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Underdetermined systems of equations in which the minimum norm solution needs to be computed arise
in many applications, such as geophysics, signal processing, and biomedical engineering. In this article,
we introduce a new parallel algorithm for obtaining the minimum 2-norm solution of an underdetermined
system of equations. The proposed algorithm is based on the Balance scheme, which was originally developed
for the parallel solution of banded linear systems. The proposed scheme assumes a generalized banded form
where the coefficient matrix has column overlapped block structure in which the blocks could be dense or
sparse. In this article, we implement the more general sparse case. The blocks can be handled independently
by any existing sequential or parallel QR factorization library. A smaller reduced system is formed and solved
before obtaining the minimum norm solution of the original system in parallel. We experimentally compare
and confirm the error bound of the proposed method against the QR factorization based techniques by
using true single-precision arithmetic. We implement the proposed algorithm by using the message passing
paradigm. We demonstrate numerical effectiveness as well as parallel scalability of the proposed algorithm
on both shared and distributed memory architectures for solving various types of problems.
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1. INTRODUCTION

Underdetermined systems of equations [Lawson and Hanson 1987; Björck 1996] in
which the minimum norm solution needs to be computed arise in many applications ar-
eas, such as geophysics [Zhdanov 2002; Sen and Stoffa 2013], signal and image process-
ing [Bruckstein et al. 2009; Cotter et al. 2005], and biomedical engineering [Matsuura
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and Okabe 1995; Wang et al. 1992]. An underdetermined system of equations Ax = f
where A is an m× n matrix with m < n and rank(A) = m has infinitely many solutions.
In this article, we will focus on the minimum 2-norm solution of underdetermined
linear least squares problems. This solution can be obtained either by direct or itera-
tive methods. Examples of direct solvers typically compute the QR factorization of the
transpose of the coefficient matrix A,

AT = Q
(

R
0

)
. (1)

Then, the minimum norm solution can be computed as,

x = Q
(

R−T f
0

)
, (2)

which we will refer to as the “Q method,” or without using Q,

x = AT (RT R)−1 f. (3)

The latter approach is called the seminormal equations (SNE) [Gill and Murray 1973;
Saunders 1972].

A considerable amount of effort has been spent on developing efficient parallel
and sequential implementations of general sparse QR algorithms such as SuiteS-
parseQR [Davis 2011, 2013], HSL MA49 [Amestoy et al. 1996], SPOOLES [Ashcraft
and Grimes 1999], and qr_mumps [Buttari 2013].

Other factorizations, such as LQ or SVD, can also be used for obtaining the mini-
mum 2-norm solution of an underdetermined linear least squares problems. Another
approach is to use the normal equations to obtain the minimum norm solution,

x = AT (AAT )−1 f, (4)

which requires solution of a linear system. The solution of the linear system can be
obtained directly via the Cholesky factorization or iteratively using a Krylov subspace
method or any other iterative technique. Although normal and seminormal equation
approaches could save some storage and computational costs, they have the potential
of introducing numerical difficulties that can be disastrous in some cases when the
problem is ill conditioned.

The Balance Scheme [Golub et al. 2001; Sameh and Sarin 2002; Tezduyar and Sameh
2006] is a parallel algorithm that was designed to solve an ill-conditioned, banded, lin-
ear system of equations that are sparse within the band. The rows of the linear system
are partitioned into k blocks, where k is the number of processes. This partitioning
gives rise to k linear least squares equations where each has infinitely many solutions.
Since the coefficient matrix is banded, however, each block row has some columns that
overlap with the neighboring blocks. The overlapping between the blocks means that
parts of the solutions of the linear least squares problems cannot be independent, and
the unique solution is obtained enforcing a constraint on the equality of the solution
in the overlapping parts of the solution vector, giving rise to a smaller independent
reduced system of equations, which is solved either directly or iteratively.

In this article, we show that the Balance Scheme can be extended to obtain the
minimum 2-norm solution of an underdetermined system of equations. The algorithm
designed for underdetermined systems in which the coefficient matrix is in a general-
ized banded form with column overlapping block diagonals that are sparse within the
block.

There are a number of applications that give rise to coefficient matrices that are
in column overlapping block diagonal or banded forms, such as Spline Interpolation
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[Peyrovian and Sawchuk 1978], Seismic Tomography [Huang et al. 2013], and Linear
Programming [Ho and Loute 1981; Fourer 1984]. We show that the proposed algorithm
finds the minimum 2-norm solution of the linear least squares problems. Furthermore,
Demmel and Higham [1993] have shown error bounds of the Q method and SNE
for finding the minimum norm solution by simulating single-precision arithmetic in
MATLAB [MATLAB 2015]. We confirm these bounds by using true single-precision
arithmetic in MATLAB and show that the proposed algorithm is comparable to the
Q method in MATLAB. Finally, since there are no sparse parallel QR factorization
routines available for banded or a more generalized column overlapping block row
matrices either on distributed or shared memory architectures, we compare the parallel
scalability of the proposed algorithm against a well-known general parallel sparse QR
factorization algorithm on two different parallel computing platforms. Since we use the
same sparse QR factorization algorithm for the block diagonals, the proposed scheme
can also be considered to be an extension of the general sparse QR factorization to
distributed memory computing platforms for obtaining the minimum 2-norm solution
of underdetermined linear least squares problems.

The rest of the article is organized as follows. Section 2 presents the formulation
of proposed algorithm and its parallelization. In Section 3, we compare the proposed
algorithm against a state-of-the-art algorithm in terms of parallel scalability and nu-
merical accuracy on shared and distributed memory architectures. Finally, we confirm
the error bounds for the underdetermined systems given in Demmel and Higham [1993]
using true single precision and show the benchmarks of the Q method, SNE, and the
proposed algorithm in Section 4.

2. THE PROPOSED ALGORITHM

In the first subsection, we first define the problem clearly and then explain the theory
behind the proposed algorithm. In the second subsection, we discuss the details of the
parallel algorithm and the implementation based on the theoretical findings given in
the first subsection.

2.1. Formulation

An underdetermined system of equations of the form

Ax = f (5)

is given, where A is a sparse m×n (m < n) matrix. We assume A has full row rank. Our
objective is to find the unique solution x such that ||x||2 is minimized.

