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Abstract—The focus is distributed-memory parallelization of sparse-general-matrix-multiplication (SpGEMM). Parallel SpGEMM

algorithms are classified under one-dimensional (1D), 2D, and 3D categories denoting the number of dimensions by which the 3D

sparse workcube representing the iteration space of SpGEMM is partitioned. Recently proposed successful 2D- and 3D-parallel

SpGEMM algorithms benefit from upper bounds on communication overheads enforced by 2D and 3D cartesian partitioning of the

workcube on 2D and 3D virtual processor grids, respectively. However, these methods are based on random cartesian partitioning and

do not utilize sparsity patterns of SpGEMM instances for reducing the communication overheads. We propose hypergraph models for

2D and 3D cartesian partitioning of the workcube for further reducing the communication overheads of these 2D- and 3D- parallel

SpGEMM algorithms. The proposed models utilize two- and three-phase partitioning that exploit multi-constraint hypergraph

partitioning formulations. Extensive experimentation performed on 20 SpGEMM instances by using upto 900 processors demonstrate

that proposed partitioning models significantly improve the scalability of 2D and 3D algorithms. For example, in 2D-parallel SpGEMM

algorithm on 900 processors, the proposed partitioning model respectively achieves 85 and 42 percent decrease in total volume and

total number of messages, leading to 1.63 times higher speedup compared to random partitioning, on average.

Index Terms—Sparse matrix-matrix multiplication, SpGEMM, sparse SUMMA SpGEMM, split-3D-SpGEMM, hypergraph partitioning,

communication cost, bandwidth, latency

Ç

1 INTRODUCTION

SPARSE generalmatrixmultiplication (SpGEMM) of the form
C ¼ AB is a kernel operation inmany scientific computing

applications such as finite element simulations [1], molecular
dynamics [2], [3], linear programming (LP) [4], [5] and linear
solvers [6], [7]. Additionally, SpGEMM is also utilized in high-
performance graph computations such as graph contrac-
tion [8], betweenness centrality computation [9], Markov clus-
tering [10], triangle counting [11] and graph traversal [12].

Extensive research is made for parallelizing SpGEMM on
sharedmemory [13], [14], [15], [16], [17] and distributedmem-
ory [18], [19], [20] architectures. There also exist several works
that propose graph/hypergraph partitioning models for
improving the performance of the parallel SpGEMM [13],
[21], [22], [23]. These works utilize the sparsity structure of the
matrices for reducing the communication overhead of the par-
allel SpGEMM algorithms. The proposed graph/hypergraph
partitioning models incur preprocessing overhead. Hence,
applications, that involve repeated SpGEMM, in which the
sparsity patterns of input matrices remain the same, benefit
more from these models. As discussed in [21], [22], similarity
join [24], collaborative filtering [25] and interior point meth-
ods used for solving linear-programming problems [4], [5],
[26] constitute such applications.

Iteration space of SpGEMM operation can be visualized as
a sparse three-dimesnsional (3D) cube (workcube) and paral-
lel SpGEMM algorithms are categorized according to the par-
titioning of this workcube [19]. In this categorization, 1D, 2D
and 3D algorithms are defined according to the number of
dimensions by which the workcube is partitioned. There exist
efficient implementations of 1D-, 2D- and 3D-parallel algo-
rithms in literature [18], [19], [21]. An important drawback of
1D-parallel algorithms is that these algorithms face communi-
cation bottlenecks, since the volume/number of messages
handled by processors may drastically increase with increas-
ing number of processors because of dense rows and/or col-
umns of the inputmatrices.

The drawbacks of 1D-parallel SpGEMM algorithms can be
significantly reduced by utilizing additional dimensions in
processor grids and partitioning the iteration space along
multiple dimensions. Successful 2D- and 3D-parallel algo-
rithms are recently proposed (e.g., [18], [19]). These multi-
dimensional algorithms benefit from nice upper bounds
enforced on the communications requirements of processors
by 2D and 3D cartesian partitioning of the workcube on 2D
and 3D virtual processor grids, respectively. However, these
methods are based on random cartesian partitioning and
hence do not utilize sparsity patterns of SpGEMM instances
for reducing the communication overheads.

We fill this literature gap by proposing hypergraph
partitioning models for improving the performance of
2D-parallel [18] and 3D-parallel [19] SpGEMM algorithms.
The proposed hypergraph models attain 2D and 3D cartesian
partitioning of the workcube through two- and three-phase
partitioning frameworks, respectively. The proposed models
utilize multi-constraint partitioning formulations for encod-
ing computational load-balancing within the multi-phase

� The authors are with the Department of Computer Engineering, Bilkent
University, Ankara 06800, Turkey.
E-mail: {gunduz.demirci, aykanat}@cs.bilkent.edu.tr.

Manuscript received 29 Oct. 2019; revised 3 May 2020; accepted 1 June 2020.
Date of publication 8 June 2020; date of current version 30 June 2020.
(Corresponding author: Cevdet Aykanat.)
Recommended for acceptance by P. Balaji.
Digital Object Identifier no. 10.1109/TPDS.2020.3000708

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020 2763

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on July 01,2020 at 15:09:23 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9831-7062
https://orcid.org/0000-0001-9831-7062
https://orcid.org/0000-0001-9831-7062
https://orcid.org/0000-0001-9831-7062
https://orcid.org/0000-0001-9831-7062
https://orcid.org/0000-0002-4559-1321
https://orcid.org/0000-0002-4559-1321
https://orcid.org/0000-0002-4559-1321
https://orcid.org/0000-0002-4559-1321
https://orcid.org/0000-0002-4559-1321
mailto:gunduz.demirci@cs.bilkent.edu.tr
mailto:aykanat@cs.bilkent.edu.tr


partitioning framework. In the first and second phases of both
2D and 3D partitioning models, the partitioning objective of
minimizing cutsize encodes the minimization of total volume
during the communication of B-matrix rows and A-matrix
columns, respectively. In the third phase of 3D partitioning
model, minimizing cutsize encodes the minimization of total
volume during the communication of partial results for
C-matrix nonzeros. Hence, the proposed models further
improve the communication performances of the successful
2D- and 3D-parallel SpGEMMalgorithms.

The partitioning objective of the proposed models also
encode the minimization of local memory requirements of
processors due to communication buffers. This enables all
processors to concurrently perform single-stage sparse com-
munications at each phase, whereas existing 2D- and 3D-
parallel implementations use multi-stage communications
at each phase. We utilize this fact to develop new efficient
2D- and 3D-parallel SpGEMM implementations.

We conduct extensive experiments to evaluate our parti-
tioning models on 20 SpGEMM instances arising from real-
world applications. Experimental results demonstrate that
our models provide significant improvements for the algo-
rithms given in [18], [19] and improve these algorithms’
scalability and efficiency on real-world datasets. For 2D-
parallel SpGEMM on 900 processors, the proposed parti-
tioning model respectively achieves 85 and 42 percent
decrease in total volume and total number of messages,
leading to 1.63x higher speedup compared to random parti-
tioning, on average. For 3D-parallel SpGEMM on 900
processors, these improvements respectively become 62
and 31 percent, leading to 1.31x higher speedup.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 describes the 2D- and 3D-
parallel SpGEMM algorithms. Sections 4.2 and 4.3 describe
our proposed hypergraph models for 2D and 3D cartesian
partitioning of the workcube. Section 5 presents experimental
results. Section 6 concludes the paper. In the supplemental
material, Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2020.3000708, contains sensitivity experi-
ments on multi-constraint partitioning quality, Appendix B,
available in the online supplemental material, discusses parti-
tioning overhead and amortization and Appendix C, avail-
able in the online supplemental material, contains speedup
curves for 20 realistic instances.

2 RELATED WORK

Parallel SpGEMM algorithms for various shared-memory
parallel architectures are extensively studied in the litera-
ture. Intel’s math kernel library (MKL) [27] provides an effi-
cient SpGEMM implementation. Patwary et al. [28] studies
various partitioning and cache optimization techniques
which significantly improve the performance of MKL.
Akbudak and Aykanat [13] propose hypergraph and bipar-
tite graph partitioning models to exploit spatial and tempo-
ral locality in row-by-row parallel SpGEMM on many core
Intel Xeon Phi processor architecture. Studies considering
GPU architectures also exist [14], [15], [16].

