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Temporal Workload-Aware Replicated
Partitioning for Social Networks

Ata Turk, R. Oguz Selvitopi, Hakan Ferhatosmanoglu, and Cevdet Aykanat

Abstract—Most frequent and expensive queries in social networks involve multi-user operations such as requesting the latest tweets or
news-feeds of friends. The performance of such queries are heavily dependent on the data partitioning and replication methodologies
adopted by the underlying systems. Existing solutions for data distribution in these systems involve hash- or graph-based approaches
that ignore the multi-way relations among data. In this work, we propose a novel data partitioning and selective replication method that
utilizes the temporal information in prior workloads to predict future query patterns. Our method utilizes the social network structure
and the temporality of the interactions among its users to construct a hypergraph that correctly models multi-user operations. It then
performs simultaneous partitioning and replication of this hypergraph to reduce the query span while respecting load balance and I/O
load constraints under replication. To test our model, we enhance the Cassandra NoSQL system to support selective replication and
we implement a social network application (a Twitter clone) utilizing our enhanced Cassandra. We conduct experiments on a cloud
computing environment (Amazon EC2) to test the developed systems. Comparison of the proposed method with hash- and enhanced
graph-based schemes indicate that it significantly improves latency and throughput.

Index Terms—Cassandra, social network partitioning, selective replication, replicated hypergraph partitioning, Twitter, NoSQL.
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1 INTRODUCTION

Social networks have fast-growing, ever-changing dy-
namic structures and strict availability requirements.
These challenges are partially handled by emerging so-
lutions such as NoSQL (Not Only SQL) systems [1],
which use data partitioning and replication to achieve
scalability and availability. In these systems, the general
approach is to use hash-based partitioning and random
replication of data. This approach ignores the relations
among the data and often leads to redundant replica-
tions and significant communication overheads during
query processing, which in turn leads to performance
degradation [2], [3], [4], [5].

Recently, a number of approaches based on mod-
eling the social network structure and user interac-
tions have been proposed [4], [6], [7] to alleviate
the shortcomings of hash-based partitioning and ran-
dom replication schemes. These approaches try to cap-
ture the interactions between social network users
via two-way relations, e.g., edges in graphs. On the
other hand, most common social network operations
such as propagating a user’s tweets to all of his
followers, requesting the latest tweets of followed
users, collecting the latest news-feeds of Facebook
friends, or sharing/commenting/liking a news-feed are
all expand-/gather-like operations that require multi-
casting/gathering of data to/from multiple users in a
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Fig. 1. User ui’s tweet is propogated to his followers. (a)
Graph model and (b) Hypergraph model for this operation.

single operation. These popular social network opera-
tions generally tend to be more expensive than oper-
ations that only involve bilateral interactions. In this
study, we claim and show that hypergraphs are more
suitable for modeling these multi-user operations, since
they can inherently model multi-way interactions via
hyperedges. We also show that performing partitioning
and replication in a single phase enables more accurate
cost prediction and better load balancing.

There are a number of problems with graph-
partitioning-based models and we adress these problems
using our replicated hypergraph partitioning model. We
first present a simple example in Fig. 1 to illustrate why
hypergraphs are more suitable for capturing multi-user
operations. In this example, user ui tweets and this tweet
is propagated to his followers. This can be done by
communicating the tweet data to servers S1, S2, and S3.
The graph representation of this operation in Fig. 1(a)
observes a cut of six, wrongly assuming that ui’s tweet
has to be sent to S2 and S3 three times each, where only
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a single message suffices for each server. As shown in
Fig. 1(b), hypergraph model captures this operation’s
cost via a net with a connectivity of three, correctly
modeling the number of activated servers (or the span).

More importantly, graph model cannot accurately
model the effect of replication on the span of multi-user
operations. For example, in Fig. 1, replicating up from
S3 to S1 does not reduce the span of the query, but it
removes an edge in the graph model, wrongly giving an
impression of improvement. To alleviate this deficiency,
one-hop replication schemes are proposed [2], [3]. In
these schemes, by replicating all boundary vertices, the
span of all queries are reduced to one, but in turn, over-
heads associated with write operations increase severely.

It is not vital to enforce the span of all queries to
one. Solutions that benefit from reasonable span reduc-
tions with low update overheads can provide better
system performance. Such solutions can be obtained by
performing partitioning and replication decisions at the
same time in harmony. In fact, studies like [7] try to
achieve this by augmenting graph models. However,
the deficiency of graph models in representing multi-
way relations hinders their effectiveness in exploring
replication solutions as well. For example, in Fig. 1,
replicating up, uq, ur from S3 to S2 does reduce the span
of the query by one and hypergraph model can correctly
observe this reduction, whereas, the graph model cannot
foresee to perform such a replication, since it is not aware
of the relation between S2 and S3 due to this query. If
partitioning and replication are performed in seperate
phases, load balancing efforts made during partitioning
can be futile, since based on replica selection decisions,
certain servers can be highly loaded. To alleviate such
problems, we consider a close-to-optimal query schedul-
ing algorithm while performing replicated partitioning,
and hence observe true balancing and cost estimations
at the end of our replicated partitioning scheme.

Query processing performance of social networks has
a direct influence on their success. In our empirical
analysis, we observe that (i) server load imbalance,
(ii) the total number of I/O operations (read and write
operations), and (iii) the number of servers processing a
query (query span), have direct correlation with the per-
formance of the system. Thus, we focus on these metrics
for possible improvements in query performance.

In this work, we propose a selective partitioning and
replication method for data distribution in social net-
works by utilizing the workload and time information.
Our method uses a novel hypergraph model (called
the temporal activity hypergraph model) to represent
the social network structure and interactions among its
users. This model values the time of interactions between
users and predicts the interactions that are likely to
occur in the near future. We show that simultaneous
partitioning and replication (replicated partitioning) of
this hypergraph model can accurately capture the ob-
jective of reducing the span of multi-user queries, sub-
ject to load balance and replication constraints. After

performing a replicated partitioning of this hypergraph
model, we decode the obtained result as a data-to-server
mapping. This scheme greatly reduces the average query
span while balancing the server loads. It also limits the
amount of increase in I/O load due to replications by re-
specting to a user-provided threshold on the replication
amount and by performing selective replication.

To test the proposed data distribution method, we first
introduced selective replication capabilities to Cassandra
NoSQL system [8]. Then we implemented a Twitter clone
via adapting the Twissandra project [9] to make use of
this enhanced system. We tested our Twitter clone on
Amazon EC2 cluster under social network loads derived
from actual Twitter data (including connections and
interactions over time) to show the benefits of the pro-
posed data distribution method. Even though we vali-
date our approach on a Twitter-like system, the proposed
method is applicable to other social network applications
that frequently utilize multi-user operations.

