to result in a better quality. The486

experimental results that compare the performance of the moHP algorithm for varying487

ε values are given in section 5.3.488

The proposed algorithm is implemented in C and compiled using gcc version489

4.9.2 with optimization level two. All source code is available for download1. In each490

bipartitioning step, PaToH is used as the hypergraph partitioner. In the preliminary491

experiments, we observed that the performance of the proposed algorithm varies with492

the parameters of PaToH (see manual [11]) and using Sweep (the vertex visit order),493

Absorption Matching (the coarsening algorithm) and Kernihgan-Lin (the refinement494

1https://github.com/seheracer/profilereduction

15

This manuscript is for review purposes only.

https://github.com/seheracer/profilereduction

algorithm) generally gives a better result. Note that the extended hypergraph H′ is495

obtained from each hypergraph H to be bipartitioned in line 4 of Algorithm 2. In our496

efficient implementation, the FORM algorithm obtains the extended hypergraphs H′L497

and H′R directly from the extended hypergraph H′, instead of first forming HL and498

HR and then obtaining H′L and H′R.499

5.2. Dataset. The experiments are conducted on an extensive dataset of sym-500

metric matrices obtained from the SuiteSparse (formerly known as UFL) Sparse Ma-501

trix Collection [13]. This dataset is formed by merging the following sets of matrices:502

• 131 matrices that are used in the well-known profile reduction works. Since503

these works were published some time ago, some of these matrices are small504

in today’s standards. These matrices are all symmetric and include:505

– the 18 matrices in Kumfert and Pothen’s Collection, which is used in [4,506

8, 29, 30, 35, 36],507

– the 8 matrices in NASA Collection, which is used in [4, 27],508

– the 44 AAT matrices2 with more than 1000 rows in Netlib Linear Pro-509

gramming Problem Collection, which is used in [27],510

– the 71 matrices with more than 1000 rows in Harwell-Boeing Collection,511

which is used in [4, 27, 29].512

• 176 symmetric matrices in SuiteSparse Collection with the number of nonze-513

ros between 1,000,000 and 100,000,000, excluding the ones whose problem514

kind is “graph”.515

Duplicate matrices are excluded from the dataset, that is, only one of the matrices516

with the same sparsity pattern is kept in the dataset. An error is encountered when517

HSL code MA67, which is included in the tested baseline algorithms, is run on eight518

matrices (boyd1, c-73, boyd2, lp1, c-big, ins2, TSOPF FS b39 c30 and mip1), hence519

those eight matrices are excluded from the dataset as well. The resulting dataset3520

consists of 295 matrices.521

5.3. Sensitivity analysis. In this section, we analyze the effects of the following522

parameters (mentioned in section 5.1) on the resulting profile and the runtime of the523

moHP algorithm:524

• t: threshold value for early stopping and525

• ε: maximum imbalance ratio allowed in each bipartitioning (2). Note that526

0 ≤ ε ≤ 1 for a bipartition.527

We test four different t values (1, 25, 250, and 2500) and two different ε values528

(0.50 and 0.90), hence the number of compared parameter settings is eight. These529

experiments are conducted on the dataset of 295 matrices described in section 5.2.530

Figure 8 displays two performance profile plots [17] which compare the eight531

different parameter settings for the moHP algorithm. In these plots, label εA− tB532

refers to using ε = A and t = B. The plot in the left compares these eight settings in533

terms of profile, whereas the plot in the right compares them in terms of runtime (of534

the moHP algorithm). Since we apply the weighted greed heuristic [27] for determining535

the internal ordering of each row/column block for t > 1 as mentioned in section 4.5,536

the runtime values include the runtime of that heuristic as well.537

In a performance profile plot [17], the line associated to a method a passing538

through a point (τ, f) means that in 100f% of the instances, the result obtained by a539

is at most τ times worse than the best result obtained by the compared methods on540

2AAT is performed using MATLAB.
3https://github.com/seheracer/profilereduction/blob/master/dataset

16

This manuscript is for review purposes only.

https://github.com/seheracer/profilereduction/blob/master/dataset

1.00 1.05 1.10 1.15 1.20 1.25 1.30
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

ε0.50−t1
ε0.50−t25

ε0.50−t250

ε0.50−t2500

ε0.90−t1
ε0.90−t25

ε0.90−t250

ε0.90−t2500

1 2 3 4 5 6 7
τ= Runtime relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

Fig. 8: Performance profile plots comparing the eight versions of the moHP algorithm
in terms of profile and runtime.

the corresponding instance. So, the upper a line is, the better the method associated541

to that line performs.542

In Figure 8, the plot in the left shows that ε0.90−t25 and ε0.90−t1 perform the543

same and outperform the other parameter settings in terms of profile. Observe that544

for a fixed ε value, using a smaller t value improves profile except for going from t = 25545

to t = 1. As the t value decreases, the rate of improvement in profile also decreases546

and converges to zero for t = 1. This finding is in agreement with the motivation of547

the early stopping scheme described in section 5.1. Also observe that for a fixed t548

value, ε = 0.90 performs better than ε = 0.50. This can be attributed to the fact that549

using ε = 0.90 poses a looser constraint compared to using ε = 0.50, hence has a larger550

solution space, as mentioned in section 5.1. Although we only present the results for551

ε = 0.50 and ε = 0.90, we also tried using ε = 0.70. Expectedly, the performance of552

ε = 0.70 is better than that of ε = 0.50 but worse than that of ε = 0.90.553

In Figure 8, the plot in the right shows that ε0.50−t2500 is the fastest setting,554

whereas ε0.90− t1 is the slowest one. Observe that using a smaller t value always555

increases the runtime of the moHP algorithm due to the reasons explained in sec-556

tion 5.1. Using a larger ε value also increases the runtime, which can be attributed557

to the enlargened solution space again.558

Considering both of these parameters, one consistent finding is that the runtime559

of the moHP algorithm increases as the resulting profile decreases. In the experiments560

given in sections 5.4 and 5.5, we use ε0.90−t25 because it is one of the best performers561

along with ε0.90−t1 in terms of profile and it is considerably faster than ε0.90−t1.562

5.4. Comparison against baseline algorithms. In this section, we compare563

the performance of the moHP algorithm against those of four baseline algorithms,564

each of which consists of two phases. The heuristics used in these baseline algorithms565

constitute the state of the art in this field, as also confirmed by [5, 25]. In the first566

phase of our baseline algorithms, we use one of the following heuristics: RCM [21],567

17

This manuscript is for review purposes only.