We assume that the coefficient matrix A can be partitioned row-wise into k diagonal
blocks with column overlap as follows:

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 B1
C2 A2 B2

C3 A3 B3
. . . . . . . . .

Ck−1 Ak−1 Bk−1
Ck Ak

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
ξ1
x2
ξ2
......

xk−1
ξk−1
xk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

f1
f2
f3
...

fk−1
fk

⎞
⎟⎟⎟⎟⎟⎟⎠

. (6)
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In Equation (6), diagonal blocks are defined as

E1 = (A1, B1)
Ei = (Ci, Ai, Bi), for i = 2, . . . , k − 1
Ek = (Ck, Ak).

(7)

Here, Bi and Ci+1 denote the column overlapping submatrices of the successive ith and
(i +1)th diagonal blocks. Let ti denote the size of the column overlap between the ith and
(i + 1)th diagonal blocks for i = 1, . . . , k− 1. In Equation (7), Ai ∈ R

mi×ni for i = 1, . . . , k,
Bi ∈ R

mi×ti for i = 1, . . . , k−1, and Ci ∈ R
mi×ti−1 for i = 2, . . . , k. Since A ∈ R

m×n, we have

m =
k∑

i=1

mi,

n =
k∑

i=1

ni + t,

(8)

where t = ∑k−1
i=1 ti denotes the total column overlap size. Note that E1 ∈ R

m1×ñ1 , Ei ∈
R

mi×ñi for i = 2, . . . , k − 1, and Ek ∈ R
mk×ñk, where ñ1 = (n1 + t1), ñi = (ti−1 + ni + ti) for

i = 2, . . . , k − 1, and ñk = (tk−1 + nk).
As shown in Equation (6), the right-hand-side vector f is partitioned comformably

with the row block partition of the coefficient matrix. Hence, fi is a subvector of size
mi for i = 1, . . . , k. As also shown in Equation (6), the solution vector x is partitioned
comformably with the column block partition induced by the block diagonal form of the
coefficient matrix. Thus, xi is a subvector of size ni for i = 1, . . . , k, and ξi is a subvector
of size ti for i = 1, . . . , k − 1.

Underdetermined linear least squares problem (6) gives rise to k smaller underde-
termined linear least squares problems of the form

Eizi = fi, for i = 1, 2, . . . , k, (9)

where

z1 = (xT
1 , ξT

1 )T

zi = (ξ̂T
i−1, xT

i , ξT
i )T , for i = 1, 2, . . . , k − 1

zk = (ξ̂T
k−1, xT

k )T .

(10)

The general solution of the system is

zi = pi + Qi yi, for i = 1, 2, . . . , k, (11)

where pi is a particular solution that can be computed independently, Qi is a basis for
N (Ei), and yi is arbitrary. One can obtain Qi via the QR factorization

ET
i = (Q̂i, Qi)

(
Ri
0

)
, (12)

where Q̂i and Qi have dimensions of ñi × mi and ñi × (ñi − mi) for i = 1, . . . , k,
respectively.

One way of obtaining pi is via the QR factorization just computed,

pi = Q̂i(Ri
−T fi). (13)

ACM Transactions on Mathematical Software, Vol. 43, No. 4, Article 31, Publication date: January 2017.



Parallel Solution of Sparse Block Diagonal Column Overlapped Underdetermined Systems 31:5

Note that for x to be one of the solutions of the original system, ξ̂i must be equal to ξi
for i = 1, . . . , k − 1, which implies

p(low)
1 + (0, I)Q1y1 = p(up)

2 + (I, 0)Q2y2

p(low)
2 + (0, I)Q2y2 = p(up)

3 + (I, 0)Q3y3

. . . = . . . (14)

p(low)
(k−2) + (0, I)Qk−2yk−2 = p(up)

(k−1) + (I, 0)Qk−1yk−1

p(low)
(k−1) + (0, I)Qk−1yk−1 = p(up)

k + (I, 0)Qkyk,

where p(up)
i , p(low)

i and p(rem)
i refer to the upper, lower, and the remaining parts of the

vectors pi, respectively, as shown in the following,

p1 =
(

p(rem)
1

p(low)
1

)
, pi =

⎛
⎜⎝ p(up)

i
p(rem)

i
p(low)

i

⎞
⎟⎠, pk =

(
p(up)

k
p(rem)

k

)
. (15)

Note that vectors p(low)
i and p(up)

i+1 both have size ti. (I, 0) and (0, I) refer to matrices of
size ti × (ñi − mi) where I is the identity matrix of size ti × ti.

Equation (14) gives rise to a reduced system of equations,

My = p̂, (16)

where

M =

⎛
⎜⎜⎜⎜⎝

(0, I)Q1 (−I, 0)Q2
(0, I)Q2 (−I, 0)Q3

...
...

(0, I)Qk−2 (−I, 0)Qk−1
(0, I)Qk−1 (−I, 0)Qk

⎞
⎟⎟⎟⎟⎠ (17)

and

p̂ =

⎛
⎜⎜⎜⎜⎜⎝

p(up)
2 − p(low)

1
p(up)

3 − p(low)
2

. . .

p(up)
k−1 − p(low)

k−2

p(up)
k − p(low)

k−1

⎞
⎟⎟⎟⎟⎟⎠. (18)

Note that M has a dimension of t × (n − m+ t). After solving system (16) for y, we can
retrieve the solution zi via Equation (11).

We provide the following two lemmas and a theorem in order to show that the
proposed algorithm finds the minimum 2-norm solution.

LEMMA 2.1. Let v = (vT
1 , vT

2 , . . . , vT
k )T be a vector of size N and partitioned into k

subvectors. Then, ||v||2 is minimized if and only if each ||vi||2 is minimized.

PROOF. By definition of 2-norm, ||v||22 = ∑
N |vi|2 = ||v1||22 + ||v2||22 + · · · + ||vk||22.

Therefore, ||v||2 is minimized if and only if each ||vi||2 is minimized.