SpGEMM algorithms for distributed-memory systems
are also studied extensively. Trilinos [29] and Combinatorial

BLAS (CombBLAS) [9] are publicly available libraries
which offer distributed-memory SpGEMM implementa-
tions. CombBLAS library includes an implementation of
sparse SUMMA algorithm [18]. This algorithm operates on
a 2D virtual processor grid and utilizes 2D block partition-
ing of input and output matrices. This algorithm utilizes a
sequential SpGEMM kernel based on heap and doubly-
compressed-sparse-column data structures to perform local
computations. Azad et al. [19] propose an extension for
sparse SUMMA algorithm by considering an additional
third dimension in the virtual processor grid. Their algo-
rithm also extends the sequential SpGEMM kernel in sparse
SUMMA by considering multi-threaded execution. Theoret-
ical lower bounds on communication costs of parallel
SpGEMM algorithms are studied in [30], [31]. A survey of
parallel SpGEMM algorithms and their theroetical analysis
of expected communication costs on random matrices, is
given in [32]. Sparsity-dependent communication lower
bounds for parallel SpGEMM algorithms are given in [23].

Akbudak and Aykanat [22] consider an outer-product
formulation for distributed SpGEMM and propose hyper-
graph-partitioning-based models to employ efficient task
and data distribution. Hypergraph and bipartite graph par-
titioning models for outer-product, inner-product and row-
by-row-product formulations for distributed SpGEMM are
studied in [21]. Ballard et al. [23] propose a fine-grain hyper-
graph model. However, the fine-grain hypergraph model is
presented as a theoretical approach [23] and it is found to
be impractical [19], [21] due to the significantly large size of
the hypergraph.

The graph/hypergraph models given in [13], [21], [22]
partition the iteration space of SpGEMM along a single
dimension and can be considered as 1D-parallel SpGEMM
algorithms. The fine-grain model [23] represents each non-
zero scalar multiplication as well as each nonzero entry in
the input and output matrices by different vertices. Then, it
achieves multi-dimensional partitioning on the 3D work-
cube by first coarsening the fine-grain hypergraph and then
partitioning the coarsened hypergraph. Since the coarsened
hypergraph is directly partitioned into the total number of
processors, this partitioning model actually assumes a 1D
virtual processor grid and does not exploit the nice upper
bounds on communication overhead achieved by 2D- and
3D-parallel algorithms.

The proposed hypergraph partitioning models are
significantly different from the fine-grain hypergraph
model [23] as follows: The proposed models aim at
2D/3D cartesian workcube partitioning that matches the
virtual processor-grid dimensions of 2D- and 3D-parallel
SpGEMM algorithms in order to utilize the nice upper
bounds on the communication requirements of those
algorithms. For this purpose, the proposed models utilize
multi-phase and multi-constraint partitioning frame-
work. Multi-constraint formulation is utilized in order to
maintain workload balance among processors within the
multi-phase partitioning framework. Furthermore, in
the proposed models, data partitioning is inferred from
the task partitioning induced by workcube partitioning
instead of introducing vertices for nonzero entries of
input/output matrices. This enables our models to be
much smaller than the fine-grain model.
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3 SPGEMM ALGORITHMS

3.1 Workcube Representation

Given matrices A 2 Rm�‘, B 2 R‘�n and C 2 Rm�n, iteration
space of the SpGEMM operation C¼AB can be visualized as
a sparse 3D cube (workcube) W of size m�‘�n [19], [23]. In
W , each nontrivial scalar multiplication Aði; kÞBðk; jÞ (i.e.,
both Aði; kÞ 6¼0 and Bðk; jÞ 6¼0) is represented by a voxel
W ði; j; kÞwhose projections onto A- and B-faces contain non-
zero entries. Projections of these voxels ontoC-face determine
the nonzero pattern of matrix C. Subcubes of W obtained by
fixing one and two indices are respectively called “layers”
and “fibers”. So, Wði; :; :Þ;W ð:; j; :Þ and Wð:; :; kÞ denote the
ith horizontal, jth frontal and kth lateral layers, respectively.
Intersections of layers along different dimensions produce
fibers which are denoted byWði; j; :Þ,Wði; :; kÞ andWð:; j; kÞ.
For instance, the intersection of ith horizontal and jth frontal
layers is fiberWði; j; :Þ.

The voxels in the ith horizontal layer W ði; :; :Þ represent
computations using the nonzeros of the ith row ofA and thus
representing the task of computing ith row ofC. The voxels in
the jth frontal layer Wð:; j; :Þ represent computations using
the jth column ofB and thus representing the task of comput-
ing the jth column of C. The voxels in the kth lateral layer
W ð:; :; kÞ represent computations associated with the outer
product of the kth column ofAwith the kth rowofB.

The middle part of Fig. 3 displays the workcube of the
sample SpGEMM instance given at the top part. In the
figure, A, B and C faces of the workcube represent the spar-
sity patterns of the respective matrices. The sparsity pattern
of the workcube is shown by displaying individual voxels
on the horizontal, frontal and lateral layers.

In [19], parallel SpGEMM algorithms are categorized
according to the partitioning of the workcube among pro-
cessors. In this categorization, 1D, 2D and 3D algorithms
are defined with respect to the number of dimensions by
which the workcube is partitioned (see Fig. 1). 1D, 2D and
3D algorithms perform communication on one, two and all
three of the matrices, respectively. Communication on an
input matrix refers to expand-type (i.e., multicast-type) of
communication of the nonzero entries of the respective
input matrix. Communication on the output matrix refers to
fold-type (i.e., reduce-type) communication on the partial
results produced by different processors for the same out-
put matrix entries [21]. The following two subsections sum-
marize 2D- and 3D-parallel SpGEMM algorithms for which
we propose intelligent partitioning models.

3.2 2D: Sparse SUMMA Algorithm [18]

Sparse SUMMAperformsmultiplicationC¼AB on a 2Dvir-
tual px�py¼p processor grid. Let Px;: and P:;y respectively

denote the processors in the xth processor-row and the yth
processor-column of the 2D grid. So, Px;y denote the processor
in the xth row and the yth column of the grid.

2D block partitioning is applied to A, B and C matrices in
such a way that each matrix is partitioned rowwise among
px processor-rows and columnwise among py processor-
columns. The rows of A are partitioned conformably with
the rows of C and the columns of B are partitioned con-
formably with the columns of C. Each processor Px;y stores
submatrices Ax;y and Bx;y and computes submatrix Cx;y. Let
mx and ‘x respectively denote the number of A-/C-matrix
rows and B-matrix rows assigned to the processors in pro-
cessor-row P ðx; :Þ. Also let ny and ‘y respectively denote the
number of B-/C-matrix columns and A-matrix columns
assigned to the processors in the processor-column P ð:; yÞ.
Then, submatrices Ax;y, Bx;y and Cx;y are of sizes mx�‘y,
‘x�ny andmx�ny, respectively.

With this data partitioning strategy, each processor Px;y

needs all submatrices along the xth row block of A, which
are stored in processor-row Px;:. Processor Px;y also needs
all submatrices along the yth column block of B, which are
stored in processor-column P:;y. To satisfy the input subma-
trix requirements of all processors for local SpGEMM com-
putations, any processor Px0;y0 should broadcast its local
submatrix Ax0;y0 along the processors of processor-row Px0;:
as well as local submatrix Bx0;y0 along processor-column
P:;y0 . This 2D partitioning strategy has the nice property of
providing an upper bound on the volume and the number
of messages involved in these operations, since it confines
these collective communication operations along the rows
and columns of the processor grid.

The parallel sparse SUMMA algorithm proposed in [18]
achieves the collective communication operations in stages
in order to reduce the local memory requirements of the
processors. Although this algorithm has the nice property
of reducing processors’ local memory requirement, it suf-
fers from the increase in the latency overhead because of
increased number of collective operations.

In this algorithm, the workcube is partitioned into px�py
fiber blocks, where fiber block Wx;y;: is of size mx�‘�ny.
Then each processor Px;y is responsible of computing the
tasks/voxels in the fiber block Wx;y;:. In other words, the
C-face of the workcube is decomposed into px�py 2D block
submatrices, each denoted by Cx;y, where Cx;y is locally
computed by Px;y. Fig. 2 displays a sample workcube parti-
tioning and the corresponding matrix partitioning on a 2D
grid of size 3�4¼12.