The rest of the paper is organized as follows. Section 2
presents a background on technologies used in social
networks and replicated hypergraph partitioning. Moti-
vating insights and problem definition are presented in
Section 3. Section 4 presents and discusses the proposed
temporal activity hypergraph model. Replicated parti-
tioning of the proposed hypergraph model is discussed
in Section 5. In Section 6, we compare the proposed ap-
proach against the state-of-the-art approaches. Section 7
covers related studies. Finally we conclude in Section 8.
2 BACKGROUND & SYSTEM ARCHITECTURE

2.1 Partitioning and Replication in NoSQL Systems
Most NoSQL systems use either hash-based or range-
based (or a blend of the two) partitioning schemes. In
range-based partitioning, the keyspace is divided into
ranges and each range is assigned to a server and
potentially replicated to others. The main advantage
of range-partitioning is that two consecutive keys are
likely to appear in the same partition, which is beneficial
when range scan type queries are frequent. Range-based
partitioning schemes generally maintain a map that
stores information about which servers are responsible
for which key ranges. Hash-based partitioning simply
uses the hash of data to determine the responsible server
for storing that data. Consistent hash rings are a blend of
range- and hash-based partitioning schemes and many
NoSQL systems such as Cassandra [8], Dynamo [10],
Voldemort [11], and Riak [12] adopt this scheme.
2.1.1 Partitioning and Replication in Cassandra
Servers in a Cassandra cluster can be considered to be
located around a ring and the data stored is distributed
according to this ring analogy. The ring is divided into
ranges and each server is responsible for one or more
ranges. When a new server joins Cassandra, it is as-
signed a new token, which determines its position on the
ring and the range of data it is responsible for. Column
family (cf) data is partitioned across servers based on
the row key (horizontal partitioning). Each server is
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responsible for the region of the ring between itself and
its predecessor in token order.

There are two basic partitioning strategies employed
in Cassandra: Random Partitioning, which partitions the
data using the MD5 hash of each row key, and Ordered
Partitioning, which stores the row keys in sorted order
across servers. Once a Cassandra cluster is initialized
with a partitioning strategy, this strategy cannot be
changed without reloading all the data to the system.
When a data is inserted and assigned a row key, a
copy of this data is replicated for a fixed number of
times (replication factor) across servers based on the pre-
ferred replication strategy. Default replication strategy
in Cassandra is RackUnawareStrategy, which places the
original data on the server determined by the partitioner.
Additional replicas are placed on the following servers
in the ring with respect to token order.
2.1.2 Writes, Reads, and Consistency in Cassandra
Cassandra is designed for providing fast and available
writes. A write is first inserted into a commit log for
durability, then to an in-memory table structure called
memtable, and then it is acknowledged as successful.
Periodically, the writes collected in the memory are
dumped to the disk in a format called SSTable (sorted
string table). SSTables are immutable and thus different
columns of the same row can be stored in different
SSTables. Due to this fast write mechanism, reads in
Cassandra are costlier. When a read for a row is issued to
Cassandra, the row must be collected from the unflushed
memtables and the SSTables containing the columns of
the requested row. In background, Cassandra periodi-
cally merges SSTables to form larger SSTables. During
this merge process, row fragments are collected together
and deleted columns are removed.

In a distributed system with replicas, consistency is-
sues arise in realizing write and read operations. Cas-
sandra is eventually consistent, i.e., in sufficient time,
all writes are applied to all replicas making all repli-
cas eventually consistent. The write consistency level
specifies the number of replicas a write must succeed
before returning an acknowledgement. Similarly, the
read consistency level specifies the minimum number
of replicas for which the result of the read must be
agreed upon before generating a response. Write/read
consistency levels can be determined according to the
sensitivity of the used application to reading stale data
and its need for fast query processing.
2.1.3 Twitter on Cassandra
To test our proposed method and enhanced Cassan-
dra system on a real-world application, we modified
Twissandra [9], a project that provides a fully-working
Twitter clone. In Twissandra, the data is stored in Cas-
sandra and in terms of data partitioning and replication
decisions, scaling Twissandra carries most fundamental
problems observed in scaling Twitter. Twissandra data
model consists of six column families: USER: Stores user
information; key for each row is username and columns

contain user details such as passwords, gender, phone,
email, etc. FRIENDS: Stores the users that are followed
by a user (friends); key for each row is the username
and columns are the usernames of the friends, which
are the users followed by the user in the row key.
FOLLOWERS: Stores the followers of a user; key for each
row is the username and columns are the usernames of
the users that follow the user in the row key. TWEET:
Stores the tweets; key for each row is a unique tweet
ID and columns are the tweet body and the username
of the tweeting user. TIMELINE: Stores the tweets of a
user’s friends; key for each row is the username, column
names are timestamps, and column values are tweet IDs.
USERLINE: Stores all the IDs of a given user’s tweets;
key for each row is the username, column names are
timestamps and column values are tweet IDs.

Using this data model, it is possible to implement
most of the existing functionalities in Twitter. We mainly
investigate the operations performed when a user tweets
(which is propagated to his followers), and when a user
checks his homepage for the latest tweets of his friends
(here, a “friend” is somebody that a user follows). These
are multi-user operations. The former operation is a
multi-write request (also referred as a write request) and
requires (i) insertion of a tweet to the TWEET cf, (ii)
addition of the unique tweet ID into the USERLINE cf
of the tweeting user, and (iii) addition of the unique
tweet ID into the TIMELINE column families of the
followers of the tweeting user. The latter operation is
a multi-read request (also referred as a read request)
and requires (i) a lookup for the latest tweet IDs in a
user’s respective row at the TIMELINE cf and then (ii)
the retrieval of the tweets for those tweet IDs from the
TWEET cf. We choose to model these operations since
they are representative of the most frequent multi-user
operations in social networks [13]. Note that a read
request and a write request consist of a set of individual
read and write operations, respectively.

Our Cassandra-based Twitter-clone is designed such
that, both multi-reads and multi-writes require multi-
way interactions. This is because, in our data model
we assume that actual tweet data is only stored in the
servers where the tweeting user is stored, and it is not
replicated in follower TIMELINEs. There can be other
application implementations which choose to do only
“pushes” (by storing the actual tweet data instead of the
tweet id on all followers’ TIMELINEs) or only “pulls”
(by not storing tweet id’s at all on followers’ TIMELINEs,
which would necessitate a sorting and selection for find-
ing recent tweets). We opted to use a “mixed” strategy
since, first we believe that replicating actual tweet data
(or feed data) on all followers can be quite expensive
(considering tweets or feeds may contain large pieces of
data such as pictures or videos), and second we want
to show that our approach can capture the underlying
interactions for both pull- and push-based applications.
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2.2 Hypergraph Partitioning and Replication

A hypergraph H=(V,N ) is defined as a set V of ver-
tices and a set N of nets (hyperedges), where each
net connects a number of distinct vertices. The vertices
connected by a net nj are said to be its pins (Pins(nj)).
A cost c(nj) and a weight w(vi) may be associated with
a net nj∈N and a vertex vi∈V , respectively.

Π={V1,V2, . . . ,VK} is said to be a K-way partition of
a given hypergraph H, if parts are mutually disjoint and
collectively exhaustive. In Π, a net is said to connect a
part if it has at least one pin in that part. Connectivity
set Λ(nj) of a net nj is the set of parts connected by nj :

Λ(nj) = {Vk : Vk ∩ Pins(nj) 6= ∅} (1)

The connectivity λ(nj)= |Λ(nj)| of a net nj is the number
of parts connected by nj . A net nj is said to be cut if
λ(nj) > 1 and uncut otherwise.