LEMMA 2.2. Assume that the minimum norm solution for the undertermined systems
of equations in Equation (14) is obtained. Then, ||zi||2 in Equation (11) is also minimized.
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PROOF. By Lemma 2.1, if the minimum norm solution y to the reduced system is
obtained, then ||yi||2 is also minimized. Given zi = pi + Qi yi for i = 1, 2, . . . , k,

||zi||22 = ||pi + Qi yi||22
= (pi + Qi yi)T (pi + Qi yi)

= ||pi||22 + 2yT
i QT

i pi + ||yi||22 (QT
i pi = 0 since Qi is orthogonal to pi)

= ||pi||22 + ||yi||22.
Since ||yi||22 is minimized and pi is a fixed particular solution, ||zi||2 is also minimized.

THEOREM 2.3. If the minimum norm solution is obtained for the reduced system in
the proposed algorithm, then the algorithm obtains the minimum norm solution x of
the underdetermined systems of equations.

PROOF. If the minimum norm solution is obtained for the reduced system, then ||zi||2
is minimized for each i by Lemma 2.2. Therefore, ‖x‖2 is also minimized by Lemma 2.1
because zi subvectors constitute the solution vector x.

2.2. Parallelization

In this subsection, we provide the details of the parallel algorithm and its implemen-
tation based on the theoretical findings given in the previous subsection. The solution
process of the proposed algorithm can be summarized as follows:

(a) Obtain a particular solution pi according to Equation (13).
(b) Solve the reduced system My = p̂ according to Equation (16).
(c) Retrieve the solution subvector zi according to Equation (11).

Stage (a) involves the solution of k independent linear least squares problems, which
can be done in parallel without any communication. In Stage (b), we solve a smaller
underdetermined linear system, which can be done either sequentially or in parallel.
We note that the solution of the reduced system can be computed either directly by
forming it explicitly or iteratively without forming it explicitly, both requiring some
communication. The retrieval of the solution, namely Stage (c), is done again in parallel
without any communication. If needed, an optional last step involves gathering the
global solution vector in one of the processors, which requires some communication.

The pseudocode of the proposed parallel algorithm for processor i is given in
Algorithm 1. The coefficient matrix and the right hand side vector of the given under-
determined linear system are distributed among processors by assigning each diagonal
block Ei and the respective subvector fi to processor i for i = 1, 2, . . . , k.

At line 1, each processor i concurrently and independently applies QR factorization
on the coefficient matrix ET

i of the local underdetermined least square problem Eiz = fi.
Sparse QR factorization of SuiteSparseQR [Davis 2011] package is used in local sparse
QR factorization operations. For performance and storage efficiency, the orthogonal
matrices generated by the local QR factorizations are stored in Householder form at
line 1. At line 2, each processor i concurrently computes particular solution pi according
to Equation (13). In the “if-then-else” statement between lines 3 and 9, the reduced
system My = p̂ is gathered in the master processor. For this purpose, all processors
except the first and the last one send subvectors p(low)

i and p(up)
i and submatrices (0, I)Qi

and (−I, 0)Qi to the master processor. The last processor only needs to send subvector
p(low)

k and submatrix (−I, 0)Qk to the master processor. Each processor i obtains local
(0, I)(Q̂i, Qi) and/or (−I, 0)(Q̂i, Qi) matrices by applying (0, I) and (−I, 0) to (Q̂i, Qi) in
the Householder form for i = 2, . . . , k and i = 1, . . . , k − 1, respectively. Note that after
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ALGORITHM 1: Parallel Algorithm for k-processor System (Pseudocode for Processor i)
Input: Block matrix Ei , RHS subvector fi
Output: Solution vector zi

1 Apply QR factorization ET
i = (Q̂i, Qi)

(
Ri
0

)
2 Obtain local particular solution pi = Q̂i(Ri

−T fi)
3 if 1 < i < k then � processor i neither master nor the last processor

4 Send p(low)
i , p(up)

i , (0, I)Qi and (−I, 0)Qi to master processor (processor 1)
5 else if i = k then � processor is the last processor
6 Send p(low)

k and (−I, 0)Qk to master processor
7 else � master processor
8 Receive pi subvectors and Qi submatrices
9 endif

10 if i = 1 then � master Processor
11 Construct coefficient matrix M and RHS vector p̂ for reduced system

(see Equations (17) and (18))
12 Find minimum 2-norm solution y of the reduced system My = p̂
13 Scatter solution vector y among processors so that processor i receives subvector yi

14 endif
15 Compute the solution subvector zi = pi + Qi yi (see Equation 11)

forming the upper and lower parts of Qi and Q̂i, we discard the parts of the Q̂i because
we do not need it in the algorithm.

In the “if” statement between lines 10–14, the master processor first constructs
the coefficient matrix M and the right-hand-side vector p̂ of the reduced system from
the received submatrices and subvectors. It then finds the minimum 2-norm solution
of the underdetermined linear system My = p̂ via SuiteSparseQR_min2norm [Davis
2009] procedure with default parameters. Finally, the master processor scatters
the solution vector y among processors through collective communication operation
MPI_Scatterv provided by the MPI library [Gropp et al. 1996]. At line 15, each processor
i concurrently computes the solution subvector zi by using yi according to Equation (11).

We should note here that the gather operation on the master processor is pre-
sented through point-to-point communications, as shown in the “if-then-else” state-
ment between lines 3–9, for the sake of clarity of the presentation. In our implementa-
tion, this gather operation is performed using the collective communication operation
MPI_Gatherv provided by the MPI library.

Solving the reduced system is the only sequential part in our parallel algorithm
due to the limitation of the current software implementation. We have experimented
with multithreaded version of SuiteSparseQR for solving the reduced system My = p̂;
however, it does not attain speedup on the solution time of the reduced system. We
also have experimented with ScaLAPACK [Blackford et al. 1997] subroutine PDGELS
for the parallel solution of the reduced system; however, we did not obtain speedup on
more than 2 cores.