3.3 3D: Split-3D-SpGEMM Algorithm [19]

Split-3D-SpGEMM algorithm [19] extends 2D algorithm [18]
by considering a 3D px� py�pz virtual processor grid. Let
Px;:;:, P:;y;: and P:;:;z respectively denote the processors in the
xth horizontal, yth frontal and zth lateral layers of the 3D
grid. Also let Px;y;:, Px;:;z and P:;y;z denote the processor-
fibers in the intersections of the respective processor-layers.
So Px;y;z denote the processor in the xth horizontal, yth fron-
tal and zth lateral layers of the grid.

This algorithm relies on splitting the 2D blocks of 2D-
partitioned A, B and C matrices into disjoint subblocks along
different third dimensions. That is, 2D partitioning is applied

Fig. 1. 1D, 2D, and 3D cartesian workcube partitioning for 1D-, 2D-, and
3D-parallel SpGEMM algorithms on 5, 5�4, and 5�5�4 processor grids.
Gray shaded areas show a horizontal block, a fiber block, and a cuboid.
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on A, B and C matrices among px�pz, pz�py and px�py pro-
cessors in the yth frontal layer P:;y;:, the xth horizontal layer
Px;:;: and the zth lateral layer P:;:;z of the grid, respectively.
Then, each 2D block of A, B and C matrices are split into

subblocks among py, px and pz processors along the y, x and z
dimensions, respectively. For example, each 2D block Ax;z of
A is split into py subblocks Ax;1;z; Ax;2;z; . . . ; Ax;y;z which are
respectively assigned to processors Px;1;z; Px;2;z; . . . ; Px;y;z of
processor-fiberPx;:;z.

This novel scheme enables splitting the broadcast of Ax;z

from a single processor Px;z in 2D algorithm among py pro-
cessors. That is, the broadcast of A-matrix subblocks
Ax;1;z; Ax;2;z; . . . ; Ax;y;z are concurrently performed by pro-
cessors Px;1;z; Px;2;z; . . . ; Px;y;z, respectively. In a similar man-
ner, the broadcast of By;z is split among px processors. Since
C-matrix blocks are also split along the z dimension, final
C-block results are obtained from local partial C-subblock
results through reduce (fold) type of operation along the z
dimension. Compared to the 2D algorithm, the 3D algo-
rithm is more scalable with better upper bounds on commu-
nication overhead [19] at the expense of reduce operations
along the z dimension.

In this algorithm, the workcube is partitioned into
px� py�pz cuboids, where each cuboid Wx;y;z is of size
mx�‘z�ny. Then each processor Px;y;z is responsible of com-
puting the tasks/voxels in the cuboidWx;y;z. In other words, the
C-face of the workcube is decomposed into px�py 2D block
submatrices, each denoted by Cx;y, where Cx;y is collectively
computed among the processors of the processor-fiber Px;y;:.
Fig. 4 displays a sample workcube partitioning and the corre-
spondingmatrix partitioning among 3� 4� 4 ¼ 48 processors.

4 PARTITIONING MODELS

Here, we first present background material on hypergraph
partitioning and then present proposed hypergraph models

Fig. 2. Sparse Summa (2D) algorithm. Top: Partitioning of the workcube
on a 3�4 2D grid. Bottom: Data distribution. Solid lines show that
A-matrix rows and B-matrix columns are partitioned conformably with
the workcube/task partition. Dotted lines show that B-matrix rows and
A-matrix columns are partitioned independent from the task parti-
tioning.“x” denotes a nonzero entry in the respective matrix.

Fig. 3. Top: 3�3 A-matrix is multiplied by 3�2 B-matrix to produce 3�2 C-matrix. Middle:The corresponding 3�2�2 workcube and its decomposition
into horizontal, frontal and lateral layers where each of the 7 voxels is denoted by a different legend. Bottom: Hypergraphs built in phases f1, f2, f3.
Partition ðPðf1Þ;Pðf2Þ;Pðf3ÞÞ obtained on hypergraphs Hðf1Þ, Hðf2Þ, and Hðf3Þ induces a 2�2�2 partition on the workcube. Empty triangles
denote internal nets whereas solid triangles denote cut nets.
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for 2D and 3D cartesien partitioning of the workcube. The
former and the latter partitioning models are proposed for
improving the performance of 2D- and 3D-parallel algo-
rithms described in Sections 3.2 and 3.3, respectively.

4.1 Hypergraph Partitioning

A hypergraph H¼ðV;NÞ is defined as a two-tuple of vertex
set V and net set N . A hypergraph is the generalization of a
graph, where each net connects possibly more than two ver-
tices and the set of vertices connected by a net nj is repre-
sented by pinsðnjÞ. Each vertex vi2V is associated with C
weights wcðviÞ for c¼1; . . . ; C, and each net nj2N is associ-
ated with costðnjÞ.

P¼fV1; V2 . . .VKg is a K-way partition of H if vertex
parts are mutually disjoint and exhaustive. In P, a net nj

connecting at least one vertex in a part is said to connect
that part. The connectivity set LðnjÞ and the connectivity
�ðnjÞ¼jLðnjÞj of net nj are respectively defined as the set of
parts and the number of parts connected by nj. A net nj that
connects more than one part (i.e., �ðnjÞ > 1) is said to be cut
and uncut otherwise. The partitioning objective is to mini-
mize the connectivity cut size defined as

CutSizeðPÞ ¼
X
nj2N

costðnjÞ � ð�ðnjÞ � 1Þ: (1)

The partitioning constraint is tomaintain the balance criteria

WcðVkÞ¼
X
vi2Vk

wcðviÞ � Wc
avgð1þ�cÞ; (2)

for all Vk2P and c¼1 . . .C. Here, WcðVkÞ denotes the cth
weight of part Vk, Wc

avg¼
P

vi2V wcðviÞ=K denotes the

average part weight on the cth vertex weights and � is the
maximum allowed imbalance ratio on part weights.

4.2 2D Cartesian Partitioning of Workcube

The proposed model contains two partitioning phases f1

and f2. In phases f1 and f2, the horizontal and frontal layers
of the workcube are partitioned into px and py parts each of
which is assigned to a distinct row and column of the pro-
cessor grid, respectively.

For phase f1, we define a hypergraph Hðf1Þ¼fV H;NLg
with m vertices, ‘ nets and nnzðAÞ pins, where nnzð�Þ refers
to the number nonzeros in the respective matrix. Hðf1Þ con-
tains a vertex vHi 2V H for each horizontal layer W ði; :; :Þ. So,
vertex vHi represents the task of computing the ith row of C.
Hðf1Þ contains a net nL

k 2NL for the kth lateral layer of W .
Net nL

k , which represents the kth row of matrix B, connects
each vertex vHi for which horizontal layer Wði; :; :Þ has at
least one voxel in fiberW ði; :; kÞ. Formally

pinsðnL
k Þ ¼ fvHi j 9Wði; j; kÞ 2 Wði; :; :Þ \W ð:; :; kÞg:

Alternatively, in matrix theoretic view

pinsðnL
k Þ ¼ fvHi j 9k 2 colsðAði; :ÞÞg;

where colsðAði; :ÞÞ denote the column indices of the non-
zeros in the ith row of A.

Each vertex vHi is assigned a weight wðvHi Þ equal to the
number of voxels in the ith horizontal layerWði; :; :Þ, i.e.,

wðvHi Þ ¼ jW ði; :; :Þj ¼
X

k2colsðAði;:ÞÞ
nnzðBðk; :ÞÞ:

Here, j � j denotes the number of voxels in the respective
subcube of W . Each net is assigned a cost equal to the num-
ber of nonzeros in the respective B-matrix row, i.e.,

costðnL
k Þ¼nnzðBðk; :ÞÞ:

A px-way partition Ppxðf1Þ¼fV H
1 ; V H

2 ; . . . ; V H
px
g of Hðf1Þ

is decoded as follows for task partitioning: Without loss of
generality, all tasks associated with vertices in V H

x 2Ppxðf1Þ
are assigned to the processors of processor-row Px;:. That is,
the task of computing an individual row of matrix C is con-
fined among the processors of the same row of the grid.
This partitioning can also be considered as partitioning the
horizontal layers of W and then utilizing this partition as
inducing a partial reordering on the horizontal layers so
that the horizontal layers belonging to the same part are
reordered consecutively (in any order) to form a horizontal
block. Here and hereafter, this partially reordered workcube
will be referred to asW . Then, the xth horizontal blockWx;:;:

ofW is assigned to processor-row Px;:.
The weight of part V H

x computed according to (2) is equal
to the number of voxels in the horizontal blockWx;:;:. So, the
partitioning constraint of maintaining balance on part
weights encodes balance on the voxel counts of the px hori-
zontal blocks thus encoding computational balance among
px processor-rows.

