A Recursive Hypergraph Bipartitioning Framework for Reducing Bandwidth and Latency Costs Simultaneously

Oguz Selvitopi, Seher Acer, and Cevdet Aykanat

Abstract

Intelligent partitioning models are commonly used for efficient parallelization of irregular applications on distributed systems. These models usually aim to minimize a single communication cost metric, which is either related to communication volume or message count. However, both volume- and message-related metrics should be taken into account during partitioning for a more efficient parallelization. There are only a few works that consider both of them and they usually address each in separate phases of a two-phase approach. In this work, we propose a recursive hypergraph bipartitioning framework that reduces the total volume and total message count in a single phase. In this framework, the standard hypergraph models, nets of which already capture the bandwidth cost, are augmented with message nets. The message nets encode the message count so that minimizing conventional cutsize captures the minimization of bandwidth and latency costs together. Our model provides a more accurate representation of the overall communication cost by incorporating both the bandwidth and the latency components into the partitioning objective. The use of the widely-adopted successful recursive bipartitioning framework provides the flexibility of using any existing hypergraph partitioner. The experiments on instances from different domains show that our model on the average achieves up to 52 percent reduction in total message count and hence results in 29 percent reduction in parallel running time compared to the model that considers only the total volume.

Index Terms-Communication cost, bandwidth, latency, partitioning, hypergraph, recursive bipartitioning, load balancing, sparse matrix vector multiplication, combinatorial scientific computing

1 Introduction

FOR irregular applications in the scientific computing domain and several other domains, the intelligent partitioning methods are commonly employed to reduce the communication overhead for efficient parallelization in a distributed setting. Graph and hypergraph partitioning models are ubiquitously utilized in this regard.

1.1 Motivation and Related Work

A common cost model for representing the communication requirements of parallel applications consists of the bandwidth and latency components. The bandwidth component is proportional to the amount (volume) of data transferred and the latency component is proportional to the number of messages communicated. In order to capture the communication requirements of parallel applications more accurately, both components should be taken into account in the partitioning models.

Although graph/hypergraph partitioning models that address the bandwidth component are abundant in the literature [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], there exist only a few works that also address the latency component. A relatively early work by Uçar and Aykanat [12]

- The authors are with the Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey.
E-mail: \{reha, acer, aykanat@@cs.bilkent.edu.tr.
Manuscript received 30 Nov. 2015; revised 18 May 2016; accepted 26 May 2016. Date of publication 6 June 2016; date of current version 18 Jan. 2017. Recommended for acceptance by D. Trystram.
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2577024
proposes a two-phase approach in which the bandwidth and latency components are respectively addressed in the first and second phases by reducing total communication volume in the former and total message count in the latter. They propose the communication hypergraph model for the second phase to capture the messages and the processors involved. Their method is used for partitioning sparse matrices in the context of iterative solvers for nonsymmetric linear systems and exploits the flexibility of using nonconformal partitions for the vectors in the solver. A recent study by Deveci et al. [13] addresses multiple communication cost metrics via hypergraph partitioning in a single phase. These metrics involve the bandwidth-related metrics such as total volume, maximum send/receive volume, etc. as well as the latency-related metrics such as total message count and maximum send message count. All metrics are addressed in the refinement stage of the partitioning. Their approach introduces an additional cost of $O\left(V K^{2}\right)$ to each refinement pass for handling multiple metrics, where V and K denote the number of tasks in the application and the number of processors, respectively. Another work that is reported to reduce the latency cost in an indirect manner uses the $\lambda(\lambda-1)$ metric in order to correctly encapsulate the total communication volume in the target application [14].

There are studies that address the latency overhead via providing an upper bound on the number of messages communicated [8], [15], [16], [17], [18], [19], [20], [22], [23], [24], [25]. These works usually assume that K processors are organized as a $\sqrt{K} \times \sqrt{K}$ mesh and restrict the communication along the rows and the columns of the processor mesh, which results in $O(\sqrt{K})$ messages for each processor. Most
of the works bounding the latency component do not explicitly reduce the bandwidth component. The target applications in these works are usually centered around parallelizing sparse matrix computations.

There are a few studies that also aim at reducing volume besides bounding the message count. Çatalyürek and Aykanat [8] propose a two-phase method that makes use of hypergraph partitioning to achieve a Cartesian distribution of sparse matrices, namely 2D checkerboard partitioning. In the first phase, they obtain a rowwise \sqrt{K}-way partition and in the second phase, they use multiple vertex weights determined from the partition information of the first phase and obtain a columnwise \sqrt{K}-way partition. In both phases, the objective is to minimize the total volume. Boman et al. [23] achieves a similar feat with a faster method for scale-free graphs, again in two phases. In the first phase, their approach can make use of any available graph/hypergraph partitioner to obtain a 1D vertex partition. In the second phase, they use an effective algorithm to redistribute the nonzeros in the off-diagonal blocks to guarantee the $O(\sqrt{K})$ upper bound. These two methods are proposed for efficient parallelization of sparse matrix vector multiplication.