3. EXPERIMENTAL RESULTS

3.1. Datasets

Matrix collections such as UF Sparse Matrix Collection [Davis and Hu 2011] and Ma-
trix Market [Boisvert et al. 1996] do not include many sparse matrices in a similar
form of the problem defined in Section 2. For evaluating the performance of the pro-
posed algorithm, we generated two datasets, which are referred here as realistic and
synthetic datasets. The construction of realistic and synthetic datasets is described in
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Table I. Properties of Realistic Test Matrix Instances

Matrix Diagonal Block Coefficient Matrix Seq. Soln. Time

ID (Cond.Num.) ti m n nnz S.M. D.M.
1 5 756,608 1,887,237 7,549,056 14.29 10.36
2 10 756,608 1,886,922 7,549,056 14.35 10.35
3 graphics 20 756,608 1,886,292 7,549,056 14.40 10.41
4 (1.59e+8) 50 756,608 1,884,402 7,549,056 14.43 10.46
5 100 756,608 1,881,252 7,549,056 14.47 10.49

6 5 620,352 1,820,613 6,456,000 30.83 20.52
7 10 620,352 1,820,298 6,456,000 31.44 20.79
8 kemelmacher 20 620,352 1,819,668 6,456,000 31.87 20.94
9 (2.38e+4) 50 620,352 1,817,778 6,456,000 31.94 21.08
10 100 620,352 1,814,628 6,456,000 32.46 21.38

11 5 705,792 1,709,893 6,555,648 8.18 5.74
12 10 705,792 1,709,578 6,555,648 8.12 5.79
13 psse0 20 705,792 1,708,948 6,555,648 8.22 5.81
14 (1.07e+6) 50 705,792 1,707,058 6,555,648 8.43 5.96
15 100 705,792 1,703,908 6,555,648 8.88 6.32

16 5 705,792 916,037 3,672,064 6.09 4.98
17 10 705,792 915,722 3,672,064 6.29 5.09
18 psse1 20 705,792 915,092 3,672,064 6.31 5.25
19 (1.12e+6) 50 705,792 913,202 3,672,064 6.84 5.54
20 100 705,792 910,052 3,672,064 7.60 6.23

21 5 705,792 1,832,261 7,376,768 8.83 6.15
22 10 705,792 1,831,946 7,376,768 8.79 6.48
23 psse2 20 705,792 1,831,316 7,376,768 9.01 6.31
24 (1.03e+6) 50 705,792 1,829,426 7,376,768 9.49 6.69
25 100 705,792 1,826,276 7,376,768 10.37 7.25

26 5 315,456 677,765 2,981,824 6.32 4.88
27 10 315,456 677,450 2,981,824 6.62 4.87
28 gemat1 20 315,456 676,820 2,981,824 6.66 4.92
29 (1.17e+8) 50 315,456 674,930 2,981,824 6.88 5.16
30 100 315,456 671,780 2,981,824 7.31 5.47

ti : overlap size, m : # of rows, n : # of columns, nnz : # of nonzeros.
Seq. Soln. Time: Sequential solution time (seconds) on a single core.
S.M.: Shared Memory, D.M.: Distributed Memory.

Sections 3.1.1 and 3.1.2, respectively. We also include a dataset obtained from a real-
world application, as described in Section 3.1.3. In all experiments, the right-hand-side
vectors of the underdetermined systems are set to a vector whose elements are all ones.

3.1.1. Realistic Dataset. We have created our realistic dataset by linking together 64
copies of several real rectangular matrices from the UF Sparse Matrix Collection in
order to construct underdetermined linear systems of the form given in Equation (6).
UF Sparse Matrix Collection has 37 rectangular matrices in least squares, computer
graphics/vision, and power network problems. To illustrate the performance of parallel
algorithms, we have selected full rank matrices that have more than 1,000 columns and
rows. Due to the memory limitation, the matrices that have more than 50,000 columns
or rows and have more than 500,000 nonzeros are excluded. After applying these
criteria, six matrices (shown in Table I) remain for generating our realistic dataset.

In the construction of a coefficient matrix, if the shape of the underlying real matrix
is tall and skinny, then the transpose of the matrix is used in order to construct an
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Table II. Properties of Synthetic Test Matrices

Matrix Diagonal Block Coefficient Matrix Seq. Soln. Time

ID mi ñi nnz/mi ti m n nnz S.M. D.M.
1 4,014.45 5,013.11 10.02 5 256,925 320,466 2,573,387 256.68 158.30
2 4,012.75 5,011.20 9.99 10 256,816 320,151 2,565,271 263.36 161.79
3 3,984.64 5,002.05 10.00 20 255,017 318,871 2,549,146 261.81 164.05
4 4,003.02 5,006.02 9.97 50 256,193 317,235 2,554,582 289.03 179.56
5 3,979.41 5,003.92 10.00 100 254,682 313,951 2,546,786 338.93 202.36

6 4,000.36 5,011.11 20.01 5 256,023 320,396 5,122,404 501.07 320.49
7 4,007.44 5,000.70 19.97 10 256,476 319,415 5,120,651 510.48 328.27
8 3,995.78 4,995.19 19.94 20 255,730 318,432 5,100,235 536.83 343.52
9 4,007.44 5,000.56 19.97 50 256,476 316,886 5,120,651 607.22 392.03
10 4,003.39 5,008.63 20.00 100 256,217 314,252 5,123,315 783.57 499.13

11 4,010.45 4,998.69 29.91 5 256,669 319,601 7,676,243 652.17 428.48
12 4,000.47 4,993.03 29.87 10 256,030 318,924 7,648,085 667.33 436.80
13 3,997.77 4,995.28 29.89 20 255,857 318,438 7,646,384 723.38 470.64
14 4,020.23 5,002.38 29.93 50 257,295 317,002 7,700,351 872.08 567.53
15 3,998.67 5,011.69 30.00 100 255,915 314,448 7,674,427 1,038.83 798.59

mi : average # of rows, ñi : average # of columns, nnz/mi : average of # nonzeros per row.
ti : overlap size, m : # of rows, n : # of columns, nnz : # of nonzeros.
Seq. Soln. Time: sequential solution time (seconds) on a single core.
S.M.: Shared Memory, D.M.: Distributed Memory.

underdetermined linear system. Each of the 64 diagonal blocks (i.e., Ei blocks) of a
coefficient matrix is obtained by slightly perturbing nonzero values of the underlying
real matrix in a random manner. That is, diagonal blocks differ slightly only in nonzero
values, whereas they have the same sparsity pattern. For each nonzero, the perturba-
tion amount is randomly selected in the range [−α × η, α × η], where η = ‖A‖F and
α = 0.10 in order not to deviate too much from the real matrix. The original condition
numbers of the diagonal block matrices are shown in Table I.