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

of
 m

at
ric

es

moHP HSH SH GKH RCMH

2 4 6 8 10
τ= Runtime relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

Fig. 9: Performance profile plots comparing the moHP algorithm and the baseline
algorithms in terms of profile and runtime.

GibbsKing [22], Sloan [40], and HuScott [29]. For RCM, we use the implementation568

provided by Reid and Scott [35] in HSL code MC60 [1]. For GibbsKing, we use the569

efficient implementation provided by Lewis [31] in ACM Algorithm 582. For Sloan,570

we use the enhanced Sloan algorithm provided by Reid and Scott [35] in HSL code571

MC60 [1]. For HuScott, we use the multilevel hybrid algorithm provided by Hu and572

Scott [29] in HSL code MC73 [1]. In the second phase of each baseline algorithm,573

we use Hager’s exchange algorithm [27] provided by Reid and Scott [36] in HSL code574

MC67 [1], because Reid and Scott [36] report that applying Hager’s exchange algorithm575

as a second phase to certain profile reduction algorithms yields better results than576

using them separately. Then, the baseline algorithms against which we compare the577

proposed moHP algorithm are summarized as follows:578

• RCMH (RCM+Hager): MC60 with JCNTL(1)=1 followed by MC67.579

• GKH (GibbsKing+Hager): The ACM Algorithm 582 followed by MC67.580

• SH (Sloan+Hager): MC60 with JCNTL(1)=0 followed by MC67.581

• HSH (HuScott+Hager): MC73 followed by MC67.582

Each of these codes is used with default setting and compiled with gfortran version583

4.9.2 with the -O2 optimization flag. The double-precision versions are used for the584

HSL codes.585

Figure 9 displays two performance profile plots comparing the proposed moHP586

algorithm against the baseline algorithms on the dataset of 295 matrices described587

in section 5.2. Similar to Figure 8, the one in the left compares them in terms588

of profile, whereas the one in the right compares them in terms of runtime. As589

seen in the plot in the left, moHP performs significantly better than each baseline590

algorithm in terms of profile. This can be attributed to the correct formulation of591

the profile minimization problem as an moHP problem as well as the solution of this592

problem via recursive bipartitioning utilizing the successful hypergraph partitioning593

tool PaToH [11]. Among the baseline algorithms, HSH outperforms the rest and is594

followed by SH and GKH in order. The plot in the right shows that SH is the fastest595

algorithm, followed by HSH and GKH in order. The moHP algorithm, on the other596

hand, is the slowest algorithm, which can be explained with the expensive nature of597

hypergraph partitioning. As will be seen in section 5.5, the quality of the orderings598

18

This manuscript is for review purposes only.

obtained by the moHP algorithm may justify the runtime of the moHP algorithm.599

Figure 10 displays eight performance profile plots comparing the proposed moHP600

algorithm against the baseline algorithms in terms of profile, one for each problem601

kind having at least ten matrices in our dataset of 295 matrices. The title of each602

plot displays the respective problem kind and the number of matrices with that kind603

in parentheses. As seen in the figure, except for kinds 2D/3D and Structural, moHP604

algorithm performs significantly better than the baseline algorithms. In those problem605

kinds, moHP is usually followed by HSH, SH, GKH and RCMH in order. For kind606

Structural, moHP and HSH performs comparable, followed by SH, GKH and RCMH607

in order. For kind 2D/3D, HSH performs better than all compared algorithms, followed608

by moHP, SH, GKH and RCMH in order.609

5.5. Factorization experiments. In this section, we compare the moHP al-610

gorithm only against HSH, which achieves the smallest profile among the baseline611

algorithms on the average. For the evaluation, in addition to the profile and the612

ordering runtime, we also consider the factorization performance in a sparse solver,613

HSL code MA57 [1, 18]. MA57 solves sparse symmetric system(s) of linear equations614

by using a direct multifrontal method, which is based on a sparse variant of Gaussian615

elimination. We run MA57 on the matrices reordered by HSH and moHP with default616

settings and the ordering of each given matrix is kept as is by setting ICNTL(6)=1.617

The reader is referred to the manual4 for the details of MA57. It is compiled with618

gfortran version 4.9.2 and ATLAS BLAS version 3.11.11.619

We consider the following performance metrics obtained during the factorization,620

i.e., MA57BD:621

• storage: the number of entries in factors (in millions), i.e., INFO(15)/106.622

• FLOP count: the number of floating-point operations for the elimination (in623

billions), i.e., RINFO(4)/109.624

• runtime: the runtime of MA57BD (in seconds).625

We perform the MA57 experiments on a dataset containing only large matrices,626

derived from the dataset given in section 5.2. First, we included all matrices in the627

initial dataset with number of rows between 100,000 and 500,000. Then, we excluded628

each matrix whose factorization (MA57BD) takes longer than six hours when the629

subject matrix is reordered by HSH. The resulting dataset contains 32 matrices whose630

numbers of nonzeros range between 1,423,116 and 32,886,208. The properties of those631

matrices and the performance results obtained on them are given in Table 1. In this632

table, the matrices are sorted in the increasing order of the profile obtained by HSH.633

Table 1 displays the properties of the 32 test matrices and the results obtained634

by HSH and moHP on these matrices. Columns 1, 2 and 3 respectively display the635

matrix name, the number of rows/columns (m) and the number of nonzeros (nnz).636

Columns 4-7 display the ordering results, whereas columns 8-13 display the MA57637

results. Column pairs 4-5 and 6-7 respectively denote profile and ordering runtime.638