1.2 Contributions

Most of the existing graph/hypergraph partitioning models in the literature address only the bandwidth component while ignoring the latency component. In this work, we propose an augmentation to the existing models in order to minimize the bandwidth and the latency components simultaneously in a single phase. Our approach relies on the commonly adopted recursive bipartitioning (RB) framework [1], [5], [26], [27], [28]. The RB framework recursively partitions a given domain of computational tasks and data items into two until desired number subdomains is obtained. Consider a subdomain to be bipartitioned and the set of data items in this subdomain that are required by the tasks in some other subdomain. Keeping these items together in the bipartitioning ensures only one of the new subdomains to send a message to that other subdomain, avoiding an increase in the total number of messages. In order to encourage keeping these items together, we introduce message nets to the standard hypergraph model so that dividing these items is penalized with a cost equal to startup latency. The nets of the standard hypergraph model are referred to as the volume nets and with the addition of the message nets, this augmented hypergraph now contains both the volume and message nets. Partitioning this hypergraph presents a more accurate picture of the communication cost model as the objective of minimizing the cutsize in the partitioning encapsulates the reduction of both the total volume and the total message count.

Our approach is tailored for the parallel applications in which there exists a single communication phase, that is either preceded or succeeded by a computational phase. The parallel application is also assumed to be performed iteratively and a conformal partition on input and output data is required, where the input of the next iteration is obtained from the output of the current iteration. These common assumptions are suited well to the needs of several applications from various domains. Compared to the standard hypergraph partitioning model in which only the
bandwidth component is minimized [1], our approach introduces an additional cost of $O\left(p \log _{2} K\right)$ due to the addition of the message nets, where p is the number of pins in the hypergraph. The proposed model does not depend on a specific hypergraph partitioning tool implementation, hence it can make use of any hypergraph partitioner such as PaToH [1], [29], hMetis [26] or Mondriaan [7]. In our experiments, we consider 1D parallel sparse matrix vector multiplication (SpMV) as an example application. Our approach is shown to be effective at reducing the latency component as it attains an 18-52 percent reduction in the total number of messages at the expense of an 8-70 percent increase in the total volume compared to the standard model. The experiments validate the necessity of addressing both communication components as the proposed model reduces the parallel running time of SpMV up to 29 percent for 2048 processors on the average.

The rest of the paper is organized as follows. Section 2 describes the properties of the target applications and how to model them with hypergraphs for parallelization. The proposed hypergraph partitioning model and its extensions are given in Section 3. Section 4 evaluates the proposed model in terms of both the communication statistics and the parallel running time of SpMV. Section 5 concludes.

2 Background

2.1 Hypergraph Partitioning Problem

A hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{N})$ is defined as a set of n vertices $\mathcal{V}=\left\{v_{1}, \ldots, v_{n}\right\}$ and a set of m nets $\mathcal{N}=\left\{n_{1}, \ldots, n_{m}\right\}$. Each net $n_{j} \in \mathcal{N}$ connects a subset of vertices, which is denoted by $\operatorname{Pins}\left(n_{j}\right) \subseteq \mathcal{V}$. The set of nets that connect v_{i} is denoted by $\operatorname{Nets}\left(v_{i}\right) \subseteq \mathcal{N}$. Each vertex v_{i} has an associated weight $w\left(v_{i}\right)$ and each net n_{j} has an associated $\operatorname{cost} c\left(n_{j}\right)$.
$\Pi=\left\{\mathcal{V}_{1}, \ldots, \mathcal{V}_{K}\right\}$ is said to be a K-way vertex partition of \mathcal{H} if parts are mutually disjoint and exhaustive. In Π, net n_{j} is said to connect part \mathcal{V}_{k} if it connects at least one vertex in \mathcal{V}_{k}, i.e., $\operatorname{Pins}\left(n_{j}\right) \cap \mathcal{V}_{k} \neq \emptyset$. The connectivity set $\Lambda\left(n_{j}\right)$ of n_{j} is defined as the set of parts connected by n_{j}. The connectivity of $n_{j}, \lambda\left(n_{j}\right)$, denotes the number of parts connected by $n_{j} . n_{j}$ is said to be cut if it connects more than one part, i.e., $\lambda\left(n_{j}\right)>1$, and uncut otherwise.