Consider a cut-net nL
k with LðnL

k Þ. Each part V H
x 2LðnL

k Þ
corresponds to the processor-row Px;: which is assigned the
horizontal layers whose intersection with the kth lateral

Fig. 4. Split-3D-SpGEMM algorithm (3D) algorithm: Top: Partitioning of
the workcube on a 3�4�4 3D processor grid. Bottom: Data distribution.
Solid lines show that rows and columns of all matrices are partitioned
conformably with the workcube/task partition.“x” denotes a nonzero
entry in the respective matrix.

DEMIRCI AND AYKANAT: CARTESIAN PARTITIONING MODELS FOR 2D AND 3D PARALLEL SPGEMM ALGORITHMS 2767

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on July 01,2020 at 15:09:23 UTC from IEEE Xplore.  Restrictions apply. 



layer has at least one voxel. In other words, for each part
V H
x 2LðnL

k Þ, the tasks assigned to the processors of the pro-
cessor-row Px;: in LðnL

k Þ require the B-matrix row Bðk; :Þ.
In Fig. 3, the first two subfigures of the bottom part show

Hðf1Þ and Hðf2Þ respectively for the sample workcube
given in the middle part of the figure. Hðf1Þ contains three
vertices and three nets corresponding to the three horizontal
and three lateral layers, respectively. Hðf2Þ contains two
vertices and three nets corresponding to the two frontal and
three lateral layers, respectively. In these two subfigures, ½��
below each vertex shows the weight(s) associated with that
vertex. ½�� besides each part denotes the weight of that part.
ð�Þ above each net shows the cost of that net. For example, in
Hðf1Þ, wðvH1 Þ¼3 since jWð1; :; :Þj¼3 and costðnL

1 Þ¼1 since
nnzðBð1; :ÞÞ ¼ 1. In Hðf2Þ, w1ðvF2 Þ¼2 and w2ðvF2 Þ¼3 since
jWð:; 2; :Þ\W1;:;:j¼2 and jWð:; 2; :Þ\W2;:;:j¼3, respectively.
In Hðf2Þ, costðnL

1 Þ¼2 since nnzðAð:; 1ÞÞ¼2. In the sample 2-
way partition of Hðf1Þ, nL

3 is internal to part V H
2 , whereas

nets nL
1 and nL

2 are cut thus incurring a communication vol-
ume of 3 words during the expand phase of B-matrix
entries. In the sample 2-way partition of Hðf2Þ, nL

1 and nL
3

are internal to part V F
2 , whereas only net nL

2 is cut thus
incurring a communication volume of 2 words during the
expand phase of A-matrix entries.

Here, we define a B-matrix row distribution to be consis-
tent with task partition Pðf1Þ if each B-matrix row k is
assigned to one of the processor-rows in LðnL

k Þ. The distri-
bution of nonzeros of a B-matrix row among the processors
of the respective processor-row will be determined by the
partition to be obtained in phase f2. Under this consistent
data distribution, assume that processor-row Px;: in LðnL

k Þ
stores B-matrix row k. So, processor-row Px;: will expand
B-matrix row k to all processor-rows in LðnL

k Þ � fPx;:g so
that cut-net nL

k will incur the communication of

nnzðBðk; :ÞÞ� jLðnL
k Þj � 1

� �
;

words. So, the total communication volume associated with
B-matrix rows between processor-rows is

ExpVolðBÞ ¼
X

nL
k
2NL

nnzðBðk; :ÞÞ � jLðnL
k Þj � 1

� �
:

Therefore, the partitioning objective of minimizing the cut-
size according to (1) encodes the minimization of the total
communication volume during the expand type communi-
cations on B-matrix rows.

For phase f2, we define a hypergraph Hðf2Þ¼fV F ;NLg
with n vertices, ‘ nets and nnzðBÞ pins. Hðf2Þ contains a
vertex vFj 2V F for each frontal layer Wð:; j; :Þ. So vertex vFj
represents the task of computing the jth column of C. Hðf2Þ
contains a net nL

k 2NL for the kth lateral layer of W . Net nL
k ,

which represents the kth column of matrix A, connects each
vertex vFj for which frontal layer Wð:; j; :Þ has at least one
voxel in fiberWð:; j; kÞ. Formally

pinsðnL
k Þ ¼ fvFj j 9Wði; j; kÞ 2 W ð:; j; :Þ \Wð:; :; kÞg:

Alternatively, in matrix view

pinsðnL
k Þ ¼ fvFj j 9k 2 rowsðBð:; jÞÞg;

where rowsðBð:; jÞÞ denote the row indices of the nonzeros
in the jth column of B. Each net nL

k is associated with a cost
equal to the number of nonzeros in the respective A-matrix
column, i.e.,

costðnL
k Þ¼nnzðAð:; kÞÞ:

A py-way partition Ppyðf2Þ¼fV F
1 ; V F

2 ; . . . ; V F
py
g of hyper-

graph Hðf2Þ is decoded as follows for task partitioning: All
tasks associated with vertices in V F

y 2Ppyðf2Þ are assigned
to the processors of processor-column P:;y. That is, the task
of computing an individual column of matrix C is confined
among the processors of the same column of the grid. This
partitioning can also be considered as partitioning the fron-
tal layers of W and then utilizing this partition as inducing
a partial reordering on the frontal layers in such a way that
the frontal layers belonging to the same part are reordered
consecutively (in any order) to form a frontal block. Then,
the yth frontal block W :;y;: of the reordered workcube is
assigned to processor-column P:;y.

The px-way horizontal partition Ppx obtained in phase f1

together with py-way partition Ppy obtained in phase f2 can
be considered as forming fiber blocks such that fiber block
Wx;y;: contains voxels in the intersection of the xth horizon-
tal block Wx;:;: and the yth frontal block W :;y;: of the reor-
dered workcube. So, partition ðPðf1Þ;Pðf2ÞÞ is decoded as
assigning fiber blockWx;y;: to processor Px;y.

In phase f2, a multi-constraint partitioning formulation is
proposed in order to maintain balance on the voxel counts
of the fiber blocks. For this purpose, each vertex vFj of V F is
assigned px weights wcðvFj Þ for c¼1; 2; . . . ; px. Here, wcðvFj Þ
is set equal to the number of voxels of the frontal layer
Wð:; j; :Þ in the horizontal block Wc;:;: induced by the vertex
part V H

c of Ppxðf1Þ. That is

wcðvFj Þ ¼ jWð:; j; :Þ \Wc;:;:j:

Alternatively, in matrix view

wcðvFj Þ ¼
X

vH
i
2V H

c

jfk j k 2 colsðAði; :ÞÞ ^ k 2 rowsðBð:; jÞÞj:

For a given partition Ppyðf2Þ¼fV F
1 ; V F

2 ; . . . ; V F
py
g of

Hðf2Þ, the sum of the cth weights of the vertices in part
V F
y 2 Ppyðf2Þ is equal to the number of voxels in the fiber

blockWc;y;: That is

WcðV F
y Þ ¼

X
vF
j
2V F

y

wcðvFj Þ ¼
X

vF
j
2V F

y

jW ð:; j; :Þ \Wc;:;:j

¼ jW :;y;: \Wc;:;:j:
So, the cth partitioning constraint (2) of maintaining balance
on the cth weights of the parts encodes maintaining balance
on the voxel counts of the fiber blocks in the cth horizontal
block. Recall that the horizontal partition Ppxðf1Þ of W
obtained in the first phase f1 already produces horizontal
blocks with roughly equal number of voxels. Hence, the sin-
gle partitioning constraint in f1 together with the px parti-
tioning constraints in f2 encodes maintaining balance on
the voxel counts in the individual fiber blocks. Since each
fiber block is assigned to a distinct processor, the proposed
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multi-constraint partitioning formulation encodes computa-
tional load-balance among processors.