As discussed in Section 2.2, sizes of the column overlaps between successive blocks
define the size of the reduced system M, which is the bottleneck of our parallel algo-
rithm. In order to observe the effects of overlap sizes on the performance of the proposed
parallel algorithm, we generated five coefficient matrices with different amounts of col-
umn overlaps of ti = 5, 10, 20, 50, and 100 for each underlying real matrix. Thus, the
realistic dataset contains 30 underdetermined coefficient matrices. The properties of
these coefficient matrices are shown in Table I. Note that each of the five coefficient
matrices obtained from the same underlying real matrix have the same number of
rows and nonzeros, whereas they have slightly different number of columns because of
different column overlap sizes.

3.1.2. Synthetic Dataset. We have constructed a synthetic dataset of 15 underdeter-
mined systems of the form given in Equation (6) from sparse uniformly distributed
random diagonal blocks. In the constructed coefficient matrices, each diagonal block
Ei has more columns than rows. We produce problems that are as large as possible
and can fit into the memory when solving the minimum norm solution on our test
platforms. In the synthetic dataset, the coefficient matrices have different dimensions,
nonzero densities and overlap sizes. The properties of the synthetic underdetermined
systems are shown in the Table II.

Each synthetic test matrix contains 64 diagonal blocks and they are constructed
by using average block diagonal size of mi × ñi = 4,000 × 5,000. Both row and col-
umn dimensions of diagonal blocks are perturbed by a maximum amount of 5% on
the preceding given averages. Each diagonal block Ei has a condition number of
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Fig. 1. Two sample matrices with eight sparse diagonal blocks of size 100 × 200.

Fig. 2. Nonzero pattern of grow15.

approximately 102 and a nonzero density of each diagonal block is set so that each
row has about 10, 20, and 30 nonzeros by using sprand procedure in MATLAB version
2008. Test matrices with different amounts of column overlaps of ti = 5, 10, 20, 50, and
100 are generated as in the realistic dataset.

Two sample matrices produced by our synthetic matrix generation tool are shown in
Figure 1. These matrices have 8 rectangular sparse diagonal blocks of size 100 × 200
that have 10 nonzeros per row. In Figure 1(a), matrix Aa has a column overlap size of
10 and hence has a size of 800 × 1,530. In Figure 1(b), matrix Ab has a column overlap
size of 50 and hence has a size of 800 × 1,250.

3.1.3. Real-World Dataset. Staircase-structured linear programming problems may
arise from multistage or time-phased systems such as structural design optimiza-
tion [Ho 1975] and economic planning over time [Fourer 1982]. There are methods
that utilize Newton’s approach for solving linear programming problems [Han 1980],
quadratic programming problems [Bramley and Winnicka 1996] as well as linear feasi-
bility problems [Bramley and Winnicka 1996; Pinar 1998; Dax 2008]. At each Newton
iteration, the minimum norm solution of an underdetermined linear system of equa-
tions needs to be obtained. Thus, solving such problems with staircase constraint ma-
trices using Newton-based approaches constitute a real-world application of obtaining
the minimum norm solution of an underdetermined linear least squares problem in
which the coefficient matrix has a block diagonal column overlapping form.

One example of the staircase-structured linear programming problem is
grow15 [Fourer 1983], which models the input-output analysis of the U.S. econ-
omy [Glassey and Benenson 1975] with 15 time periods. Figure 2 shows the nonzero
pattern of the coefficient matrix of grow15. This matrix has 15 diagonal blocks, and each
block consists of 20 rows and 63 columns (except the first block, which has 43 columns)
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Table III. Properties of Real-world Matrix Instances

Matrix Coefficient Matrix Seq. Soln. Time

ID Name ti m n nnz S.M. D.M.
1 grow2560 20 51,200 110,080 962,540 1.45 1.20
2 grow5120 20 102,400 220,160 1,925,100 2.99 2.43
3 grow10240 20 204,800 440,320 3,85,0220 6.22 4.98
4 grow20480 20 409,600 880,640 7,700,460 13.29 10.30

ti : overlap size, m : # of rows, n : # of columns, nnz : # of nonzeros.
Seq. Soln. Time: Sequential solution time (seconds) on a single core.
S.M.: Shared Memory, D.M.: Distributed Memory.

and successive diagonal blocks have 20 overlapping columns. In order to observe the
parallel scalability of the proposed algorithm, data of the same input-output analysis
with 2,560, 5,120, 10,240 and 20,480 time periods were used. In the corresponding
coefficient matrices, the number of periods is equal to the number of diagonal blocks
and the amount of column overlap is ti = 20. Properties of the real-world dataset is
shown in Table III.

3.2. Experimental Framework

The performance of the proposed algorithm is tested on both shared and distributed
memory architectures. As the shared memory architecture, we use a single-node 64-
core computer that contains 4 AMD Opteron 6376 processors, with each processor
having 16 cores running at 2.3GHz and a total of 128GB of DDR3 memory. As the
distributed memory architecture, we use the SuperMUC (phase 1 thin nodes) [GCS
Supercomputer 2012] system. SuperMUC is an IBM System x iDataPlex dx360M4 sys-
tem that consists of 9,216 nodes, where each node contains two 8-core Intel(R) Xeon(R)
E5-2680 processors running at 2.7GHz and 32GB RAM. Nodes are interconnected with
a high-bandwidth low-latency switch network (Infiniband FDR10).

For comparing the performance of the proposed algorithm, there are not any exist-
ing QR factorization routines specifically designed for matrices that have overlapping
sparse diagonal blocks. Hence, as the baseline algorithm, we use SuiteSparseQR [Davis
2011], which is a multithreaded multifrontal general sparse QR factorization procedure
in SuiteSparse [Davis 2013] software package. SuiteSparseQR uses Intel’s Threading
Building Blocks (TBB) [Reinders 2007] library for providing parallelism on shared
memory multicore architectures. METIS [Karypis and Kumar 2009] reordering tech-
nique is used for both sequential and parallel SuiteSparseQR as recommended in Davis
[2009]. We report sequential running times of the test matrices in Tables I, II, and III
on two different computing platforms using sequential SuiteSparseQR.