In the Hypergraph Partitioning (HP) Problem, given a
hypergraph H=(V,N ) and an imbalance ratio ε, we want
to find a K-way vertex partition Π of V that optimizes
a partitioning objective defined over the nets, while sat-
isfying a given partitioning constraint. The partitioning
constraint is to maintain the balance criteria on part
weights, i.e., W (Vk) ≤Wavg(1+ε), for k=1, . . . ,K. Here,
the weight W (Vk) of a part Vk is defined as the sum
of the weights w(vi) of the vertices in Vk, Wavg is the
average part weight (Wavg = W (V)/K), and ε is the
maximum allowed imbalance ratio.

In the HP problem, the partitioning objective is to
minimize the cutsize based on the connectivity metric

χ(Π) =
∑

nj∈N
c(nj)λ(nj), (2)

defined over the set of nets N .
The HP problem is known to be NP-hard [14],

[15]. Fortunately, there are successful HP tools (e.g.,
hMETIS [16] and PaToH [17], [18]) that implement ef-
ficient and effective heuristics.

ΠR ={V1,V2, . . . ,VK} is said to be a K-way replicated
partition of a given hypergraph H, if vertex parts are
collectively exhaustive. Note that parts need not be
pairwise disjoint.

In the Replicated Hypergraph Partitioning (RHP) Prob-
lem [19], given a hypergraph H= (V,N ), an imbalance
ratio ε, and a replication ratio ρ, we want to find a K-way
replicated partition ΠR that minimizes the cutsize de-
fined in Eq. 2, while satisfying the following constraints:

• Balancing constraint: Wmax ≤ (1 + ε)Wavg , where
Wmax =max1≤k≤KW (Vk) and Wavg =(1+ρ)W (V)/K.

• Replication constraint:
∑K

k=1W (Vk) ≤ (1 + ρ)W (V)

In RHP, using Eq. 1 for calculating connectivity of a
net may not be exact due to vertex replications. The
replicated connectivity ΛR(nj) of a net nj can only be
defined after solving a pin selection (or replica selec-
tion) problem [19]. Λ(nj) is a superset of ΛR(nj). So,
λR(nj) = |ΛR(nj)| ≤ λ(nj). Pin (replica) selection for a

net corresponds to selecting a set of parts whose vertices
cover all pins of that net. In RHP, connectivity of a net
is defined as the set of covering parts. Note that finding
the minimum set of covering parts is NP-hard [20].

The cutsize definition for the RHP problem can be
obtained by replacing λ(nj) with λR(nj) in Eq. 2. We
explain how we address the pin selection problem in
detail in Section 5.2.

3 MOTIVATION AND PROBLEM DEFINITION
3.1 Motivating Insights

We devised a number of experiments to understand
the effects of various metrics on multi-user query per-
formance. In these experiments, more than two million
read/write requests are directed to a 16-node Cassandra
system using the standard hash-based data distribution.
As a result, we observed three critical metrics for further
exploration of their effects on system performance.

Metric 1, Server load imbalance: Load imbalance has
a negative impact on the performance of a distributed
system. In Fig. 2(a), we display this negative impact on
system latency and throughput. Note that high imbal-
ances in token ranges are usual in NoSQL systems such
as Cassandra due to random server-token generation.
Even though there are ways to achieve more uniform
range distributions, due to skewed query distributions,
imbalance in randomized partitioning methods that do
not utilize query logs is pretty common. As seen in
the figure, as the imbalance increases, the overall query
latency tends to increase and the overall system through-
put tends to decrease.

Metric 2, I/O load: Increasing replication can cause
increases in read/write latencies due to consistency re-
quirements. Even in an eventually consistent system,
whenever a user data is replicated, all write requests
to that user’s data must be (eventually) propagated
to all replicas, which causes an increase in the total
amount of I/O operations performed by the system
when compared with an unreplicated scenario. This may
have a negative effect not only on the write performance
but also on the overall system performance as well. In
Fig. 2(b), we display the impact of increased replication
on the I/O load and system latency. As seen in the figure,
as the replication factor increases, the I/O load and the
overall query latency tend to increase as well.

Metric 3, Number of servers processing a query (query
span): Several studies already indicate that minimizing
query span also minimizes query latency [2], [3], [4], [5],
[6], [7]. In Fig. 2(c), we display the correlation between
the query span and latency. As seen in the figure, as
the number of servers processing a query increases,
the latency tends to increase. Similar experiments with
different number of nodes and with different query loads
exhibit similar patterns.

3.2 Problem Definition

In this study, we utilize the social network and interac-
tions between users to predict the user actions that are
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Fig. 2. Investigated metrics and their effects on latency.

likely to occur in the near future. Using these predictions,
we perform a selective replicated partition of the user
data. Given the metrics presented in Section 3.1, our
problem definition is as follows:

Definition Selective Replicated Partitioning for Mini-
mized Server Interaction Problem: Given a set U of users,
a setQ of queries, K homogeneous servers, an imbalance
ratio ε, and a maximum allowed replication percent
ρ, find a user-to-server placement that minimizes the
average query span in Q, while balancing the number of
queries processed by each server (within the imbalance
ratio ε) and increasing the I/O load (when compared to
an unreplicated scenario) by at most ρ percent.

In order to address this problem, we perform a repli-
cated partitioning of the constructed hypergraph and
interpret the partition result as a solution to the Selective
Replicated Partitioning for Minimized Server Interaction
Problem. To test our solution, we enhance the Cassandra
NoSQL system, design a Twitter clone utilizing the en-
hanced Cassandra, and compare the performance of our
solution on Amazon EC2 with existing solutions. Note
that we assume a single datacenter setting.

4 TEMPORAL ACTIVITY HYPERGRAPH MODEL
4.1 Model Input
We are given a log Q of queries and the log contains
information on the timing of the activities. We divide the
activities into time periods and utilizing the activities in
the previous periods, we aim to identify the pattern and
frequency of the activities that are likely to occur in the
next period. We then partition and replicate data accord-
ing to this prediction. The time periods can be months,
weeks, days, or even hours. The model appraises the
activities in recent periods more than the activities in
older periods and appraises all activities that occur in the
same period equally. The selection of these time periods
also determines the frequency of partitioning actions.

We assume that the time span T of the activities in
the log is divided into T = |T | time spans, that is
T = {t1, t2, . . . , tT }, where t1 denotes the earliest time
period and tT denotes the most recent time period in the
log. We also assume that the log Q consists of a set R=
{r1, r2, . . .} of read requests and a set W = {w1, w2, . . .}
of write requests. That is, Q = R ∪ W . A read request

necessitates the retrieval of a fixed number (e.g., m) of
latest tweets of a user’s friends. These type of requests
are issued whenever a user checks his homepage in Twit-
ter and thus they are pretty common. A write request
necessitates the update of a user’s and his followers’
data. These type of requests are issued whenever a user
tweets and thus they are also pretty common.

Each read request rj∈R has attributes: user(rj),
time(rj), and participants(rj). Here, user(rj) denotes
the user that issues rj , and time(rj) denotes the time
of rj . participants(rj) denotes the set of users whose
tweets are returned to user(rj) in response to rj . That is,
participants(rj) corresponds to the set of users followed
by user(rj) and has at least one tweet in the set of most
recent m tweets user(rj) can retrieve at time(rj).

Each write request wj∈W has attributes: user(wj),
time(wj), and participants(wj). Again, user(wj) denotes
the user that performs wj , and time(wj) denotes the time
of wj . participants(wj) denotes the set of users who
receive the tweet made by user(wj) at time(wj). That
is, participants(wj) corresponds to the set of users who
follow user(wj) at time(wj).