Consider a cut-net nL
k with LðnL

k Þ. Each part V F
y 2LðnL

k Þ
corresponds to the processor-column P:;y which is assigned
the frontal layers whose intersection with the kth lateral layer
has at least one voxel. That is, for each part V F

y 2LðnL
k Þ, the

tasks assigned to the processors of the processor-column P:;y

inLðnL
k Þ require theA-matrix columnAð:; kÞ.

Here, we define an A-matrix column distribution to be
consistent with task partition Pðf2Þ if each A-matrix
column k is assigned to one of the processor-columns in
LðnL

k Þ. Under this consistent data distribution, assume that
processor-column P:;y in LðnL

k Þ stores A-matrix column k.
So, processor-column P:;y will expand A-matrix column k to
all processor-columns in LðnL

k Þ�fP:;yg so that cut-net nL
k

will incur the communication of

nnzðAð:; kÞÞ� jLðnL
k Þj � 1

� �
;

words. So, the total communication volume associated with
A-matrix columns between processor-columns is

ExpVolðAÞ ¼
X

nL
k
2NL

nnzðAð:; kÞÞ � jLðnL
k Þj � 1

� �
:

Therefore, the partitioning objective of minimizing the cut
size according to (1) encodes the minimization of the total
communication volume during the expand type communi-
cations on A-matrix columns.

As discussed earlier, task partition Pðf1Þ induces a con-
sistent distribution of B-matrix rows among processor-
rows. The distribution of nonzeros of aB-matrix row among
the processors of the respective processor-row is deter-
mined by Pðf2Þ as follows: Assume that row Bðk; :Þ is
assigned to a processor-row Px;:2LðnL

k Þ by utilizing Pðf1Þ.
Each nonzero Bðk; jÞ of row Bðk; :Þ is assigned to a processor
Px;y if vFj 2V F

y in Pðf2Þ. That is, the nonzero distribution of
row Bðk; :Þ among processors of Px;: follows the partitioning
obtained on frontal layers. Expanding a B-matrix row from
a processor-row is realized collectively by the processor(s)
of that grid row via expanding disjoint B-matrix nonzero
row segment(s) along the respective processor-columns of
the grid. Although the nonzero distribution of a B-matrix
row along a processor-row may change the number of mes-
sages, it does not change the total communication volume
for expanding nonzeros of that B-matrix row.

As also discussed earlier, task partition Pðf2Þ determines
a consistent distribution of A-matrix columns among pro-
cessor-columns. The distribution of nonzeros of an A-matrix
column among the processors of the respective processor-
column is determined by Pðf1Þ as follows: Assume that col-
umn Að:; kÞ is assigned to a processor-column P:;y in LðnL

k Þ
by utilizing Pðf2Þ. Each nonzero Aði; kÞ of column Að:; kÞ is
assigned to a processor Px;y if v

H
i 2V H

x in Pðf1Þ. That is, the
nonzero distribution of column Að:; kÞ in processor-column
P:;y follows the partitioning obtained on horizontal layers.
Expanding an A-matrix column from a processor-column is
realized collectively by the processor(s) of that column via
expanding disjoint A-matrix nonzero column segment(s)
along the respective processor-rows of the grid. Although
the nonzero distribution of an A-matrix column along a

processor-column may change the number of messages, it
does not change the total communication volume for
expanding nonzeros of that A-matrix column.

The discussion given in the above two paragraphs imply
the following: The total communication volume on B-matrix
rows is determined by the partitioning of A-matrix rows,
whereas it is independent from the partitioning of B-matrix
columns. The total communication volume on A-matrix col-
umns is determined by the partitioning of B-matrix columns,
whereas it is independent from the partitioning of A-matrix
rows.

Fig. 2 depicts the proposed partitioningmodel. In phase f1,
the kth lateral layer and row Bðk; :Þ are represented by a cut-
net nL

k with LðnL
k Þ ¼ fP2;:; P3;:g since horizontal-layer blocks

W 2;:;: andW 3;:;: contain voxels in the intersection with the kth
lateral layer (i.e., voxels induced by the outer-product of
Að:; kÞ with Bðk; :Þ). Hence, processors P2;2, P2;3 and P2;4 in
processor-row P2;:2LðnL

k Þ store nonzero row segments of
rowBðk; :Þ and they expand these three row segments (drawn
in three parallelograms) along their processor-columns. For
instance, processor P2;2 expands its nonzero row segment to
processor P3;2 since fiber blocks W 2;2;: and W 3;2;: have voxels
and require this row segment. In phase f2, the kth lateral layer
and column Að:; kÞ are represented by a net nL

k with
LðnL

k Þ ¼ fP:;2; P:;3; P:;4g since frontal-layer blocks W :;2;:, W :;3;:

and W :;4;: contain voxels in the intersection with kth lateral
layer. Hence, processors P2;2 and P3;2 in processor-column
P:;22LðnL

k Þ store nonzero column segments of columnAð:; kÞ
and responsible for expanding these column segments along
their processor-rows. For instance, processor P3;2 expands its
nonzero column segment to processors P3;3 and P3;4 since
fiber blocks W 3;2;:, W 3;3;: and W 3;4;: have voxels and require
this column segment.

4.3 3D Cartesian Partitioning of Workcube

The proposed model contains three partitioning phases f1,
f2 and f3. In phases f1, f2 and f3, the horizontal, frontal
and lateral layers of the workcube are partitioned into px, py
and pz parts each of which is assigned to a distinct horizon-
tal, frontal and lateral layer of the processor grid, respec-
tively. The hypergraph models Hðf1Þ and Hðf2Þ for the first
two phases are exactly the same with those for the 2D parti-
tioning model proposed in Section 4.2.

For phase f3, we define a hypergraph Hðf3Þ¼fV L;NZg
with ‘ vertices, nnzðCÞ nets and jW j pins. Hðf3Þ contains a
vertex vLk 2V L for each lateral layer Wð:; :; kÞ. So vertex vLk
represents the task of computing the outer-product of col-
umn Að:; kÞ with row Bðk; :Þ. Hðf3Þ contains a net nZ

i;j2NZ

for each fiberW ði; j; :Þ that has a voxel (partial product) con-
tributing to nonzero entry Cði; jÞ. Net nZ

i;j, which represents
nonzero Cði; jÞ of matrix C, connects each vertex vLk for
which lateral layer Wð:; :; kÞ has a voxel in fiber Wði; j; :Þ
(i.e.,W contains voxelWði; j; kÞ). Formally

pinsðnZ
i;jÞ ¼ fvLk j 9W ði; j; kÞ 2 Wði; j; :Þ \Wð:; :; kÞg:

Alternatively, in matrix view

pinsðnZ
i;jÞ ¼ fvLk j 9k 2 colsðAði; :ÞÞ ^ 9k 2 rowsðBð:; jÞÞg:

Each net nZ
i;j is associated with costðnZ

i;jÞ¼1.
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A pz-way partition Ppzðf3Þ¼fV L
1 ; V L

2 ; . . . ; V L
pz
g of hyper-

graph Hðf3Þ is decoded as follows for task partitioning: All
tasks associated with vertices in V L

z 2Ppzðf3Þ are assigned to
the processors of the zth lateral layerP:;:;z of the processor grid.
That is, the task of computing an individual outer-product of a
column ofmatrixAwith the respective row ofmatrixB is con-
fined among the processors of the same lateral layer of the
grid. This partitioning can also be considered as partitioning
the lateral layers of W and then utilizing this partition as
inducing a partial reordering on the lateral layers in such a
way that the lateral layers belonging to the same part are reor-
dered consecutively (in any order) to form a lateral block.
Then, the zth lateral block W :;:;z of the reordered workcube is
assigned to the zth lateral layer of the processor grid P:;:;z.