In Davis [2011], the best performance results for SuiteSparseQR are achieved by
using a mixture of TBB threads and multithreaded BLAS. We have conducted experi-
ments to see how the performance of SuiteSparseQR varies with using mixture of TBB
threads and multithreaded BLAS on our datasets. In experiments for the real-world
and realistic datasets, adding BLAS parallelism does not improve the performance,
so the best performance is achieved via using only TBB threads for all of the 34 ma-
trix instances. For the synthetic dataset, using multiple BLAS threads improves the
performance on some matrix instances. Table IV displays the best settings according
to average speedup values obtained for 1, 2, . . . , c TBB threads and 1, 2, . . . , c BLAS
threads using c cores of the node of the distributed memory architecture and the shared
memory architecture for c = 2, 4, 8, 16 and c = 2, 4, 8, 16, 32, 64, respectively. The pa-
rameters for SuiteSparseQR are selected as advised in Davis [2009], SPQR_nthreads
is set to the number of cores, SPQR_grain is set to 2 times the number of cores and
SPQR_small is set to 106.

ACM Transactions on Mathematical Software, Vol. 43, No. 4, Article 31, Publication date: January 2017.



31:12 F. S. Torun et al.

Table IV. Settings for Parallel SuiteSparseQR

2 cores 4 cores 8 cores 16 cores 32 cores 64 cores

System Dataset T B T B T B T B T B T B

Shared Memory
Realistic 2 1 4 1 8 1 16 1 32 1 64 1
Synthetic 2 1 4 1 8 1 8 2 16 2 64 1
Real-World 2 1 4 1 8 1 16 1 32 1 64 1

Distributed Memory
Realistic 2 1 4 1 8 1 16 1 - - - -
Synthetic 2 1 2 2 8 2 16 4 - - - -
Real-World 2 1 4 1 8 1 16 1 - - - -

T: Number of TBB threads, B: Number of BLAS threads.

Intel compiler versions 14.0.1 and 15.0 with Intel Math Kernel Library (MKL)
versions 11.1 and 11.2 are used on the shared and distributed memory architectures,
respectively. The proposed algorithm is implemented in C++ programming language.
MPICH version 3.1.4 and IBM Platform MPI version 1.4 implementations of message
passing interfaces are used on the shared and distributed memory architectures, re-
spectively. In the proposed algorithm, sequential SuiteSparseQR with single-threaded
BLAS is used for local QR factorization in each block of the proposed algorithm,
and each MPI process is mapped to one core on the shared and distributed memory
architectures. Note that the performance of the proposed method may increase by
adding the parallelism mechanisms of SuiteSparseQR and BLAS for the local QR fac-
torizations. However, we have not observed any significant performance improvements
for the datasets we used.

In the proposed algorithm, when we use a smaller number of cores than the number
of diagonal blocks, each core works on multiple successive blocks.

3.3. Scalability Results

In this subsection, we report the results of strong scalability tests performed for both
the proposed and the baseline algorithms. Figures 3, 4, and 5 display the scalability
results for realistic, synthetic, and real-world datasets, respectively. All three figures
depict the results as speedup curves on both shared and distributed memory computing
platforms. In Figures 3 and 4, the speedup curve for each of the realistic and synthetic
test matrices is obtained by averaging the speedup values at each core count over five
different column overlap sizes. That is, Figures 3 and 4 effectively display average
speedup curves.

In Figures 3, 4, and 5, speedup values are displayed for 2, 4, 8, 16, 32, and 64 cores
of the shared memory architecture for both the proposed and baseline algorithms. For
the distributed memory architecture, since the test matrices in realistic and synthetic
datasets have 64 blocks, experiments for the proposed algorithm are done with at most
64 cores across four distributed nodes. Thus, Figures 3, 4, and 5 display the speedup
values for 2, 4, 8, 16, 32, and 64 cores for the proposed algorithm on the distributed
memory architecture. However, all three figures do not display the performance of the
baseline algorithm for 32 and 64 cores on the distributed memory architecture because
SuiteSparseQR can only utilize thread-level parallelism. Therefore, since the realistic
dataset contains 30 test matrices, Figure 3 compares the speedup results of the pro-
posed algorithm against the baseline algorithm for 30 × 6 = 180 and 30 × 4 = 120
parallel running instances on the shared and distributed memory architectures, re-
spectively. Similarly, since the synthetic dataset contains 15 test matrices, Figure 4
compares the speedup results of the proposed algorithm against the baseline algo-
rithm for 15 × 6 = 90 and 15 × 4 = 60 parallel running instances on the shared and
distributed memory architectures, respectively. Since the real-world dataset contains
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Fig. 3. Average speedup curves for realistic matrices (averages over five different overlap sizes).

Fig. 4. Average speedup curves for synthetic matrices (averages over five different overlap sizes).

four matrices, Figure 5 compares the speedup results of the proposed algorithm against
the baseline algorithm for 4 × 6 = 24 and 4 × 4 = 16 parallel running instances on the
shared and distributed memory architectures, respectively.

In Figures 3, 4, and 5, solid lines (red color) and dashed lines (blue color) are respec-
tively used to show the speedup curves for the proposed algorithm and SuiteSparseQR.
These figures also show the maximum average speedup values attained by both pro-
posed and baseline algorithms on each core count for the sake of a better performance
comparison.
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Fig. 5. Speedup curves of real-world matrices.

3.3.1. Realistic Dataset. As shown in Figure 3, the proposed algorithm shows much
better scalability than the baseline algorithm for the realistic dataset. The proposed
algorithm achieves considerably better speedup values than the baseline algorithm on
275 out of 300 parallel running instances. The remaining 25 running instances, for
which the proposed algorithm fails to achieve better performance, are on 2 cores (15
out of 25 instances) and are for the matrices with the largest column overlap size of
100 on 32 and 64 cores (10 out of 25 instances).

As shown in Figure 3, the performance gap between the proposed and baseline
algorithms increases considerably with increasing core counts until 16 cores for the
shared memory architecture and until 64 cores for the distributed memory architecture
in favor of the proposed algorithm, whereas the performance gap slightly decreases on
32 and 64 cores for the shared memory architecture. This is because the memory
bandwidth begins to become a bottleneck for the proposed algorithm on high number
of cores in the shared memory architecture, since it uses relatively more memory than
the baseline algorithm. As shown in the figure, the proposed algorithm achieves best
average speedups of 6.63 and 10.86 for the graphics-based matrices on the shared
and distributed memory architectures, respectively. The baseline algorithm achieves
the best average speedups of 2.12 and 1.78 for the Kemelmacher-based matrices on the
shared and distributed memory architectures, respectively.