4.2 Model Construction

For a given log Q=R∪W , the construction of the tem-
poral activity hypergraph H(Q)=(V,N=N r∪Nw) is per-
formed as follows. For each user ui, there exists a vertex
vi in V . For each read request rj ∈ R, there exists a read
net nrj in N r. For each write request wj ∈ W , there exists
a write net nwj in Nw. A read net nrj connects the vertices
corresponding to the users in participants(rj). A write
net nwj connects the vertex for user(wj) and the vertices
corresponding to the users in participants(wj). That is,

Pins(nrj)={vi : ui ∈ participants(rj)}.
P ins(nwj )={vi :ui∈participants(wj)} ∪ {vi :ui =user(wj)},

Note that a write net nwj connects the vertex for user(wj)
since wj must be propagated to the server storing
user(wj), whereas a read net nrj does not connect the
vertex for user(rj) since rj gathers data only from
friends of user(rj). Also note that the degree of each
read net nrj can be at most m under the assumption that
upon visiting their homepages users are served the latest
m tweets of their friends.
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Fig. 3. Modelling read and write requests.
The relations between read/write requests and nets

are depicted in Fig. 3. In Figs. 3(a) and 3(b), squares
represent users. Fig. 3(a) shows the social network of
a sample user ui at two different time periods t1 and
t2. At time t1, ui follows users u1–u5 and is followed
by users u4–u8, and at time t2, ui follows users u2–u6
and is followed by users u6–u9. Fig. 3(b) illustrates two
sample write scenarios, where ui tweets at t1 and t2.
After the tweet, the data of ui and his followers are
updated. Note that the set of users that receive ui’s
tweets may change in time due to the changes in the
social network structure. Fig. 3(b) also illustrates two
sample reads, where ui checks his homepage at t1 and t2
and receives the latest tweets of his friends. We assume
only the latest m tweets of the friends of a user are
returned as a response to a read request (m = 4 in
this example). Depending on the activities of friends and
social network of ui at the time of the request, the set of
users whose tweets are returned to ui can change.

Fig. 3(c) shows the temporal activity hypergraph that
models the read and write requests of Fig. 3(b). As
seen in the figure, the temporal hypergraph successfully
distinguishes the read and write requests performed
by the same user in different time periods by placing
separate nets for such requests.

Apart from forming the structure of the hypergraph
model, temporality also comes into play in setting ver-
tex weights and net costs. We use a decay factor α(t)
to impose an order of precedence among read/write
requests in different time periods so that requests in
recent periods have higher importance. Hence, the costs
of nets representing these recent queries and the weights
of vertices representing users who are active in the recent
periods are assigned higher values. In this study we use
the decay function proposed in [4]. For time period t, the
decay factor α(t) is computed as α(t) = |Qt∩QT |

|QT | , where
Qt denotes the set of queries in time period t. The decay
function only affects the costs of nets and weights of
vertices, thus our model can be coupled with any other
decay function (e.g., exponential smoothing [21]).

The cost c(nj) of a net nj associated with a read
request rj or a write request wj is set equal to the decay
factor for the time period time(rj) or time(wj) to reflect
the closeness of the associated request to the current
time, i.e., c(nrj) = α(time(rj)) and c(nwj ) = α(time(wj)).
The weight w(vi) of a vertex vi is set to reflect the
total amount of activity ui is expected to perform and
is computed as w(vi) =

∑
nj∈Nets(vi)

c(nj).

5 REPLICATED PARTITIONING OF TEMPORAL
ACTIVITY HYPERGRAPH

5.1 Replicated Partitioning of H(Q)

A K-way replicated partition ΠR of the temporal activity
hypergraph H(Q) can be used in replicated placement
of user data in a distributed system. That is, a K-way
replicated partition ΠR = {V1,V2, . . . ,VK} of H(Q) is
decoded to induce a K-way user-to-server mapping as
follows: The set of users and their data corresponding to
the set of vertices in Vk are assigned to server Sk. In other
words, for each vertex vi∈Vk, Sk is held responsible for
storing the data associated with user ui.

With the cost and weight schemes described in Sec-
tion 4.2, maintaining the partitioning constraint of bal-
anced part weights is expected to balance the number
of read and write requests that will be processed by the
servers in the next time period (Metric 1). Maintaining
the replication constraint is expected to limit the amount
of increase in I/O load due to replicated data (Metric
2). Optimizing the partitioning objective of reducing
cutsize is expected to minimize the average query span
in the next time period (Metric 3), thus minimizing the
distributed query processing overhead.

Consider a read net nrj with ΛR(nrj) for a given ΠR. If
ΛR(nrj) = {Vk}, then nrj is uncut and internal to Vk. This
implies that all users contributing to the latest tweets
that are retrieved by the read request rj are grouped in
server Sk, and Sk can process rj by using only local data.
On the other hand, if a net nrj is cut with connectivity
set ΛR(nrj), this implies that, due to replica selection,
the servers corresponding to the parts in ΛR(nrj) will
process rj . So, λR(nrj) = |ΛR(nrj)| denotes the number of
distinct servers that will process rj . Thus, minimizing
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the objective in Eq. 2 with λ(nj) replaced by λR(nrj)
corresponds to minimizing the span of read requests.

Consider a write net nwj with Λ(nwj ) and ΛR(nwj ) for a
given ΠR. Even though acknowledging a write request
on one server is enough for processing it, the write is
propagated to all replicas eventually causing an increase
in the I/O loads of all servers storing a replica. Thus,
unlike a read net nrj which contributes to the loads of the
servers corresponding to the parts in ΛR(nrj), a write net
nwj contributes to the loads of the servers corresponding
to the parts in Λ(nwj ). So, the discussion given for a read
net nrj in the previous paragraph can be made for a write
net nwj by replacing ΛR(nrj) with Λ(nwj ) as follows. wj

enforces the system to perform write operations on all
servers that store replicas of the users corresponding to
the pins of nwj . Thus, the servers corresponding to the
parts in Λ(nwj ) are involved in processing wj . That is,
minimizing the objective in Eq. 2 with λ(nj) = λ(nwj )
corresponds to minimizing the span of write requests.

Consequently, the cutsize definition that covers both
read and write nets can be formulated as

χ(ΠR) =
∑

nw
j
∈Nw

c(nwj )λ(nwj ) +
∑

nr
j
∈N r

c(nrj)λR(nrj). (3)

Fig. 4 shows the temporal activity hypergraph
H(Qsample) corresponding to the sample log Qsample

of read and write requests given in the figure. In this
example, we assume that all requests are assumed to be
performed in the same time period for simplicity.

Fig. 5 shows a four-way replicated partition ΠR of the
hypergraph in Fig. 4 after pin selection is applied on read
nets. In the figures, empty circles represent unreplicated
vertices, shaded and dashed circles represent replicated
vertices and small black dots represent nets. Numbers in
circles indicate vertex weights. Since we assume that all
requests are performed in the same time period, the nets
can be considered to have unit costs. Due to the costs of
the nets they are connected, the weights of vertices are
w(v1)=2, w(v2)=3, w(v3)=4, w(v4)=2, w(v5)=2, w(v6)=4,
w(v7)=1, and w(v8)=1. Considering these vertex weights,
the part weights for the four parts in Fig. 5 are W (V1)=8,
W (V2)=7, W (V3)=10, and W (V4)=6.