The px�py horizontal fiber-block partition/assignment
induced by (Pðf1Þ, Pðf2Þ) in the first two phases together
with the pz-way partition Ppz obtained in the third phase
can be considered as forming a px�py�pz cuboid partition
such that a cuboid Wx;y;z contains voxels in the intersection
of the horizontal fiber block Wx;y;: and the zth lateral block
W :;:;z of the reordered workcube. So, the partition
ðPðf1Þ;Pðf2Þ;Pðf3ÞÞ is decoded as assigning cuboid Wx;y;z

to processor Px;y;z.
For maintaining balance on the voxel counts of the

cuboids, each vertex vLk of V L is assigned px�py weights
wc;dðvLk Þ for c¼1; 2; . . . ; px and d¼1; 2; . . . ; py. For the sake
clarity of presentation, constraints are presented in 2D-array
format ðc; dÞ, whereas they are stored as 1D vectors to be
conformable with the input format of the multi-constraint
partitioners. Here, wc;dðvLk Þ is set equal to the number of vox-
els of the lateral layer Wð:; :; kÞ in the fiber block Wc;d;:

induced by the vertex part V H
c of Ppxðf1Þ and the vertex

part V F
d of Ppyðf2Þ. That is

wc;dðvLk Þ ¼ jWð:; :; kÞ \Wc;d;:j:
Alternatively, in matrix view

wc;dðvLk Þ ¼ jfCði; jÞ j vHi 2 V H
c ^ vFj 2 V F

d

^ k 2 colsðAði; :ÞÞ ^ k 2 rowsðBð:; jÞÞgj:

For a given partition Ppzðf3Þ¼fV L
1 ; V L

2 ; . . . ; V L
pz
g ofHðf3Þ,

the sum of the weights wc;dðvLk Þ of the vertices in part
V L
z 2 Ppzðf3Þ is equal to the number of voxels in the cuboid

Wc;d;z That is

Wc;dðV F
z Þ ¼

X
vL
k
2V L

z

wc;dðvLk Þ¼
X

vL
k
2V L

z

jWð:; :; kÞ \Wc;d;:j

¼ jW :;:;z \Wc;d;:j ¼ jWc;d;zj:
So, the ðc; dÞth partitioning constraint (2) of maintaining bal-
ance on the ðc; dÞth weights of the parts encodes maintain-
ing balance on the voxel counts of the cuboids in the
horizontal fiber block Wc;d;: Recall that ðPðf1Þ;Pðf2ÞÞ
obtained in the first two phases already produce fiber blocks
with roughly equal number of voxels. Hence, the single par-
titioning constraint in the first phase and px partitioning
constraints in the second phase together with the px�py par-
titioning constraints in the third phase encode maintaining
balance on the voxel counts in the individual cuboids. Since
each cuboid is assigned to a distinct processor, the proposed

multi-constraint partitioning formulation encodes computa-
tional load-balance among processors.

For a cut-net nZ
i;j with LðnZ

i;jÞ, each part V L
z 2LðnZ

i;jÞ corre-
sponds to a lateral processor-layer P:;:;z which is assigned the
lateral layers ofW whose intersection with fiberWði; j; :Þ has
at least one voxel . Hence, each part V L

z 2LðnZ
i;jÞ denotes a pro-

cessor-layer P:;:;z that produces partial results contributing to
nonzeroCði; jÞ.

In Fig. 3, the rightmost subfigure of the bottom part
shows Hðf3Þ. As seen in the figure, Hðf3Þ contains three
vertices and five nets corresponding to the three lateral
layers and five C-matrix nonzeros, respectively. Each vertex
is associated with four weights since both Hðf1Þ and Hðf2Þ
are 2-way partitioned (i.e., px�py¼4). In the sample 2-way
partition of Hðf3Þ, nets nZ

1;1, n
Z
2;1 and nZ

2;2 are internal to part
V L
2 , whereas nets nZ

1;2 and nZ
3;2 are cut thus incurring a com-

munication volume of two words during the reduce opera-
tions on C-matrix nonzero entries.

We define aC-matrix nonzero distribution to be consistent
with task partition Pðf3Þ, if all partial results for Cði; jÞ is
accumulated and stored in one of the lateral processor-layers
inLðnZ

i;jÞ. Assume thatCði; jÞ is assigned to one of the proces-
sor-layer P:;:;z in LðnZ

i;jÞ. Also assume that ðPðf1Þ;Pðf2ÞÞ
induces the assignment of horizontal and frontal layers
Wði; :; :Þ and Wð:; j; :Þ to horizontal and frontal processor-
layers Px;:;: and P:;y;:, respectively. This induces the assign-
ment of horizontal fiber Wði; j; :Þ to processor-fiber Px;y;:.
Then, processor Px;y;z in processor-fiber Px;y;: will receive par-
tial results contributing toCði; jÞ from processors in the inter-
section of the processor-fiber Px;y;: with each lateral
processor-layer in LðnZ

i;jÞ � fP:;:;zg. Note that each processor
having multiple partial results contributing to the same
Cði; jÞ, which is assigned to another processor, will compute
a single partial result through local summation and send this
result to that processor. Hence, that cut-net nZ

i;j will incur the
communication of jLðnZ

i;jÞj�1 words. So, the total communi-
cation volume associated with C-matrix nonzeros between
lateral processor-layers is

FoldVolðCÞ ¼
X

nZ
i;j
2NZ

jLðnZ
i;jÞj � 1

� �
:

Therefore, the partitioning objective of minimizing the cut
size according to (1) encodes the minimization of the total
communication volume during the fold-type communica-
tions on C-matrix nonzeros.

Consistency of nonzero-based C-matrix distribution with
ðPðf1Þ;Pðf2Þ;Pðf3ÞÞ is already discussed earlier. The dis-
cussion for consistency of distribution of A-matrix columns
and B-matrix rows with overall task partitioning ðPðf1Þ;
Pðf2Þ;Pðf3ÞÞ can be extended from the 2D discussion as fol-
lows: ColumnAð:; kÞ and rowBðk; :Þ are stored by processors
in lateral processor-layer P:;:;z if vertex vLk is assigned to
V L
z 2Pðf3Þ. Assume that row Bðk; :Þ is assigned to a vertex

part V H
x 2 LðnL

k Þ and correspondingly to horizontal proces-
sor-layer Px;:;: by utilizing Pðf1Þ. So, each nonzero Bðk; jÞ of
row Bðk; :Þ is assigned to processor Px;y;z if v

F
j 2V F

y in Pðf2Þ.
That is, row Bðk; :Þ is stored by processors in processor-fiber
Px;:;z and expanding B-matrix nonzero row segment(s) is per-
formed along processor-fibers P:;y0;z. Similarly, assume that
column Að:; kÞ is assigned to a vertex part V F

y 2 LðnL
k Þ and
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correspondingly frontal processor-layer P:;y;: by utilizing
Pðf2Þ. So, each nonzero Aði; kÞ of column Að:; kÞ is assigned
to processor Px;y;z if v

H
i 2V H

x in Pðf1Þ. That is, column Að:; kÞ
is stored by processor in processor-fiber P:;y;z and expanding
A-matrix nonzero column segment(s) is performed along pro-
cessor-fiber Px0;:;z of the grid.

Fig. 4 depicts the proposed partitioning model. As seen in
the figure, in phase f1, cut-net n

L
k has LðnL

k Þ¼fP2;:;:; P3;:;:g.
Hence, processors in one of the processor-layers in LðnL

k Þ can
store nonzero row segments of Bðk; :Þ and expand these row
segments along their respective processor-fibers. For instance,
since lateral layer Wð:; :; kÞ is assigned to processor-layer
P:;:;3, processors P2;2;3, P2;3;3 and P2;4;3 in processor-layer
P2;:;:2LðnL

k Þ may store nonzero row segments of row Bðk; :Þ
and expand these row segments along processor-fibers P:;2;3,
P:;3;3 and P:;4;3, respectively. In phase f2, cut-net nL

k has
LðnL

k Þ¼fP:;2;:; P:;3;:; P:;4;:g. Hence, processors in one of the pro-
cessor-layers in LðnL

k Þ can store nonzero column segments of
Að:; kÞ and expand these column segments along their respec-
tive processor-fibers. For instance, processors P2;2;3 and P3;2;3

in processor-layer P:;2;:2LðnL
k Þ may store nonzero column

segments of column Að:; kÞ and expand these column seg-
ments along processor-fibersP2;:;3 and P3;:;3, respectively.

As seen in Fig. 4, in phase f3, fiber W ði; j; :Þ and nonzero
Cði; jÞ are represented by the cut-net nZ

i;j with LðnL
k Þ ¼

fP:;:;2; P:;:;3g, since intersections of fiber W ði; j; :Þ with lateral
blocks W :;:;2 and W :;:;3 have voxels (partial results) contribut-
ing to Cði; jÞ. The responsibility of accumulating and storing
nonzero Cði; jÞ can be given to a processor in one of the pro-
cessor-layers in LðnL

k Þ. For instance, P2;2;3 may be given the
responsibility of storing the final Cði; jÞ and hence, P2;2;2 may
locally sum its two partial results and send a single partial
result toP2;2;3.