Column pairs 8-9, 10-11 and 12-13 respectively denote storage, FLOP count and639

runtime of MA57BD. In each column pair, we compare the performances of HSH and640

moHP in the respective metric and show the better result in boldface on each matrix.641

Note that column pair 6-7 displays the runtime of the ordering algorithm, whereas642

column pair 12-13 displays the runtime of the factorization when the respective matrix643

is reordered by the corresponding algorithm.644

As seen in Table 1, HSH performs better than moHP in terms of profile on matrices645

4http://www.hsl.rl.ac.uk/specs/ma57.pdf

19

This manuscript is for review purposes only.

http://www.hsl.rl.ac.uk/specs/ma57.pdf

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

2D/3D (27)

moHP HSH SH GKH RCMH

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

Computational Fluid Dynamics (12)

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

Linear Programming (43)

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es
Model Reduction (12)

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Fr
ac

tio
n

of
 m

at
ric

es

Optimization (15)

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Fr
ac

tio
n

of
 m

at
ric

es

Power Network (15)

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

Structural (127)

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

Theoretical/Quantum Chemistry (14)

Fig. 10: Performance profile plots comparing the moHP algorithm and the baseline
algorithms in terms of profile for different problem kinds. (·) denotes the number of
matrices in the respective problem kind.

20

This manuscript is for review purposes only.

with small profile, i.e., those on which HSH obtains profile smaller than 230 × 106,646

except for matrices filter3D, d pretok and 2cubes sphere. In this set of matrices647

with small profile, although moHP obtains larger profile than HSH on bmwcra 1 and648

comparable profile on shipsec8 and shipsec1, it obtains smaller MA57BD runtime649

than HSH on these matrices. On all the matrices with large profile, i.e., those on650

which HSH obtains profile larger than 230 × 106, moHP performs better than HSH651

except for Lin.652

As seen in Table 1, HSH runs faster than moHP on all matrices except for Lin.653

However, when we consider the total runtime, which can be expressed as the sum654

of the ordering and factorization runtimes, moHP performs better than HSH on the655

matrices with large profile except for Lin. For example, consider the largest matrix656

among those given in Table 1, which is dielFilterV3clx with 420,408 rows/columns657

and 32,886,208 nonzeros. The ordering runtime of moHP on this largest matrix is658

102.3 seconds, which is the highest ordering runtime of the moHP algorithm in the659

given dataset. Even on this matrix, the total runtimes of HSH and moHP respectively660

are 11.9 + 953.3 = 965.2 seconds and 102.3 + 743.3 = 845.6 seconds, so, moHP per-661

forms 965.2/845.6 = 1.14x better than HSH in terms of the total runtime. Similarly,662

consider the matrix with the largest profile, which is SiO2 with 155,331 rows/columns663

and 11,283,503 nonzeros. On this matrix, the total runtimes of HSH and moHP664

respectively are 11.0 + 20,719.7 = 20,730.7 seconds and 62.7 + 15,324.9 = 15,387.6665

seconds, so, moHP performs 20,730.7/15,387.6 = 1.35x better than HSH in terms of666

the total runtime. Hence, for the matrices with large profile, the better but slower667

orderings obtained by the moHP algorithm generally pay off very well since they668

significantly reduce the factorizaton runtimes.669

21

This manuscript is for review purposes only.

Table 1: Performance comparison of HSH and moHP in terms of profile, ordering runtime and MA57BD’s storage, FLOP count and
runtime.

ordering MA57BD
matrix properties profile (106) runtime (s) storage (106) FLOP count (109) runtime (s)