Write nets nw1 and nw2 are cut with connectivity
λ(nw1 ) = λ(nw2 ) = 4, thus each incurring a cost of four to
the cutsize. Among read nets, nr1, nr2, and nr4 are internal
and thus each incur a cost of one, whereas net nr3 is cut
with connectivity λR(nr3) = 2 and thus incurs a cost of
two. The cutsize according to Eq. 3 is 4+4+1+1+1+2=13.

If we decode the four-way replicated partition ΠR

as a four-way user-to-server mapping, then both write
requests w1 and w2 necessitate writes on servers S1, S2,
S3, and S4. Replication of v2 and v3 to V1 makes net nr1
internal to V1 enabling r1 to be processed locally on S1.
Similarly, replication of v3 to V4 enables read request r2
to be processed locally on S4, and replication of v3 and
v6 to V3 enables read request r4 to be processed locally
on S3. Also, replication of v2 and v6 to V2 enables r3 to
be processed only on two servers (S2 and S4). Thus, total
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Fig. 5. A four-way replicated partition of H(Qsample). The
dashed, red-filled circles indicate replicated vertices.

number of servers processing queries in Qsample is equal
to 13, which is equal to the cutsize.

The resultant replicated partition provides a user-to-
server mapping. In our evaluations, we utilize this map-
ping to generate a horizontal partition of the Twissandra
column families. To be more precise, the user partition
induces a partition of all cfs of Twissandra. It is clear
that a partition of users implies a row-based partition
of the USER, FRIENDS, FOLLOWERS, TIMELINE, and
USERLINE column families since the row keys for all
these cfs are the username (Section 2.1.3). The partition-
ing of TWEET cf is performed according to the username
of the tweeting user. In the end, each user’s personal
information, friends, followers, userline, timeline and
tweets are stored on the same server(s).
5.2 Replica Selection
When user data is replicated, the problem of selecting
which replicas to use arises during query processing. The
objective of replica selection is to minimize the span of a
read query in a replicated environment. In HP-theoretic
view the replica selection problem corresponds to the
pin selection problem.

The pin selection problem can be formulated as a set
cover problem. An instance (X ,F) of the set-cover problem
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consists of a finite set X and a family F = {X1, X2, . . . , }
of subsets of X , which cover X (i.e., X =

⋃
Xi∈F Xi),

and the problem is to find a minimum-size subset C⊆F
whose members cover all of X . The transition from
the pin selection problem to the set cover problem can
be done as follows: For a net nj in a given replicated
partition ΠR of H(Q), X is set equal to the set of pins of
nj , and the family of subsets F is set equal to the subsets
of the pins of nj that reside in the parts of Λ(nj). i.e.,

X = Pins(nj)

F = {Xk : Xk = Pins(nj) ∩ Vk, where Vk ∈ Λ(nj)}
Note that the number of subsets in F is equal to λ(nj).
For a net nj , after the above transition, the solution C
to the defined set-cover problem is then decoded as a
solution ΛR(nj) of the replica selection problem.

The set-cover problem is known to be NP-hard [20].
We use a simple (ln(n) + 1)-approximation algo-
rithm [19], [20] to solve the pin selection problem. For a
net nj , this greedy heuristic first selects the part/subset,
say Xk, in Λ(nj) that contains the largest number of
uncovered pins of nj , then includes this Xk into C(nj),
and then eliminates the vertices covered by Xk from X .
Selection and elimination processes are repeated till there
remains no uncovered vertices. We should note that X
may contain unreplicated vertices. So prior to executing
the above heuristic, the unreplicated vertices and their
respective vertex parts (subsets) are pre-selected for the
sake of runtime efficiency. The resulting set cover C(nj)
for net nj is decoded as follows to induce ΛR(nj):

ΛR(nj) = {Vk : Xk ∈ C(nj)}.
After pin selection, ΛR(nj) determines the set of

servers that will process rj . That is, for each Vk∈ΛR(nj),
server Sk will process rj . Replica selection can be per-
formed at a gateway node accepting user queries on
behalf of Twitter and directing them to Cassandra.

6 EXPERIMENTAL RESULTS

To evaluate the proposed method for achieving repli-
cated partitioning of social networks, we embedded a se-
lective partitioning and replication scheme into Apache
Cassandra version 0.8.7. We also modified Twissan-
dra [9] to utilize our enhanced Cassandra, and obtained
a Twitter-like system, where the social network structure
and user tweets are stored by Cassandra. We tested this
Twitter clone on the Amazon Elastic Computing Cloud
(EC2), which provides Linux-based virtual machines (in-
stances) running on top of the Xen virtualization engine.

6.1 Experimental Setup
6.1.1 Dataset
In our experiments we made use of the Twitter dataset
from [22]. This dataset was crawled from Twitter be-
tween October 2006–November 2009 and contains tweets
of 465,107 distinct users. The crawl was seeded from
a set of genuine (or authoritative) users collected from

Mashable1. The social graph of the seed set was ex-
panded by following friendships of the users. The tweets
of these users were collected every 24 hours. Among
these users there are 836,541 social relationships and the
dataset contains a total of 25,378,846 tweets. Within this
dataset, we selected one year’s worth of queries, used
the first eleven months for modeling, and the last month
for evaluations. Specifically, we made use of 8,105,164
tweets made between November 2008–September 2009
for constructing the temporal activity hypergraph model
and the alternative graph models. Since social relation-
ships of some users were missing in the original dataset,
we recrawled these social relationships between 10–14 of
September 2012. This recrawl added 80,523 new social
relationships to our dataset making a total of 917,064
social relationships. The investigated data distribution
methods are tested with the tweets made in October
2009, which contains 1,882,256 tweets.

Since the Twitter dataset from [22] only contains
tweets and social relations, and does not contain any
read queries, we designed the following method to
generate read queries. For each user, we go over the log
of tweets in increasing time order to count the number
of new tweets received by that user and whenever
this count exceeds a certain number (set to two in our
experiments), a read request for the last 40 tweets of
that user is generated, if the number of distinct users
in the last 40 tweets is greater than a threshold (set to
two in our experiments). There are two main motiva-
tions behind this query generation method. First, we
expect there to be a correlation between the number
of tweets a user receives and the number of times he
checks his homepage. Second, by default, Twitter sends
reminder/informer emails to a user who has a number
of unread tweets and has not logged-in to the system
for a while, which occasionally causes users to login to
Twitter upon receipt of such emails.

Generated read queries are interleaved with write
queries based on time information. The interleaved
query set for November 2008–September 2009 period
contains 5,300,407 read and 8,105,164 write queries and
the interleaved query set for October 2009 contains
1,429,303 read queries and 1,882,256 write queries.

We assume that a user visiting his homepage retrieves
the latest m=40 tweets of his friends. On average, a read
query contains 39.8 individual read and a write query
contains 3.9 individual write operations.

6.1.2 Amazon EC2 Setup
EC2 instances are classified based on their memory,
CPU, network, and I/O characteristics. In our experi-
ments, we used the m1.medium instances for Cassandra
servers, and the t1.micro instances for the Twissandra
system and submitting queries (called submitters). The
properties of these instance types are given in Table 1.
One EC2 Compute Unit provides the equivalent CPU

1. http://mashable.com/2008/10/20/25- celebrity-twitter-users/
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capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor [23]. Since EC2 instances are virtual servers,
they share resources with other virtual servers.