3.3.2. Synthetic Dataset. As shown in Figure 4, the proposed algorithm also scales much
better than the baseline algorithm for the synthetic dataset. The proposed algorithm
achieves considerably better speedup values than the baseline algorithm on almost all
of the 150 parallel running instances and fails to achieve better performance only for
the 2 running instances that are on 2 cores of the distributed memory architecture.

As shown in Figure 4, for the synthetic dataset, the performance of the proposed
algorithm slightly decreases for sparser coefficient matrices. This is because, for a given
number of processors, with decreasing matrix density, the parallelization overhead due
to communication and sequential solution of the reduced system remains almost the
same, whereas the amount of concurrent local computations decrease.
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As shown in Figure 4, the proposed algorithm scales up until 32 and 64 cores on the
shared and distributed memory architectures, respectively. The proposed algorithm
achieves maximum average speedup of 10.71 and 53.44 for matrices with 30 nonzeros
per row on 64 cores of the shared and distributed memory architectures, respectively.
On the other hand, the baseline algorithm achieves a maximum average speedup of
only 5.92 and 5.89 for the matrices with 10 nonzeros per row on 64 and 16 cores of the
shared and distributed memory architectures, respectively.

3.3.3. Comparison of Realistic and Synthetic Datasets. A comparison of Figures 3 and 4
shows that both proposed and baseline algorithms achieve much better speedup for
the synthetic dataset. This experimental finding is due to the fact that the problem
sizes are much larger for synthetic dataset compared to those for the realistic dataset.
Note that the problem size refers to the amount of work involved in the sequential
algorithm, which is also indicated in the sequential running times in the last two
columns of Tables I and II.

3.3.4. Effects of Overlap Size. Figure 6 is given in order to show the effect of overlap
size on the performance of the proposed and baseline algorithms for both realistic and
synthetic datasets. In the figure, the speedup value for each overlap size is depicted as
the average of the speedups obtained for six realistic or three synthetic test matrices
(varied nonzero densities of 10, 20, and 30nnz/row) on the given core count.

As shown in Figure 6, for both realistic and synthetic datasets, the performance of the
proposed algorithm decreases considerably with increasing overlap size, whereas the
performance of the baseline algorithm increases slightly with increasing overlap size.
The former experimental finding is expected because increasing overlap size increases
the size of the reduced system and thus increases the sequential portion of the proposed
parallel algorithm. The latter experimental finding is because of the fact that the
performance of the baseline algorithm is not sensitive to the overlap size and the column
size of the coefficient matrix decreases with increasing overlap size in our experimental
setting. Despite these expected experimental findings, the proposed algorithm achieves
better average speedup than the baseline algorithm for all parallel running instances
except for the realistic matrices with largest overlap size of 100 on 64 cores of the
shared memory architecture.

In accordance with the previous discussion, the proposed algorithm achieves maxi-
mum speedup values for the matrices with smallest column overlap size of 5, whereas
the baseline algorithm achieves maximum speed values for the matrices with the
largest overlap size of 100. As shown in Figure 6, on the shared memory architecture,
the proposed algorithm achieves the maximum average speedup of 8.40 and 11.08
on 32 cores for realistic and synthetic datasets, respectively, whereas the baseline
algorithm obtains maximum speedups of 1.39 and 6.02 on 64 cores for realistic and
synthetic datasets, respectively. On the distributed memory architecture, the proposed
algorithm obtains maximum speedups of 16.47 and 54.10 on 64 cores for the realistic
and synthetic datasets, respectively, whereas the baseline algorithm achieves speedups
of only 1.31 and 6.23 on 16 cores for the realistic and synthetic datasets, respectively.

3.3.5. Real-World Dataset. Figure 5 depicts a much better parallel scalability for the
proposed algorithm compared to the baseline algorithm for the real-world dataset. The
scalability of the proposed algorithm improves as the problem size gets larger. Hereby,
the proposed algorithm scales up until 64 cores for the largest problem (grow20480) on
both architectures.

As shown in Figure 5, the proposed algorithm achieves significantly better speedup
values for all test instances. The proposed algorithm achieves a speedup of 8.98 and
14.29 for grow20480 on 64 cores of the shared and distributed memory architectures,
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Fig. 6. Variation of average speedup curves with varying overlap sizes.

respectively. On the other hand, the baseline algorithm gives almost the same speedup
of 1.29 and 1.20 for all matrices on 64 and 16 cores of the shared and distributed
memory architectures, respectively.

3.4. Accuracy of the Numerical Results

In the earlier subsection, we studied the parallel scalability of our algorithm on two
different platforms compared to the baseline algorithm. In this subsection, we will look
into the numerical accuracy of the results that were obtained using the same datasets
given earlier. As the exact solution is not known, we will closely examine the relative
residuals and the norm of the solution vectors obtained.

Figure 7 shows relative residual norms �u of the underdetermined linear systems
using the sequential SuiteSparseQR and the proposed algorithm for 2, 4, 8, 16, 32, and
64 cores for the realistic, synthetic, and real-world datasets. Relative residual norm �u
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Fig. 7. Relative residual norms of sequential and the proposed parallel algorithm for the datasets.

is calculated as follows:

�u = ‖b − Ax‖2

‖b‖2
. (19)

The proposed algorithm produces very similar relative residuals with respect to the
sequential baseline algorithm for almost all cases. In a few test instances only, the
relative residuals differ slightly. We believe the reason for this is that the condition
number of the matrix is always greater than the condition number of diagonal blocks.
For instance, when using 64 cores, each core applies the QR factorization on just one
block that has the smallest condition number. When a smaller number of cores is used,
each core works on more than one block, which have a much larger condition number
than those of the constituent diagonal blocks. Furthermore, matrices that have larger
overlap sizes are also likely to have larger condition numbers compared to ones that
have smaller overlap sizes. This implies that the sequential algorithm is expected to
give slightly larger relative residual norm compared to the proposed parallel algorithm.