name m nnz HSH moHP HSH moHP HSH moHP HSH moHP HSH moHP
thermomech dM 204,316 1,423,116 28.7 32.3 1.5 18.6 30.4 34.0 4.8 5.9 4.1 5.7
Dubcova3 146,689 3,636,649 60.6 69.4 1.4 13.6 61.4 68.6 29.1 36.4 18.7 24.3
filter3D 106,437 2,707,179 65.6 52.0 1.5 14.7 66.5 51.6 46.9 27.7 31.6 19.3
darcy003 389,874 2,101,242 94.8 108.5 2.5 31.2 98.1 111.5 28.2 36.7 20.6 26.2
d pretok 182,730 1,641,672 94.9 94.5 1.3 17.5 96.6 96.1 58.4 56.8 40.3 39.1
bmw7st 1 141,347 7,339,667 106.1 133.3 2.5 19.9 101.9 116.9 84.3 116.6 55.6 75.4
turon m 189,924 1,690,876 113.1 113.7 1.8 18.4 114.8 115.1 72.9 76.0 50.3 51.9
cfd2 123,440 3,087,898 131.0 136.9 1.5 17.5 132.1 136.9 149.3 173.2 98.9 113.7
hood 220,542 10,768,436 139.2 164.9 3.4 30.3 140.9 147.5 100.6 106.2 61.6 64.2
BenElechi1 245,874 13,150,496 152.7 181.4 3.7 31.7 154.4 171.1 102.9 135.3 70.3 90.4
2cubes sphere 101,492 1,647,264 154.9 143.8 1.2 14.7 155.7 144.0 264.4 229.0 177.7 151.6
pwtk 217,918 11,634,424 159.3 176.5 4.2 26.2 159.7 167.6 119.3 135.4 80.3 89.5
bmwcra 1 148,770 10,644,002 159.9 182.3 3.4 32.8 161.1 140.7 198.2 149.8 129.1 97.3
ship 003 121,728 8,086,034 164.6 193.8 2.3 19.7 152.5 167.4 217.4 298.0 136.9 192.1
shipsec8 114,919 6,653,399 180.5 181.9 2.0 16.8 174.7 169.2 299.7 292.3 192.1 184.7
helm2d03 392,257 2,741,935 194.7 201.8 8.9 33.9 198.1 205.1 114.1 122.1 78.2 83.7
shipsec1 140,874 7,813,404 203.1 209.7 2.4 20.2 198.7 189.0 315.9 302.9 203.0 193.0
shipsec5 179,860 10,113,096 229.6 304.8 3.3 25.0 228.8 253.6 304.3 463.2 193.2 301.0
boneS01 127,224 6,715,152 245.5 226.5 2.2 20.5 245.5 219.5 549.1 444.3 366.4 289.1
bmw3 2 227,362 11,288,630 285.9 272.5 4.7 32.0 278.6 253.9 400.3 349.0 260.5 222.5
wave 156,317 2,118,662 293.0 265.7 2.2 21.3 294.3 266.4 640.8 519.0 477.5 371.9
CurlCurl 1 226,451 2,472,071 414.4 380.6 1.4 27.7 416.2 361.6 957.5 708.5 718.5 493.3
msdoor 415,863 20,240,935 416.5 393.9 6.9 59.7 419.7 367.4 461.3 349.5 280.3 212.2
offshore 259,789 4,242,673 516.9 388.8 3.2 40.2 518.9 377.4 1,171.9 656.3 862.5 446.4
Lin 256,000 1,766,400 544.6 585.6 106.5 29.1 546.8 587.8 1,317.8 1,540.6 947.6 1,129.9
F1 343,791 26,837,113 592.9 652.2 12.9 90.9 594.6 551.4 1,209.6 1,066.8 793.2 689.1
dielFilterV3clx 420,408 32,886,208 731.0 698.7 11.9 102.3 730.6 675.1 1,460.9 1,194.2 953.3 743.3
Ge99H100 112,985 8,451,395 1,144.9 960.6 8.6 48.4 1,145.7 961.5 13,242.9 9,004.0 10,152.1 6,759.9
Ga10As10H30 113,081 6,115,633 1,157.2 1,018.0 5.6 45.0 1,158.0 1,018.9 13,819.8 10,280.9 10,527.5 7,762.1
Ge87H76 112,985 7,892,195 1,169.8 955.7 7.7 46.7 1,170.6 956.5 13,981.3 8,907.3 10,785.8 6,713.3
Ga19As19H42 133,123 8,884,839 1,523.7 1,311.5 10.2 59.6 1,524.7 1,312.6 20,166.4 14,362.3 15,681.2 11,124.0
SiO2 155,331 11,283,503 1,910.2 1,695.9 11.0 62.7 1,911.5 1,684.3 26,578.2 20,036.9 20,719.7 15,324.9

2
2

T
h
is

m
a
n

u
scrip

t
is

fo
r

review
p
u

rpo
ses

o
n

ly.

6. Conclusion. We formulated the profile minimization problem as a constrained670

version of the hypergraph partitioning (HP) problem, which we refer to as the m-way671

ordered hypergraph partitioning (moHP) problem. For solving the moHP problem, we672

proposed the moHP algorithm, which utilizes the recursive bipartitioning approach.673

The moHP algorithm addresses the minimization objective of the moHP problem by674

utilizing fixed vertices and two novel cut-net manipulation techniques. We theoret-675

ically showed the correctness of the proposed moHP algorithm and described how676

the existing partitioning tools can be utilized in the moHP algorithm. We tested677

the performance of the moHP algorithm against the state-of-the-art profile reduction678

algorithms on a large dataset of 295 matrices and the experimental results showed679

the validity of the proposed approach.680

Appendix A. Proofs of lemmas. We prove each of Lemmas 3, 4, 5, and 6 by681

induction on the depth of the RB tree. We assume that the depth of T H is k > 0.682

One important observation is that the depths of subtrees T HL and T HR are both less683

than k. The base case for the induction in each proof corresponds to the depth of T H684

being equal to zero, which implies that H is represented by a leaf node. In this case,685

no further moHP invocations are carried on, hence, µ(ni, T H) = 0.686

In the following proofs, we use V̂, V̂L, and V̂R to denote the number of free vertices687

in H, HL, and HR, respectively.688

A.1. Lemma 3.689

Proof. In the base case, V̂ − 1 = 0 since there is exactly one free vertex in H,690

hence, µ(ni, T H) = |V̂| − 1 holds.691

We assume µ(ni, T H) = |V̂| − 1 holds when the tree depth is less than k. Since692

ni is left-right-anchored, it is left-cut in the bipartition of H. Thus, ni is copied to693

both HL and HR by net duplication technique and it is left-right-anchored in both of694

them. By the inductive hypothesis, µ(ni, T HL) = |V̂L|−1 and µ(ni, T HR) = |V̂R|−1.695

Notice that V̂L and V̂R are disjoint and V̂ = V̂L ∪ V̂R. Since ni is left-cut in the696

bipartition of H, we have697

µ(ni, T H) = µ(ni, T HL) + µ(ni, T HR) + 1 = (|V̂L| − 1) + (|V̂R| − 1) + 1698

= |V̂L|+ |V̂R| − 1 = |V̂| − 1.699

700

A.2. Lemma 4.701

Proof. Recall that ni connects fi in H since it is right-anchored. In the base case,702

V̂ = {fi} since there is exactly one free vertex in H. Then, |{v ∈ V̂ : φ(v) > φ(fi)}| =703

0, hence, µ(ni, T H) = |{v ∈ V̂ : φ(v) > φ(fi)}| holds.704

We assume µ(ni, T H) = |{v ∈ V̂ : φ(v) > φ(fi)}| holds when the tree depth is705

less than k. We investigate the cases of ni being cut or not in the bipartition of H as706

follows.707

1. ni is cut: Since ni is right-anchored, it is left-cut. Then, ni is copied to708

both HL and HR by net duplication technique and it is right-anchored and709

left-right-anchored in HL and HR, respectively. By the inductive hypoth-710

esis, µ(ni, T HL) = |{v ∈ V̂L : φ(v) > φ(fi)}|. Moreover, by Lemma 3,711

µ(ni, T HR) = |V̂R| − 1. Notice that each vertex in V̂R is numbered after fi712

23

This manuscript is for review purposes only.