TABLE 1
Properties of used EC2 instance types.

Instance Type Micro Medium

Memory 613 MB 3.75 GB
CPU (EC2 Comp. Unit) 1 2

Storage EBS storage 410 GB
I/O Performance Low Moderate

API Name t1.micro m1.medium

We used instance store volumes instead of EBS vol-
umes for storage in Cassandra servers to avoid varia-
tions that might occur in EBS during I/O operations. In
order to model a single-datacenter setting, we selected
all Cassandra servers from the same region (us-east-1a).
Instead of using multiple submitter threads from a single
machine, we opted to create multiple EC2 submitter
instances to more closely emulate distributed multiple
users, since threads from the same machine would not
have great variations in terms of network overhead.
6.2 Alternative Methods for Comparison
We compare the performance of the proposed repli-
cated hypergraph-partitioning-based data distribution
method (RHP) with the standard hash-based mapping
of Cassandra (HASH), a graph-partitioning-based scheme
(GP/L) that extends the approach in [3] to utilize
query logs, a further extended graph-partitioning-based
scheme (GP/T) that utilizes the temporal information
in user interactions in the same way we do in RHP,
and a third graph-partitioning-based scheme called
SCHISM [7] (SCH), which achieves data distribution with
a unified partitioning and replication approach.

Details of HASH and RHP are given in Section 2.1.1 and
Section 4, respectively. Both GP/L and GP/T construct a
graph model from the social network structure [3]. In
GP/L, we extend the graph model to utilize the query
logs by weighting its edges. For each write query wj ,
we increment the weight of each edge (user(wj), uk),
where uk ∈ participants(wj), by one. Similarly, for each
read query rj , we increment the weight of each edge
(user(rj), uk), where uk ∈ participants(rj), by one. In
GP/T we further extend GP/L so that contributions of
interactions to edge weights are scaled utilizing the
decay factor used in RHP (Section 4.2). In both GP/L and
GP/T, after partitioning, one-hop replication strategy [3],
[6] is utilized to achieve replication.

In SCH, each user is represented by a vertex and
the edges are used to capture the relations among the
users of a query. The users that interact in a query are
modeled with a completely connected subgraph, which
is then incorporated into the original graph by adding
new edges/vertices. Replication in SCH is achieved by
exploding vertices into star-shaped structures in the
graph prior to partitioning. All three graph models are
partitioned with the multilevel graph partitioning tool
MeTiS [24]. After partitioning, replicas of a vertex that
belong to the same part are collapsed into a single vertex.

TABLE 2
Preprocessing overheads (secs).

K GP/L GP/T SCH RHP

8 634.6 636.1 2687.6 882.6
16 641.6 642.3 3064.1 1130.3
32 650.5 651.6 3778.8 1436.2

In RHP, for replicated partitioning of the proposed
hypergraph model, we used the rpPaToH tool [19].
rpPaToH is capable of replicating vertices of a hyper-
graph during the partitioning process in order to im-
prove a target objective under given balancing and repli-
cation constraints. During the RHP runs, since rpPaToH
supports the same connectivity metric for all nets, we
included only the read nets as read requests are more
expensive than write requests.

To integrate GP/L, GP/T, SCH, and RHP into Cassan-
dra, we implemented a new replication strategy called
Selective Replicated Partitioning Strategy (SRPStrategy),
which extends the abstract AbstractReplicationStrategy
class of the locator package. SRPStrategy initially loads
a lookup table that describes the user-to-server mapping.
For any user whose mapping is not provided, SRPStrat-
egy acts the same as RackUnawareStrategy. We should
note that, utilizing lookup tables for data placement
necessitates the use of efficient schemes for maintaining
such structures in highly distributed settings. This issue
is beyond the scope of this work but there exist studies
addressing this problem [25].

All five schemes are tested using 100% replication.
This corresponds to 2-copy replication for HASH, whereas
GP/L, GP/T, SCH, and RHP perform selective replication.
The models used in GP/L, GP/T, SCH and RHP are
constructed using the query logs between November
2008–September 2009. All five schemes are evaluated
using the query logs of October 2009.

6.3 Preprocessing Costs and Time Dissections
In Table 2, the preprocessing overheads of GP/L, GP/T,
SCH, and RHP are presented. The overheads of GP/L and
GP/T are lower than RHP, whereas SCH has the longest
preprocessing time due to its much larger graph size. To
give a perspective, the number of edges in SCH are 80
times the number of pins in RHP.

As seen in Table 2, the preprocessing times are in
the order of minutes. Since we assume that the prepro-
cessing is to be performed in relatively long intervals
such as days or weeks, they are within acceptable limits.
Also note that, in social networks, only a fraction of
users are extremely active and they generate a signif-
icant portion of the total workload (e.g., see the 90-
9-1 rule [26]). Given this knowledge, the size of the
processed graphs/hypergraphs can be significantly re-
duced by eliminating vertices corresponding to inactive
users. That is, it is possible to eliminate infrequent
queries from the workload, which enables workload-
aware approaches to keep their preprocessing overhead
low. Data of relatively inactive users can be handled
by using the default partitioning/replication scheme of
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the underlying NoSQL system, e.g., HASH. This also
reduces the size of the lookup tables utilized by the
graph/hypergraph models.
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Fig. 6. Dissection of overall query processing time.

In Fig. 6, dissections of the overall query processing
times of GP/L, GP/T, HASH, SCH, and RHP are illustrated
for S=8, 16, and 32 servers. The query processing times
are composed of three portions. The server-side portion
includes the I/O overheads associated with read/write
operations and intra-server communication overheads
required for server-side coordination. The client-side
portion includes the communication overheads between
clients and servers such as the times spent during query
submission, retrieval of results/acknowledgements, as
well as overheads associated with query preparation.
The other portion includes the time spent during replica
selection process and server-side threading.

As seen in Fig. 6, the percentages of the server-side
portion of RHP are the lowest among all schemes. We
note that the times spent during the operations depicted
in the client-side portion of all schemes would roughly
be equal, since the submitted queries and the gathered
results are the same for all schemes. Given that, the low
percentages in the server-side portion of RHP indicate
that it is successful in its objective of reducing server-
side overhead. As also seen in the figure, with increasing
number of servers, the server-side portion of GP/L and
GP/T increase, whereas they remain roughly the same
for HASH and RHP. This suggests that HASH and RHP
scale better than GP/L and GP/T.

6.4 Evaluation

In our experiments, we set the number of Cassandra
servers to S=8, 16, and 32. The number of submitters is
set to U= S × 2, S × 3, and S × 4. The metrics used for
performance evaluation are separated into two as server-
side and client-side metrics. The server-side metrics in-
clude (i) server read and write load imbalance, (ii) total
and average number of I/O operations performed by
the system for writes, (iii) average read and write query
span, and (iv) average number of messages per write.
The client-side metrics include (i) average latency and
(ii) average throughput for read and write requests. In
the following figures and tables, a bold value in a table
indicates the best performance result obtained among
the five schemes for the respective experiment instance.

TABLE 3
Comparison of server-side performance metrics.