Figure 8 illustrates the 2-norm of the solution vectors (i.e., ‖x‖2) obtained using the
sequential algorithm and the proposed parallel algorithm for 2, 4, 8, 16, 32, and 64
cores. As shown in the figure, the proposed algorithm finds a solution that agrees with
the solution vector obtained by the sequential QR factorization.

In summary, the results show that the proposed algorithm is not only more scalable
but also gives accurate results comparable to the existing algorithm based on the QR
factorization. In Section 4, we will further study the accuracy of the proposed algorithm.

4. FORWARD AND BACKWARD ERRORS

In this section, we further look into the numerical behavior of the proposed scheme
compared to the Q and seminormal equations (SNE) methods. Norm-wise relative
errors of both methods are bounded by cκ2(A)u [Demmel and Higham 1993], where c is
a constant, u is the unit roundoff error, and κ2(A) is defined as

κ2(A) = ‖A+‖2‖A‖2. (20)
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Fig. 8. Sequential and parallel ‖x‖2 values for the datasets.

in Demmel and Higham [1993], tighter error bounds for underdetermined linear sys-
tems are introduced. In their work, the term κ2(A) is replaced by

cond2(A) = ‖|A+||A|‖2, (21)

where

A+ = AT (AAT )−1 (22)

is the pseudoinverse of A. They note that cond2(A) could be arbitrarily smaller but
could not be much bigger than κ2(A), and the component-wise condition number is
defined as

cond2(A, x) = (‖|I − A+ A||AT ||A+T
x|‖2 + ‖|A+|(|b| + |A||x|)‖2)/‖x‖2. (23)

We have ran numerical experiments in MATLAB, in which the double precision and
single precision have a unit roundoff u ≈ 2.2 × 10−16 and u ≈ 1.2 × 10−7, respectively.
Different from simulating single-precision arithmetic in Demmel and Higham [1993],
we use true single-precision arithmetic in our experiments. This gave us a chance
to verify the results of Demmel and Higham [1993] by conducting experiments with
single-precision arithmetic rather than simulating single precision. For forward error
analysis, we regard the solution with double precision as the exact solution in our
experiments.

The coefficient matrices in Table V are random matrices whose sizes are 200 × 395
with cascaded two dense blocks size of 100 × 200 with a column overlap size of 5.
In each matrix, the block matrices were generated using the randsvd [Higham 1991]
routine. Singular values (σi) of block matrices were distributed geometrically, that is,
σi = α(1−i)/(n−1), i = 1 . . . n, where α = κ2(A) is a parameter [Higham 2002] of randsvd.
Entries of the right-hand sides, b vectors, were normally distributed between (0, 1).

We define

γ2(x̂) = ‖x̂ − x‖2

‖x‖2
, (24)
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Table V. Forward and Backward Errors Using Three Different Algorithms for Solving Problems
with Different Condition Numbers

Mtx Metrics Soln. Method pN(x̂) pR(x̂) pC (x̂) γ2(x̂)
κ2(A) = 1.03e4 QR 8.52e-10 1.61e-10 5.64e-08 2.33e-04

1 cond2(A) = 4.05e4 SNE 5.11e-06 9.62e-07 3.66e-04 5.21e-01
cond2(A, x) = 9.61e4 Proposed Alg. 6.84e-10 1.29e-10 4.52e-08 4.21e-02

κ2(A) = 1.02e5 QR 7.86e-10 1.63e-10 5.62e-08 1.92e-03
2 cond2(A) = 3.31e5 SNE 1.11e-05 2.30e-06 5.32e-04 1.50e+01

cond2(A, x) = 1.72e6 Proposed Alg. 1.15e-09 2.37e-10 8.15e-08 5.70e-02

κ2(A) = 1.05e6 QR 5.82e-10 1.50e-10 5.63e-08 1.73e-02
3 cond2(A) = 2.94e6 SNE 2.11e-05 5.46e-06 1.91e-03 1.00e+00

cond2(A, x) = 8.37e10 Proposed Alg. 6.97e-10 1.80e-10 6.73e-08 4.37e-02

where x̂ is the computed solution. Three relative residuals [Demmel and Higham 1993]
are

pX(x̂) = max
i

|b − Ax̂|i
(EX|x̂| + fX)i

, X = N, R, C (25)

where EX and fX are

norm-wise : EN = ‖A‖2emeT
n , fN = ‖b‖2em,

row-wise : ER = |A|emeT
n , fR = |b|,

component-wise : EC = |A|, fC = |b|.
(26)

Note that in Equation (26), en = (1, 1, . . . , 1)T ∈ R
n. In the SNE method, iterative

refinement was not used.
In Table V, the error bounds of the work [Demmel and Higham 1993] are confirmed

for SNE and Q methods. As given in Demmel and Higham [1993], the error is estimated
precisely within an order of magnitude by the equation

γ2(x̂) = ‖x̂ − x‖2

‖x‖2
≈ cond2(A)u. (27)

The results also show that for the given problems, the proposed algorithm has better
norm-wise relative error and relative residuals than the SNE method. Compared to the
Q method, the proposed algorithm gives comparable relative residuals for all test prob-
lems. The norm-wise relative errors are comparable to the Q method for the matrices
with larger condition numbers.

5. CONCLUSION

A new parallel algorithm was proposed and implemented for computing the minimum
norm solution of sparse block diagonal column overlapped underdetermined systems.
The proposed algorithm exploits the special structure of the coefficient matrix by han-
dling the block diagonals independently and concurrently. Parallel scalability of the
proposed scheme was shown on two different parallel architectures: a shared memory
(multicore) architecture and a distributed memory (cluster) architecture for realistic,
synthetic, and real-world datasets. The realistic, synthetic, and real-world datasets
include 30, 15, and 4 test matrix instances, respectively. In the best case, the pro-
posed algorithm achieves a speedup of 54.1 on 64 cores. Scalability performance of the
proposed algorithm degrades with increasing column overlap size as expected. Exper-
imental results on all datasets show the validity of the proposed algorithm on shared
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memory and distributed memory architectures. Furthermore, numerical stability of
the proposed scheme was studied. The proposed algorithm can be also considered as
an scalable extension of any multithreaded general sparse QR factorization algorithm
to distributed memory architectures for computing minimum 2-norm solution of un-
derdetermined linear least squares problems.
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