since fi ∈ V̂L. Since ni is left-cut in the bipartition of H, we have713

µ(ni, T H) = µ(ni, T HL) + µ(ni, T HR) + 1714

= |{v ∈ V̂L : φ(v) > φ(fi)}|+ (|V̂R| − 1) + 1715

= |{v ∈ V̂L : φ(v) > φ(fi)}|+ |V̂R| = |{v ∈ V̂ : φ(v) > φ(fi)}|.716

2. ni is not cut: Since ni is right-anchored, it is internal to the right part, which717

implies that it appears only in HR. Then, ni is right-anchored in HR. Then,718

by inductive hypothesis,719

µ(ni, T H) = µ(ni, T HR) = |{v ∈ V̂R : φ(v) > φ(fi)}| = |{v ∈ V̂ : φ(v) > φ(fi)}|.720

721

A.3. Lemma 5.722

Proof. Recall that ni connects fi in H since it is left-anchored. In the base case,723

V̂ = {vi} since there is exactly one free vertex. Then, |{v ∈ V̂ : φ(v) < φ(vi)}| = 0,724

hence, µ(ni, T H) = |{v ∈ V̂ : φ(v) < φ(vi)}| holds.725

We assume µ(ni, T H) = |{v ∈ V̂ : φ(v) < φ(vi)}| holds when the depth is less726

than k. We investigate the cases of ni being left-cut or not in the bipartition of H as727

follows.728

1. ni is left-cut. ni is copied to both HL and HR by net duplication and it729

is left-right-anchored and left-anchored at HL and HR, respectively. By the730

inductive hypothesis, µ(ni, T HR) = |{v ∈ V̂R : φ(v) < φ(vi)}|. Moreover, by731

Lemma 3, µ(ni, T HL) = |V̂| − 1. Notice that each vertex in V̂R is numbered732

before vi since vi ∈ V̂R. Since ni is left-cut in the bipartition of H, we have733

µ(ni, T H) = µ(ni, T HL) + µ(ni, T H
R

) + 1734

= (|V̂L| − 1) + |{v ∈ V̂R : φ(v) < φ(vi)}|+ 1735

= |V̂L|+ {v ∈ V̂R : φ(v) < φ(vi)}| = |{v ∈ V̂R : φ(v) < φ(vi)}|.736

2. ni is not left-cut: Since ni is left-anchored, ni appears only in HL. Then, ni737

is left-anchored in HL and a vertex v ∈ V̂ is in V̂L whenever φ(v) < φ(vi).738

Then, by the inductive hypothesis,739

µ(ni, T H) = µ(ni, T HL) = |{v ∈ V̂L : φ(v) < φ(vi)}| = |{v ∈ V̂ : φ(v) < φ(vi)}|.740

741

A.4. Lemma 6.742

Proof. Recall that both fi and vi are free vertices and connected by ni in H since743

ni is free. In the base case, V̂ = {fi = vi} since there is exactly one free vertex. Then,744

|{v ∈ V̂ : φ(fi) ≤ φ(v) ≤ φ(vi)}| − 1 = 0, hence, µ(ni, T H) = |{v ∈ V̂ : φ(fi) ≤ φ(v) ≤745

φ(vi)}|.746

We assume µ(ni, T H) = |{v ∈ V̂ : φ(fi) ≤ φ(v) ≤ φ(vi)}| holds when the depth is747

less than k. We investigate the cases of ni being left-cut or not in the bipartition of748

H as follows.749

1. ni is left-cut: ni is copied to both HL and HR by net duplication and it is750

right-anchored and left-anchored in HL and HR, respectively. By Lemma 4,751

µ(ni, T HL) = |{v ∈ V̂L : φ(v) > φ(fi)}|. By Lemma 5, µ(ni, T HR) = |{v ∈752

V̂R : φ(v) < φ(vi)}|. Notice that each vertex in V̂L is numbered before vi753

24

This manuscript is for review purposes only.

since vi ∈ V̂R. Also notice that each vertex in V̂R is numbered after fi since754

fi ∈ V̂L. Since ni is left-cut in the bipartition of H, we have755

µ(ni, T H) = µ(ni, T HL) + µ(ni, T HR) + 1756

= |{v ∈ V̂L : φ(v) > φ(fi)}|+ |{v ∈ V̂R : φ(v) < φ(vi)}|+ 1757

= (|{v ∈ V̂L : φ(v) ≥ φ(fi)}| − 1) + (|{v ∈ V̂R : φ(v) ≤ φ(vi)}| − 1) + 1758

= |{v ∈ V̂ : φ(fi) ≤ φ(v) ≤ φ(vi)}| − 1.759

2. ni is not left-cut: Since ni is free in H, ni appears in only one of HL and760

HR wherein ni remains to be free. Consider a vertex v ∈ V̂ satisfying761

φ(fi) ≤ φ(v) ≤ φ(vi). If ni ∈ HL, v ∈ V̂L, otherwise, v ∈ V̂R. Without762

loss of generality, assume that ni appears in only HL. Then, by the inductive763

hypothesis,764

µ(ni, T H) = µ(ni, T HL) = |{v ∈ V̂L : φ(fi) ≤ φ(v) ≤ φ(vi)}| − 1765

= |{v ∈ V̂ : φ(fi) ≤ φ(v) ≤ φ(vi)}| − 1.766

767

Acknowledgment. We thank the anonymous referees for their valuable com-768

ments, which helped us substantially improve the presentation of this paper.769

REFERENCES770

[1] HSL. A Collection of Fortran Codes for Large Scale Scientific Computation,771
http://www.hsl.rl.ac.uk/.772