Metric Scheme S=8 S=16 S=32

GP/L 287.6 483.2 410.3
Percent GP/T 320.8 428.0 412.0

Read HASH 216.2 417.3 343.1
Imbalance SCH 201.4 271.3 486.1

RHP 6.3 54.3 35.4

GP/L 185.5 392.4 623.8
Percent GP/T 175.3 398.7 600.4
Write HASH 235.3 308.1 539.3

Imbalance SCH 297.3 295.0 652.8
RHP 27.9 32.5 63.1

GP/L 26.22M 34.56M 45.39M
Total GP/T 27.66M 35.23M 49.34M
I/O HASH 17.97M 17.84M 16.78M

Load (Write) SCH 14.56M 20.08M 28.79M
RHP 17.71M 17.20M 16.82M

GP/L 1.0 1.0 1.0
Average GP/T 1.0 1.0 1.0

Read HASH 4.5 8.6 15.9
Span SCH 2.7 3.0 3.6

RHP 3.9 5.9 8.3

GP/L 1.0 1.0 1.0
Average GP/T 1.0 1.0 1.0

Write HASH 1.8 2.3 2.7
Span SCH 1.2 1.2 1.2

RHP 1.5 1.7 2.0

GP/L 3.3 5.1 8.1
Average # of GP/T 3.4 5.3 8.5

Messages HASH 3.7 4.7 5.6
per Write SCH 2.1 3.1 5.7

RHP 3.0 3.5 4.0

6.4.1 Server-Side Performance Evaluation

In Table 3, we compare the performance of GP/L, GP/T,
HASH, SCH, and RHP for the server-side metrics. We do
not present the number of read operations in Table 3,
since it is the same for all schemes. When we com-
pare balancing performance of the five schemes (here,
imbalance is computed as: 100× (Wmax −Wavg)/Wavg),
we observe that GP-based approaches (GP/L, GP/T, and
SCH) have the worst balancing performance for both
read and write requests. This is because the one-hop
replication scheme used by GP/L and GP/T does not take
the balancing constraint into account during replication
and the replication method in SCH does not consider
the balance after query scheduling during partitioning.
On the other hand, RHP can simultaneously perform
objective optimization and balancing under replication
in a single replicated partitioning phase and thus has
superior read and write balancing performance.

In Table 3, we also compare the total number of write
operations (I/O load). Apart from the very good perfor-
mance of SCH on S = 8 servers, GP-based approaches
generally have the worst performance and they scale
poorly with increasing number of servers, whereas HASH
and RHP lead to similar I/O loads. The poor performance
of GP/L and GP/T approaches is due to their aggressive
replication methods that replicate the most active users,
e.g., users that tweet more and have many friends and
followers, leading to excessive I/O loads.

We also present query span results in Table 3. Since
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TABLE 4
Performance comparison in terms of latency (msec) and throughput (queries/sec).

Number of Servers S = 8 S = 16 S = 32

Number of Submitters (U =) S×2 S×3 S×4 S×2 S×3 S×4 S×2 S×3 S×4

Type Metric Scheme

GP/L 124 184 224 367 509 704 662 879 1165
GP/T 120 171 226 297 465 594 676 1002 1376

Read Latency HASH 75 145 160 123 202 290 173 276 269
SCH 81 125 175 224 346 470 675 1001 1520
RHP 52 61 76 70 90 108 73 118 150

GP/L 119 120 131 83 90 87 91 102 102
GP/T 121 128 130 101 98 102 89 90 87

Read Throughput HASH 162 119 142 187 169 153 256 227 332
SCH 161 152 141 125 127 117 86 86 77
RHP 259 324 338 381 434 475 726 674 700

GP/L 8 12 15 14 20 27 31 47 66
GP/T 8 11 14 13 19 25 31 51 71

Write Latency HASH 18 44 49 36 63 97 59 111 89
SCH 13 24 38 24 38 56 52 82 101
RHP 7 10 14 11 16 20 12 19 25

GP/L 156 159 172 109 118 114 120 134 135
GP/T 160 169 172 134 129 134 117 118 115

Write Throughput HASH 214 156 188 247 223 202 337 299 438
SCH 212 200 186 164 158 155 113 114 102
RHP 341 427 445 502 570 626 955 887 922

GP/L 58 86 106 167 231 319 303 407 541
GP/T 56 80 105 136 211 270 310 461 634

Overall Latency HASH 43 87 97 74 123 180 108 183 166
SCH 42 97 97 110 172 235 321 479 714
RHP 27 32 41 36 48 58 38 62 79

GP/L 275 279 303 192 208 201 211 236 237
GP/T 281 297 302 235 227 236 206 208 202

Overall Throughput HASH 376 275 330 434 392 355 593 526 770
SCH 373 352 327 289 278 272 199 200 179
RHP 600 751 783 883 1004 1101 1681 1561 1622

GP/L and GP/T use the one-hop replication scheme,
they can respond to all read and write requests from
a single node performing the best in terms of read and
write span. SCH performs better than RHP in terms of
read and write span and RHP performs better than HASH.
Furthermore, when the number of servers increases, the
rate of increase in the read and write query span is lower
for SCH and RHP compared to HASH.

We should note that, as an indicator of query perfor-
mance, presented span figures should be taken with a
pinch of salt. Recall that we adopted a write consistency
level of one in our Twissandra implementation and
this enables acknowledging a write as soon as a single
server acknowledges it. In this respect, write span can be
thought as the minimum number of servers that cover
all the data items in the multi-write query. However, for
eventual consistency, a write to a data item is propagated
to all replicas of that data item in the background. For a
multi-write query, this means sending messages to all
servers containing a replica of the data items in the
query. In terms of average number of messages sent for
a write, SCH performs the best and RHP performs the
second best for K = 8 and 16 servers but for K = 32,
RHP performs much better than all other schemes.

The results in Table 3 can be summarized as fol-
lows: GP-based approaches optimize only query span
while disregarding balancing and I/O load minimiza-

tion. HASH is generally used for its good load balancing
properties, but as seen in the table, in fact it performs
poorly in terms of balancing under skewed query work-
loads as is observed in real life query workloads. It
achieves reasonable I/O load but has the worst locality
performance. RHP strikes a balance on these three metrics
by trading locality with load balancing and I/O load
minimization, which leads to its superior query process-
ing performance, as will be seen in the following section.

6.4.2 Client-Side Performance Evaluation
Table 4 displays the average latency and throughput
values observed by submitter nodes for read and write
requests under the presence of both types of requests.
Table 4 also shows the overall average latency per query
(including both read and write queries) and the aggre-
gate throughput.

Among all schemes, RHP achieves the best latency and
throughput values in all experiment instances since it
provides the best balance among the server-side metrics.
GP-based approaches perform the worst in read latency
and throughput, whereas HASH performs the worst in
write latency and throughput. Relatively better write
performance of GP-based approaches is due to their
better locality compared to HASH.

As seen in Table 4, for all five schemes, the write
latencies are far lower than the read latencies. This is
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Fig. 7. Effect of increased load on read/write latency/throughput for S=32 servers and U=S×2, S×3, S×4 submitters.
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Fig. 8. Weak scalability analysis for U=S × 4 submitters.

due to the facts that, on average, write requests contain
less operations then read requests (3.9 vs 39.8), and Cas-
sandra is optimized for write latency (see Section 2.1.2).