Hypergraph Hðf3Þ contains nnzðCÞ nets and jW j pins
which significantly increase the preprocessing overhead of the
partitioning model for some SpGEMM instances. To alleviate
this problem, instead of introducing a net nZ

i;j for each nonzero
entry Cði; jÞ, we use a single net nZ

i to denote row Cði; :Þ of
matrixC. Then, we add vLk as a pin to net nZ

i if k2colsðAði; :ÞÞ.
These modifications lead to a hypergraph with m nets and
nnzðAÞ pins. In this way, the accumulation ofC-matrix entries
is performed in row-basis instead of nonzero-basis in such a
way that the accumulation of entries in the same row is per-
formed by the processors in the same processor-layer without
considering individual consistency conditions of nonzero
entries. That is, a nonzero Cði; jÞ can be assigned to a proces-
sor-layer P:;:;z 62LðnZ

i;jÞ but P:;:;z2LðnZ
i Þ. This approach drasti-

cally reduces the number of nets and the size of the
hypergraph; but causes the hypergraphmodel to overestimate
the total communication volume in the fold phase. This is
because, even though a processor Px;y;z does not have a partial
result contributing to a nonzero entry Cði; jÞ, the computation
of final Cði; jÞ can be assigned to this processor due to the
assignment of rowCði; :Þ to processor-layer P:;:;z. We used this
modified version of 3D scheme in our experiments.

5 EXPERIMENTS

5.1 Experimental Setup

We use the following abbreviations: 2D and 3D refer to the
sparse SUMMA and split-3D SPGEMM algorithms described

in Sections 3.2 and 3.3, respectively. The prefix “H” refers
to using the hypergraph models proposed in Section 4,
whereas “R” refers to using random partitioning. Random
partitioning is generated by randomly permuting hori-
zontal, frontal and lateral layers of the workcube and
then performing uniform 2D- or 3D-cartesian partitioning
on this permuted workcube. H1D refers to using the
hypergraph model described in [21] for 1D row-by-row
parallel SpGEMM algorithm. H1D is used as a baseline
algorithm for H2D and H3D, since H1D is reported as the
best performing 1D algorithm in [21].

All parallel SpGEMM algorithms are implemented in C++
and by using OpenMPI version 3.0.1. For a fair comparison of
partitioning algorithms, local SpGEMM computations are
implemented using row-by-row product formulation [12]
for all parallel SpGEMM implementations. The sequential
SpGEMM implementation, which is used to obtain the speed-
ups of the parallel algorithms, also uses row-by-row product
formulation. We used our own sequential implementation of
SpGEMM rather than the sequential implementation of
CombBLAS library [9], since we found that our 2D- and 3D-
parallel SpGEMMalgorithms run faster than the implementa-
tion provided in CombBLAS on the SpGEMM instances uti-
lized in the paper. Random partitioning is utilized both for
our parallel SpGEMM implementations and the one provided
inCombBLAS library.

The hypergraph models are partitioned via PaToH [33],
[34] which supports multi-constraint hypergraph partition-
ing. The allowed imbalance ratio is set to �¼0:01 in each
phase of the proposed partitioning models. Since PaToH
contains randomized algorithms, the averages of three
partitioning runs, each randomly seeded, are reported.

Experiments are performed on UHEMS’s Sariyer sys-
tem [35] in which each node contains an Intel(R) Xeon(R)
CPU E5-2680 v4 @2.40 GHz processor consisting of 28 cores,
and 128 GB main memory. Each MPI job is submitted to the
system by allocating the number of cores as required by
each job, since the tested algorithms do not utilize shared
memory parallelism.

The performance of partitioning algorithms are evaluated
for parallel SpGEMM algorithms on p¼25; 100; 225; 400; 625
and 900 processors. These processor counts are selected so
that 2D virtual processor grids will be perfect squares 5�5,
10�10, 15�15, 20�20, 25�25 and 30�30, respectively. The
3D virtual grid sizes are selected such that lateral layers of
processor grids are perfect squares, where the size of the third
(i.e., z) dimension is selected accordingly. So, 3D virtual girds
of sizes of 5� 5� 4, 5� 5� 9, 10� 10� 4 and 10� 10� 9,
are used for p¼100; 225; 400 and 900, whereas the numbers
of processors in the remaining two 3D virtual grids
3� 3� 3 ¼ 27 and 9� 9� 8 ¼ 648 are slightly larger than the
p values 25 and 625, respectively.

Table 1 displays the properties of SpGEMM instances
used in the experiments. For 20 C¼AA instances, A matri-
ces are collected from UFL [36]. For two C¼AB instances,
the recursive matrix generator R-MAT [37] is used to gener-
ate two SSCA matrices (HPCS Scalable Synthetic Compact
Applications graph analysis benchmark [38]) to be used as
input matrices A and B. We generate matrices for parame-
ters scale¼20 and scale¼21, where for each value of scale,
a matrix of size 2scale�2scale is produced. Additionally, we
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provide parameters a¼0:55, b¼0:1, c¼0:1 and d¼0:25,
which were the default settings in the tool.

5.2 Performance Results

Tables 2 and 3 compare the relative performance of parallel
SpGEMM algorithms in terms of multiple communication
cost metrics as well as actual speedup values attained on the
subject parallel system. Communication cost metrics are cate-
gorized under communication volume and message counts
metrics which respectively relate to bandwidth and latency
overheads. For both metrics, we display average and maxi-
mum volume/number of messages sent by a processor. For a
fixed p, average message volume/count values also refer to
total message volume/count values. We preferred to display
average values instead of total values in order to better see
howmuch themaximumvalues deviate from the average val-
ues. In Tables 2 and 3, for each p, results are displayed as
averages (geometricmeans) over 20 instances.

Table 2 compares H2D against R2D as well as H3D against
R3D to show the merits of utilizing the proposed hypergraph
partitioning models instead of random partitioning. For com-
munication cost comparison, H2D and H3D respectively
achieve 85–89 and 62–76 percent less average volume than
R2D and R3D over all p values. Similarly, H2D and H3D
respectively achieve 69–84 and 5–62 percent less maximum
send volume, 19–42 and 16–31 percent smaller average mes-
sage counts, 4–19 and 3–8 percent smaller maximummessage
counts. Relatively smaller improvements in maximum mes-
sage volume/count values compared to those in averagemes-
sage volume/count values can be attributed to bettermessage
volume and count balancing naturally achieved by random

partitioning. For speedup comparison, H2D and H3D respec-
tively achieve 27–63 and 31–45 percent higher speedup values
than R2D andR3D.

Table 3 compares hypergraph partitioning models on
1D-, 2D- and 3D-parallel SpGEMM algorithms. In the table,
the third column shows the average imbalance ratios com-
puted as the ratio of the computational load (voxel count) of
the maximally loaded processor to the average processor
load (jW j=p). In terms of computational load balance, H1D
and H2D display comparable performance, whereas H3D
displays considerably worse performance. The relative per-
formance of H3D against H1D/H2D degrades with increas-
ing p. This is because, the number of constraints used in the
third partitioning phase of H3D increases with increasing p,
where larger number of constraints may adversely affect
the load-balancing quality of PaToH [39]. Experimental
results on sensitivity of partitioning quality on the number
of constrains are given in Appendix A, available in the
online supplemental material.

As seen in Table 3, in terms of both communication vol-
ume metrics, H3D performs worse than both H1D and
H2D. Two factors that explain this experimental finding
are: First, the fold phase necessitates many partial results to
be communicated among processors. Second, the increased
number of constraints may adversely affect the cut-size
quality of PaToH [39]. On the other hand, this performance
gap between H1D and H3D decreases with increasing p:
H3D incurs 5.21x and 2.81x more volume than H1D on
p¼25 and p¼900 processors, respectively.