[2] S. Acer, E. Kayaaslan, and C. Aykanat, A recursive bipartitioning algorithm for permuting773
sparse square matrices into block diagonal form with overlap, SIAM Journal on Scientific774
Computing, 35 (2013), pp. C99–C121.775

[3] S. Acer, O. Selvitopi, and C. Aykanat, Improving performance of sparse matrix dense776
matrix multiplication on large-scale parallel systems, Parallel Computing, 59 (2016),777
pp. 71 – 96, https://doi.org/https://doi.org/10.1016/j.parco.2016.10.001, http://www.778
sciencedirect.com/science/article/pii/S0167819116301041. Theory and Practice of Irreg-779
ular Applications.780

[4] S. T. Barnard, A. Pothen, and H. D. Simon, A spectral algorithm for envelope reduction781
of sparse matrices, Numerical Linear Algebra with Applications, 2 (1995), pp. 317–334,782
https://doi.org/10.1002/nla.1680020402, http://dx.doi.org/10.1002/nla.1680020402.783

[5] J. A. B. Bernardes and S. L. G. de Oliveira, A systematic review of heuristics784
for profile reduction of symmetric matrices, Procedia Computer Science, 51 (2015),785
pp. 221 – 230, https://doi.org/https://doi.org/10.1016/j.procs.2015.05.231, http://www.786
sciencedirect.com/science/article/pii/S187705091501039X. International Conference On787
Computational Science, ICCS 2015.788

[6] M. W. Berry, B. Hendrickson, and P. Raghavan, Sparse matrix reordering schemes for789
browsing hypertext, Lectures in Applied Mathematics-American Mathematical Society, 32790
(1996), pp. 99–124.791

[7] M. E. Bolanos, S. Aviyente, and H. Radha, Graph entropy rate minimization and the792
compressibility of undirected binary graphs, in 2012 IEEE Statistical Signal Processing793
Workshop (SSP), Aug 2012, pp. 109–112, https://doi.org/10.1109/SSP.2012.6319634.794

[8] E. G. Boman and B. Hendrickson, A Multilevel Algorithm for Reducing the Envelope of795
Sparse Matrices, Tech. Report SCCM-96-14, Stanford University, Stanford, CA, 1996.796

[9] D. Burgess and M. Giles, Renumbering unstructured grids to improve the performance of797
codes on hierarchical memory machines, Advances in Engineering Software, 28 (1997),798
pp. 189 – 201, https://doi.org/https://doi.org/10.1016/S0965-9978(96)00039-7, http://799
www.sciencedirect.com/science/article/pii/S0965997896000397.800

[10] Ü. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based decomposition for parallel801
sparse-matrix vector multiplication, Parallel and Distributed Systems, IEEE Transactions802
on, 10 (1999), pp. 673–693, https://doi.org/10.1109/71.780863.803

25

This manuscript is for review purposes only.

https://doi.org/https://doi.org/10.1016/j.parco.2016.10.001
http://www.sciencedirect.com/science/article/pii/S0167819116301041
http://www.sciencedirect.com/science/article/pii/S0167819116301041
http://www.sciencedirect.com/science/article/pii/S0167819116301041
https://doi.org/10.1002/nla.1680020402
http://dx.doi.org/10.1002/nla.1680020402
https://doi.org/https://doi.org/10.1016/j.procs.2015.05.231
http://www.sciencedirect.com/science/article/pii/S187705091501039X
http://www.sciencedirect.com/science/article/pii/S187705091501039X
http://www.sciencedirect.com/science/article/pii/S187705091501039X
https://doi.org/10.1109/SSP.2012.6319634
https://doi.org/https://doi.org/10.1016/S0965-9978(96)00039-7
http://www.sciencedirect.com/science/article/pii/S0965997896000397
http://www.sciencedirect.com/science/article/pii/S0965997896000397
http://www.sciencedirect.com/science/article/pii/S0965997896000397
https://doi.org/10.1109/71.780863

[11] Ü. V. Çatalyürek and C. Aykanat, PaToH: A Multilevel Hypergraph Partitioning Tool,804
Version 3.0, Dept. of Computer Engineering, Bilkent University, Ankara, 06533 Turkey,805
1999. PaToH is available at http://bmi.osu.edu/∼umit/software.htm.806

[12] S. S. Clift and W.-P. Tang, Weighted graph based ordering techniques for preconditioned807
conjugate gradient methods, BIT Numerical Mathematics, 35 (1995), pp. 30–47, https:808
//doi.org/10.1007/BF01732977, https://doi.org/10.1007/BF01732977.809

[13] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans-810
actions on Mathematical Software, 38 (2011), pp. 1–25, http://www.cise.ufl.edu/research/811
sparse/matrices.812

[14] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar, A survey of direct methods for813
sparse linear systems, Acta Numerica, 25 (2016), p. 383566, https://doi.org/10.1017/814
S0962492916000076.815

[15] E. F. D’Azevedo, P. A. Forsyth, and W.-P. Tang, Ordering methods for preconditioned816
conjugate gradient methods applied to unstructured grid problems, SIAM Journal on Matrix817
Analysis and Applications, 13 (1992), pp. 944–961, https://doi.org/10.1137/0613057, https:818
//doi.org/10.1137/0613057, https://arxiv.org/abs/https://doi.org/10.1137/0613057.819

[16] J. D́ıaz, J. Petit, and M. Serna, A survey of graph layout problems, ACM Comput. Surv., 34820
(2002), pp. 313–356, https://doi.org/10.1145/568522.568523, http://doi.acm.org/10.1145/821
568522.568523.822

[17] E. D. Dolan and J. J. Morè, Benchmarking optimization software with performance823
profiles, Mathematical Programming, 91 (2002), pp. 201–213, https://doi.org/10.1007/824
s101070100263, http://dx.doi.org/10.1007/s101070100263.825

[18] I. S. Duff, Ma57—a code for the solution of sparse symmetric definite and indefinite systems,826
ACM Trans. Math. Softw., 30 (2004), pp. 118–144, https://doi.org/10.1145/992200.992202,827
http://doi.acm.org/10.1145/992200.992202.828