An interesting pattern noticable in Table 4 is that,
in several experiment instances, GP-based schemes
perform worse than HASH. In fact, among GP-based
schemes, only SCH performs better than HASH, and only
for low server counts. This is due to the excessive I/O
load and poor load balancing performance of GP-based
schemes. Some servers utilizing the GP-based schemes
are simply overwhelmed with the amount of writes they
need to perform and this has a significant negative im-
pact both on their read and write performance. Since our
query log contains an interlaced mixture of reads and
writes (as is the case for any real system), performance
of reads are highly dependent on the performance of
writes and vice versa.

Fig. 7 presents a visual comparison of the latency
and throughput performance of GP/L, GP/T, HASH, SCH,
and RHP under increasing workload. We fix the number
of servers to S=32 and vary the number of submit-
ters U=S×2, S×3, S×4. As the number of submitters
increases, the read and write latencies of all schemes
increase. This is due to the load increase on servers. Since
the increase in latency is not as high as the increase in
load in most cases, the throughput values of all schemes
improve slightly with increasing load. The performance
of HASH can vary unpredictably across different runs.
This is mainly due to its random token generation at the
beginning of each experiment for keyspace partitioning.

Fig. 8 presents the weak scalability comparison of
GP/L, GP/T, HASH, SCH, and RHP under increasing
number of servers. In each experiment instance, num-
ber of submitters is set to U=S×4 and the number of
servers is varied S=8, 16, 32. The read and write latency
figures show that, among the five schemes, GP-based

approaches display the worst scalability characteristics,
whereas RHP displays the best. Furthermore, both HASH
and RHP scale less than ideally, which is probably due to
the increase in communication overhead with increasing
number of servers, as also seen in Table 3.

In Fig. 9, we compare the latency histograms of HASH
and RHP. As seen in the presented CDF curves, for
RHP, 90% of the read queries and and 98.5% of the
write queries can be answered below 200ms, whereas in
HASH, only 74% of read and 88% of write queries can be
answered below 200ms. RHP can perform 99th percentile
of the queries below 700ms for reads and below 300ms
for writes, whereas HASH can perform the same feat
around 1sec for reads and 800ms for writes.

7 RELATED WORK

There are recent studies indicating the deficiencies of the
partitioning and replication methodologies used in social
network data storage systems. [7] proposes a GP-based
database partitioning scheme called SCHISM for OLTP-
type Web applications that utilize distributed databases.
Data items are represented via nodes, transactions are
modeled via edges, and the partitioning objective is to
minimize the number of distributed transactions. The
partitioning/replication scheme in [7] requires genera-
tion of a much larger graph from the transaction graph.
Replication is handled by “exploding” each node to
a star shaped configuration of n + 1 nodes, where n
indicates the number of transactions accessing the data
represented by that node. After partitioning of this larger
graph, replicas that fall into the same part are collapsed
to a single replica. Another disadvantage of the repli-
cation mechanism in [7] is it is not possible to set the
amount of replication that will be performed.

[2] proposes social network partitioning schemes
based on graph-partitioning, modular-optimization and
random partitioning. Partition qualities are measured
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(a) HASH read latency
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(b) RHP read latency
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(c) HASH write latency
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(d) RHP write latency
Fig. 9. read and write latency histograms for HASH and RHP, S = 16 servers, U = 64 submitters.

via metrics such as the number of internal messages
or dialogs. Tests are performed over datasets collected
from Twitter and Orkut. For small partition counts,
graph-based approaches are shown to perform superior,
whereas for large partition counts, modular optimization
algorithms perform slightly better.

[3] extends the work in [2] so that replication is also
considered. The proposed replication scheme (one-hop
replication) replicates all data items that are in partition
boundaries. That is, data items that might be required
in multiple servers are replicated to all of those servers.
Unfortunately, this replication scheme enforces too much
replication and can lead to high I/O loads due to exces-
sive replication of frequently updated data.

[6] is an extension of the above two studies with an
alternative partitioning scheme. However, still the one-
hop replication scheme is used for replication. Further-
more, all schemes in [2], [3], [6] use the social network
structure for partitioning whereas in this study we make
use of both the social network structure and interactions
between users (query logs).

The work in [27] focuses on generating personal
feed pages, pages containing recent activities of fol-
lowed/tracked users/news-sources. In certain respects,
issues addressed in [27] coincide with the problems we
tackle. The news-sources broadcast their activities to
many users and personal feed pages contain activities
collected from many news-sources. However, the main
problem in [27] is efficient construction of these personal
Web pages. To this end, they compare the benefits of pre-
materializing these pages with dynamic generation of
them upon receipt of queries. We believe that our work
and the studies in [27] are complimentary since the pre-
materialized pages are generated via multi-user queries
as well, so our optimizations are easily applicable to a
system running the algorithms proposed in [27].

In [28], the distributed partition management envi-
ronment Sedge is proposed for processing large graphs.
Sedge is based on Pregel [29], uses graph and comple-
mentary partitioning for static primary partitions and
workload-aware dynamic secondary partitions. Sedge
partition management involves identification and repli-
cation of hotspot partitions. Sedge is designed for dis-
tributed graph processing applications.

[4] proposes GP-based models for efficient query pro-
cessing in time-dependent social network queries. The
activity prediction graph model in [4] enables handling
of power-law relations observed in social network data

via producing lighter tailed interactions. Unfortunately,
this study does not address the replication problem.

In [5] and [30], dynamic data placement and replica-
tion algorithms for social networks are proposed. The au-
thors of [30] propose the WEPAR dynamic partitioning
and replication system. WEPAR differentiates the repli-
cas of a record as either master or slave copies. The main
idea in WEPAR is based on placing the master copies of
related records in the same node and to generate slave
copies for records that receive more read queries.

Authors of [5] extend PNUTS to support selective
replication and their algorithm generates placements
that respect given replication policy constraints. Their
dynamic data placement scheme tries to make use of
the temporal locality on data item accesses by adding
new replicas when a read miss occurs, removing replicas
when a local read is not performed for a while, and a
write occurs. In our study, unlike in [5] where reactions
to misses and unexpected hits are performed after the
fact that these undesired operations are observed, we
make use of previous logs to make a temporal prediction
of future requests to avoid such operations.

8 CONCLUSION

In this work, we proposed a temporal activity hyper-
graph model whose replicated partitioning can be used
for data partitioning and replication in social networks.
The proposed model naturally encodes multi-way inter-
actions incurred by the most common social network
operations. The performance of the proposed model was
tested over a popular social network application Twit-
ter. Experimental results using the Cassandra NoSQL
system running over Amazon EC2 cluster indicate that
the proposed model achieves significant improvements
over state-of-the-art hash- and graph-partitioning-based
counterparts in terms of important metrics such as la-
tency, throughput, and scalability.

Our results provide insights on parameters affecting
the performance of social network storage systems in a
cloud setting. Hash-based approaches distribute work-
load and enhance parallelism but suffer from commu-
nication overhead. Graph-partitioning-based approaches
enhance read locality at the expense of increasing I/O
loads and possibly perturbing load balance. All-in-all,
optimizing solely one of these conflicting metrics does
not yield satisfactory results. Our approach performs
partitioning and replication simultaneously to reduce the
number of servers processing queries while respecting
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load balancing and I/O load constraints under replica-
tion, thus striking a balance between conflicting metrics
to achieve the best performance.

Future resarch avenues of this work include investiga-
tion of repartitioning mechanisms that avoid migration
of data items in subsequent partitioning iterations and
addition of mechanisms that can provide certain perfor-
mance guarantees for certain percentile of queries.
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