In terms of average message volume, H1D performs better
than H2D for small processor counts (p¼25; 100 and 225),
whereas H2D performs better for larger processor counts
(p¼400; 625 and 900). In terms ofmaximummessage volume,
H2D performs significantly better than H1D on all processor

TABLE 1
Properties of Input Matrices of SpGEMM Instances

Number of Max degree of

Matrix Rows/Cols Nonzeros Row Col

C ¼ AA

crankseg_2 63,838 14,148,858 3,423 3,423
net4-1 88,343 2,441,727 4,791 4,791
Ge99H100 112,985 8,451,395 469 469
Ge87H76 112,985 7,892,195 469 469
Ga10As10H30 113,081 6,115,633 698 698
torso1 116,158 8,516,500 3,263 1,224
Ga19As19H42 133,123 8,884,839 697 697
bmwcra_1 148,770 10,644,002 351 351
para-10 155,924 5,416,358 6,931 6,931
mono_500Hz 169,410 5,036,288 719 719
ohne2 181,343 11,063,545 3,441 3,441
Si41Ge41H72 185,639 15,011,265 662 662
Si87H76 240,369 10,661,631 361 361
Ga41As41H72 268,096 18,488,476 702 702
coPapersCiteseer 434,102 32,073,440 1,188 1,188
coPapersDBLP 540,486 30,491,458 3,299 3,299
pre2 659,033 5,959,282 628 745
3Dspectralwave 680,943 33,650,589 117 117
Stanford_Berkeley 683,446 7,583,376 83,448 249
StocF-1465 1,465,137 21,005,389 189 189

C ¼ AB

rmat (scale¼20) 1,048,576 8,259,994 1,181 1,158
rmat (scale¼21) 2,097,152 16,570,170 1,576 1,555

TABLE 2
Average Performance Comparisons:
H2D Over R2D and H3D Over R3D

For each p, the first row displays the actual values, whereas the second and
third rows display normalized values for the respective algorithm. Actual
volume values (in thousands) are given in terms of input matrix nonzeros and
output-matrix partial results sent by processors.
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counts and this performance gap widens with increasing p in
general. It is interesting to observe that the performance
improvement of H2D over H1D is much higher in maximum
message volume than its improvement in average message
volume. For example, for p¼900, on average, H2D incurs 54
percent less maximum message volume than H1D, whereas
H2D incurs only 9 percent less average message volume than
H1D. This is because, dense rows/columns of input matrices
incur large communication volume for processors storing
these rows/columns. This issue is largely resolved by H2D,
since the nonzeros of individual dense rows/columns are par-
titioned amongmultiple processors.

In terms of both message count metrics, H3D is the clear
winner, whereas H2D is the second best. The relative per-
formance of H2D over H1D as well as the performance of
H3D over both H2D and H1D increase with increasing p.
For example, for p¼900, H2D performs 39 and 76 percent
better than H1D in average and maximum message count
metrics, respectively. For p¼900, H3D performs approxi-
mately 2x better than H2D in both average and maximum
message count metrics. These experimental findings are
expected, since 2D and 3D algorithms naturally establish
the upper bounds of Oð ffiffiffi

p2
p Þ and Oð ffiffiffi

p3
p Þ on the number of

messages handled by a processor, respectively, whereas
this upper bound is OðpÞ in the 1D algorithm.

As seen in Table 3, H1D and H2D display comparable
average speedup values on small processor counts
(p¼25 and 100), whereas H3D displays worse performance.
On the larger processors counts (p¼225; 400 and 625), H2D
becomes the clear winner, so that with increasing p, the per-
formance gap between H2D and H1D widens, whereas the
performance gap between H2D and H3D closes. H3D

becomes the clear winner for the largest processor count
p¼900. These experimental results on speedup values con-
form with the relative performance variation of H1D, H2D
and H3D in different communication cost metrics as dis-
cussed earlier. Parallel SpGEMM algorithms are bandwidth
bound on smaller number of processors, whereas they
become latency bound on larger number of processor so
that H3D becomes the clear winner on p¼900 processor
even it incurs much more volume than both H1D and H2D.

Fig. 5 displays the average speedup curves (averaged
over all 20 C¼AA instances) for all of the five algorithms,
whereas speedup curves for each instance is given in
Appendix C, available in the online supplemental material.
As seen in Fig. 5, H2D achieves the best average speedup
performance up to p¼625 whereas it scales down on
p¼900. On the other hand, H3D continues to scale up to
p¼900 so that it achieves considerably higher average
speedup than H2D on p¼900. Observe that both R2D and
R3D achieve higher speedup than H1D for p�400.

Fig. 6 displays the speedup curves for two C¼AB instan-
ces. These instances constitute hard instances for intelligent
partitioning algorithms because of skewed nonzero distribu-
tions along rows and columns. As seen in the figure, H1D
scales only up to 100 processors,H2D scales up to 600 process-
ors, whereas H3D scales up to 900 processors. Even on these
hard instances, H2D and H3D achieve 6–15 and 5–10 percent
higher speedup thanR2D andR3D, respectively.

Fig. 7 displays the performance profiles [40] for parallel
SpGEMM times for all five partitioning methods for a more
comprehensive comparison. A test instance is defined as the
parallel running time obtained by an algorithm for a matrix
on a given number of processors. A point ðx; yÞ for an algo-
rithm in a profile denotes that the algorithm’s performance is

TABLE 3
Average Performance Comparison of H1D,

H2D and H3D Algorithms

Actual volume values (in thousands) are given in terms of input matrix non-
zeros and output-matrix partial results sent by processors.

Fig. 5. Average speedup curves for 20 C¼AA instances.

Fig. 6. Speedup curves for R-MAT C¼AB instances.
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within x factor of the best result obtained in y fraction of the
test instances. We compare the performances of algorithms
under three different processor count groups: small (p2f25;
100g), medium (p2f225; 400g) and large (p2f625; 900g). If
the profile of an algorithm is closer to the y-axis, its perfor-
mance is considered to be better.

Fig. 7 shows that for p2f25; 100g, H1D achieves the best
results on approximately 70 percent of the instances and its
performance is within a factor of 1.6 of the best results,
whereas H2D performs the best in 54 percent of the instances
and its performance is within a factor of 1.2 of the best results
in all instances. For p2f225; 400g, H2D is the clear winner
where it achieves the best in approximately 75 percent of the
instances and its performance is within a factor of 1.2 of the
best results in all instances. The second best performance is
achieved by H3D and the performance of H1D significantly
degrades in this processor group. For p2f625; 900g, H3D and
H2D respectively perform the best in 54 and 44 percent of the
instances, whereas performance of both algorithms are within
a factor of 1.5 of the best results in all instances.

As mentioned earlier, both 2D [18] and 3D [19] parallel
SpGEMM algorithms perform communication operations in
multiple stages through utilizing blocking factors to reduce
processors’ local memory requirements. In the proposed
hypergraph models, the partitioning objective which corre-
sponds to minimizing total communication volume also
corresponds to minimizing the total sizes of the local commu-
nication buffers used for send and receive operations. In other
words, the proposed hypergrahmodels already addressmini-
mizing the increase in the processors’ local memory require-
ments due to communication buffers. For example, for H2D
on p¼400, a single-stage communication scheme will incur
an average increase of only 84 percent (between 25–200 per-
cent) in processors’ local memory requirements. This justifies
the use of single-stage communications in our H2D and
H3D implementations since multi-stage communication will
increase the latency overhead significantly.

6 CONCLUSION

We proposed two novel hypergraph models that minimize
total communication volume requirements of successful

2D- and 3D-parallel SpGEMM algorithms. Different from
the previously proposed hypergraph models for 1D-parallel
SpGEMM algorithms, our methods regard the multidimen-
sional arrangement of processors and hence exploit the nice
upper bounds of 2D and 3D algorithms on latency costs. In
this way, our partitioning models provide much better opti-
mizations in terms of both bandwidth and latency costs.

The proposed cartesian workcube partitioning models
provide significant improvements on the scalability of 2D-
and 3D-parallel algorithms. As the number of processors
increase, the proposed partitioning models provide signifi-
cant improvements over 1D counterparts, since the latency
costs becomemore pronounced in the overall cost of commu-
nication at higher scales. Furthermore, improvements of the
proposed models become significantly higher for SpGEMM
instances that contain input matrices with dense rows/col-
umns. Dense rows/columns incur high communication costs
in terms of maximum communication volume handled by a
processor in 1D algorithms, whereas communication load
associated with such rows/columns are shared among multi-
ple processors in 2D and 3D algorithms.
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