[19] I. S. Duff and G. A. Meurant, The effect of ordering on preconditioned conjugate gra-829
dients, BIT Numerical Mathematics, 29 (1989), pp. 635–657, https://doi.org/10.1007/830
BF01932738, https://doi.org/10.1007/BF01932738.831

[20] C. A. Felippa, Introduction to finite element methods, Department of Aerospace Engineering832
Sciences and Center for Aerospace Structures, University of Colorado Boulder, (2001).833

[21] A. George, Computer implementation of the finite element method, PhD thesis, Stanford834
University, Stanford, CA, 1971.835

[22] N. E. Gibbs, Algorithm 509: A hybrid profile reduction algorithm [F1], ACM Trans. Math.836
Softw., 2 (1976), pp. 378–387, https://doi.org/10.1145/355705.355713, http://doi.acm.org/837
10.1145/355705.355713.838

[23] N. E. Gibbs, W. G. Poole, and P. K. Stockmeyer, An algorithm for reducing the bandwidth839
and profile of a sparse matrix, SIAM Journal on Numerical Analysis, 13 (1976), pp. 236–840
250, https://doi.org/10.1137/0713023, http://epubs.siam.org/doi/abs/10.1137/0713023,841
https://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/0713023.842

[24] S. L. Gonzaga de Oliveira, J. A. B. Bernardes, and G. O. Chagas, An evaluation of re-843
ordering algorithms to reduce the computational cost of the incomplete Cholesky-conjugate844
gradient method, Computational and Applied Mathematics, (2017), https://doi.org/10.845
1007/s40314-017-0490-5, https://doi.org/10.1007/s40314-017-0490-5.846

[25] S. L. Gonzaga de Oliveira, J. A. B. Bernardes, and G. O. Chagas, An evaluation of low-847
cost heuristics for matrix bandwidth and profile reductions, Computational and Applied848
Mathematics, 37 (2018), pp. 1412–1471, https://doi.org/10.1007/s40314-016-0394-9, https:849
//doi.org/10.1007/s40314-016-0394-9.850

[26] P. Grindrod, Range-dependent random graphs and their application to modeling large small-851
world proteome datasets, Phys. Rev. E, 66 (2002), p. 066702, https://doi.org/10.1103/852
PhysRevE.66.066702, https://link.aps.org/doi/10.1103/PhysRevE.66.066702.853

[27] W. W. Hager, Minimizing the profile of a symmetric matrix, SIAM Journal on Scientific854
Computing, 23 (2002), pp. 1799–1816.855

[28] D. J. Higham, Unravelling small world networks, Journal of Computational and Applied Math-856
ematics, 158 (2003), pp. 61 – 74, https://doi.org/https://doi.org/10.1016/S0377-0427(03)857
00471-0, http://www.sciencedirect.com/science/article/pii/S0377042703004710. Selection858
of papers from the Conference on Computational and Mathematical Methods for Science859
and Engineering, Alicante University, Spain, 20-25 September 2002.860

[29] Y. Hu and J. Scott, A multilevel algorithm for wavefront reduction, SIAM Journal on Scien-861
tific Computing, 23 (2001), pp. 1352–1375, https://doi.org/10.1137/S1064827500377733,862
http://epubs.siam.org/doi/abs/10.1137/S1064827500377733, https://arxiv.org/abs/http:863
//epubs.siam.org/doi/pdf/10.1137/S1064827500377733.864

[30] G. Kumfert and A. Pothen, Two improved algorithms for envelope and wavefront reduction,865

26

This manuscript is for review purposes only.

http://bmi.osu.edu/~umit/software.htm
https://doi.org/10.1007/BF01732977
https://doi.org/10.1007/BF01732977
https://doi.org/10.1007/BF01732977
https://doi.org/10.1007/BF01732977
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1137/0613057
https://doi.org/10.1137/0613057
https://doi.org/10.1137/0613057
https://doi.org/10.1137/0613057
https://arxiv.org/abs/https://doi.org/10.1137/0613057
https://doi.org/10.1145/568522.568523
http://doi.acm.org/10.1145/568522.568523
http://doi.acm.org/10.1145/568522.568523
http://doi.acm.org/10.1145/568522.568523
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/s101070100263
https://doi.org/10.1145/992200.992202
http://doi.acm.org/10.1145/992200.992202
https://doi.org/10.1007/BF01932738
https://doi.org/10.1007/BF01932738
https://doi.org/10.1007/BF01932738
https://doi.org/10.1007/BF01932738
https://doi.org/10.1145/355705.355713
http://doi.acm.org/10.1145/355705.355713
http://doi.acm.org/10.1145/355705.355713
http://doi.acm.org/10.1145/355705.355713
https://doi.org/10.1137/0713023
http://epubs.siam.org/doi/abs/10.1137/0713023
https://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/0713023
https://doi.org/10.1007/s40314-017-0490-5
https://doi.org/10.1007/s40314-017-0490-5
https://doi.org/10.1007/s40314-017-0490-5
https://doi.org/10.1007/s40314-017-0490-5
https://doi.org/10.1007/s40314-016-0394-9
https://doi.org/10.1007/s40314-016-0394-9
https://doi.org/10.1007/s40314-016-0394-9
https://doi.org/10.1007/s40314-016-0394-9
https://doi.org/10.1103/PhysRevE.66.066702
https://doi.org/10.1103/PhysRevE.66.066702
https://doi.org/10.1103/PhysRevE.66.066702
https://link.aps.org/doi/10.1103/PhysRevE.66.066702
https://doi.org/https://doi.org/10.1016/S0377-0427(03)00471-0
https://doi.org/https://doi.org/10.1016/S0377-0427(03)00471-0
https://doi.org/https://doi.org/10.1016/S0377-0427(03)00471-0
http://www.sciencedirect.com/science/article/pii/S0377042703004710
https://doi.org/10.1137/S1064827500377733
http://epubs.siam.org/doi/abs/10.1137/S1064827500377733
https://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/S1064827500377733
https://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/S1064827500377733
https://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/S1064827500377733

BIT Numerical Mathematics, 37 (1997), pp. 1–32, https://doi.org/10.1007/BF02510240,866
http://dx.doi.org/10.1007/BF02510240.867

[31] J. G. Lewis, Implementation of the Gibbs-Poole-Stockmeyer and Gibbs-King algorithms, ACM868
Trans. Math. Softw., 8 (1982), pp. 180–189, https://doi.org/10.1145/355993.355998, http:869
//doi.acm.org/10.1145/355993.355998.870

[32] Y. Lin and J. Yuan, Profile minimization problem for matrices and graphs, Acta Mathe-871
maticae Applicatae Sinica, 10 (1994), pp. 107–112, https://doi.org/10.1007/BF02006264,872
http://dx.doi.org/10.1007/BF02006264.873

[33] J. Meijer and J. van de Pol, Bandwidth and Wavefront Reduction for Static Variable874
Ordering in Symbolic Reachability Analysis, Springer International Publishing, Cham,875
2016, pp. 255–271, https://doi.org/10.1007/978-3-319-40648-0 20, https://doi.org/10.876
1007/978-3-319-40648-0 20.877

[34] C. Mueller, B. Martin, and A. Lumsdaine, A comparison of vertex ordering algorithms for878
large graph visualization, in 2007 6th International Asia-Pacific Symposium on Visualiza-879
tion, Feb 2007, pp. 141–148, https://doi.org/10.1109/APVIS.2007.329289.880

[35] J. K. Reid and J. A. Scott, Ordering symmetric sparse matrices for small profile and wave-881
front, International Journal for Numerical Methods in Engineering, 45 (1999), pp. 1737–882
1755.883

[36] J. K. Reid and J. A. Scott, Implementing Hager’s exchange methods for matrix profile884
reduction, ACM Trans. Math. Softw., 28 (2002), pp. 377–391, https://doi.org/10.1145/885
592843.592844, http://doi.acm.org/10.1145/592843.592844.886

[37] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.887
[38] O. Selvitopi, S. Acer, and C. Aykanat, A recursive hypergraph bipartitioning framework888

for reducing bandwidth and latency costs simultaneously, IEEE Transactions on Parallel889
and Distributed Systems, 28 (2017), pp. 345–358, https://doi.org/10.1109/TPDS.2016.890
2577024.891

[39] D. Silva, M. Velazco, and A. Oliveira, Influence of matrix reordering on the performance892
of iterative methods for solving linear systems arising from interior point methods for893
linear programming, Mathematical Methods of Operations Research, 85 (2017), pp. 97–112,894
https://doi.org/10.1007/s00186-017-0571-7, https://doi.org/10.1007/s00186-017-0571-7.895

[40] S. W. Sloan, An algorithm for profile and wavefront reduction of sparse matrices, International896
Journal for Numerical Methods in Engineering, 23 (1986), pp. 239–251, https://doi.org/897
10.1002/nme.1620230208, http://dx.doi.org/10.1002/nme.1620230208.898

[41] S. Xu, W. Xue, and H. X. Lin, Performance modeling and optimization of sparse matrix-899
vector multiplication on nvidia cuda platform, The Journal of Supercomputing, 63900
(2013), pp. 710–721, https://doi.org/10.1007/s11227-011-0626-0, https://doi.org/10.1007/901
s11227-011-0626-0.902

27

This manuscript is for review purposes only.

https://doi.org/10.1007/BF02510240
http://dx.doi.org/10.1007/BF02510240
https://doi.org/10.1145/355993.355998
http://doi.acm.org/10.1145/355993.355998
http://doi.acm.org/10.1145/355993.355998
http://doi.acm.org/10.1145/355993.355998
https://doi.org/10.1007/BF02006264
http://dx.doi.org/10.1007/BF02006264
https://doi.org/10.1007/978-3-319-40648-0_20
https://doi.org/10.1007/978-3-319-40648-0_20
https://doi.org/10.1007/978-3-319-40648-0_20
https://doi.org/10.1007/978-3-319-40648-0_20
https://doi.org/10.1109/APVIS.2007.329289
https://doi.org/10.1145/592843.592844
https://doi.org/10.1145/592843.592844
https://doi.org/10.1145/592843.592844
http://doi.acm.org/10.1145/592843.592844
https://doi.org/10.1109/TPDS.2016.2577024
https://doi.org/10.1109/TPDS.2016.2577024
https://doi.org/10.1109/TPDS.2016.2577024
https://doi.org/10.1007/s00186-017-0571-7
https://doi.org/10.1007/s00186-017-0571-7
https://doi.org/10.1002/nme.1620230208
https://doi.org/10.1002/nme.1620230208
https://doi.org/10.1002/nme.1620230208
http://dx.doi.org/10.1002/nme.1620230208
https://doi.org/10.1007/s11227-011-0626-0
https://doi.org/10.1007/s11227-011-0626-0
https://doi.org/10.1007/s11227-011-0626-0
https://doi.org/10.1007/s11227-011-0626-0

	Introduction
	Preliminaries
	The m-way ordered hypergraph partitioning formulation
	The m-way ordered hypergraph partitioning (moHP) problem
	Formulation

	Recursive-bipartitioning-based moHP algorithm
	Overall description
	Left-cut-net metric
	Forming HL and HR by novel cut-net manipulation techniques
	Correctness of the moHP algorithm
	Minimizing left-cut-net metric

	Experiments
	Implementation
	Dataset
	Sensitivity analysis
	Comparison against baseline algorithms
	Factorization experiments

	Conclusion
	Appendix A. Proofs of lemmas
	Lemma 3
	Lemma 4
	Lemma 5
	Lemma 6

	Acknowledgment
	References