The hypergraph partitioning problem is defined as finding a K-way vertex partition Π with the objective of minimizing cutsize, which is defined as

$$
\begin{equation*}
\operatorname{cut}(\Pi)=\sum_{n_{j} \in \mathcal{N}^{\text {cut }}} c\left(n_{j}\right)\left(\lambda\left(n_{j}\right)-1\right) \tag{1}
\end{equation*}
$$

subject to the balance constraint

$$
\begin{equation*}
W\left(\mathcal{V}_{k}\right) \leq(1+\epsilon) W_{\text {avg }} \tag{2}
\end{equation*}
$$

where $\mathcal{N}^{\text {cut }}$ denotes the set of cut nets, $W\left(\mathcal{V}_{k}\right)=\sum_{v_{i} \in \mathcal{V}_{k}} w\left(v_{i}\right)$ denotes the weight of $\mathcal{V}_{k}, W_{\text {avg }}=\sum_{k} W\left(\mathcal{V}_{k}\right) / K$ denotes the average part weight and ϵ denotes the maximum allowed imbalance ratio. The hypergraph partitioning problem is NP-hard [30].

2.2 Recursive Hypergraph Bipartitioning

Our work relies on recursive bipartitioning, hence we give the relevant notation. In RB, a given hypergraph \mathcal{H} is

Fig. 1. (a) An example for $A_{\text {PRE. }}$ (b) The hypergraph \mathcal{H}_{E} that represents $A_{\text {PRE }}$.
recursively partitioned into two parts until K parts are obtained. Obtaining a K-way partition of \mathcal{H} through RB induces a binary tree with $\left\lceil\log _{2} K\right\rceil$ levels, which is referred to as an RB tree. For the sake of simplicity, we assume K is a power of two. The ℓ th level of the RB tree contains 2^{ℓ} hypergraphs, denoted with $\mathcal{H}_{0}^{\ell}, \ldots, \mathcal{H}_{2^{\ell}-1}^{\ell}$ from left to right, $0 \leq \ell \leq \log _{2} K$. A bipartition $\Pi=\left\{\mathcal{V}_{L}, \mathcal{V}_{R}\right\}$ on hypergraph \mathcal{H}_{k}^{ℓ} in the ℓ th level forms two new vertex-induced hypergraphs $\mathcal{H}_{2 k}^{\ell+1}=\left(\mathcal{V}_{L}, \mathcal{N}_{L}\right)$ and $\mathcal{H}_{2 k+1}^{\ell+1}=\left(\mathcal{V}_{R}, \mathcal{N}_{R}\right)$, both in level $\ell+1$. Here, \mathcal{V}_{L} and \mathcal{V}_{R} are respectively used to refer to the left and right part of the bipartition without loss of generality. A single bipartitioning is also referred to as an RB step.

The net sets of the newly formed hypergraphs in an RB step are constructed via cut-net splitting method [1] in order to capture the cutsize (1). In this method, a cut-net n_{j} in $\Pi=\left\{\mathcal{V}_{L}, \mathcal{V}_{R}\right\}$ is split into two new nets $n_{j}^{L} \in \mathcal{N}_{L}$ and $n_{j}^{R} \in \mathcal{N}_{R}$, where $\operatorname{Pins}\left(n_{j}^{L}\right)=\operatorname{Pins}\left(n_{j}\right) \cap \mathcal{V}_{L}$ and $\operatorname{Pins}\left(n_{j}^{R}\right)=$ $\operatorname{Pins}\left(n_{j}\right) \cap \mathcal{V}_{R}$. Internal nets of \mathcal{V}_{L} and \mathcal{V}_{R} are respectively included in \mathcal{N}_{L} and \mathcal{N}_{R}.

2.3 Parallelizing Applications

2.3.1 Target Application Properties

Consider an application $\mathcal{A}=(\mathcal{I}, \mathcal{T}, \mathcal{O})$ to be parallelized, where $\mathcal{I}=\left\{i_{1}, \ldots, i_{I}\right\}$ is the set of input data items, $\mathcal{T}=\left\{t_{1}, t_{T}\right\}$ is the set of tasks and $\mathcal{O}=\left\{o_{1}, \ldots, o_{O}\right\}$ is the set of output data items. I, T and O respectively denote the sizes of \mathcal{I}, \mathcal{T} and \mathcal{O}. The items and tasks of this application constitute a domain to be partitioned for parallelization. The tasks operate on input items and produce output items. There is no dependency among tasks, however there is interaction among the tasks that need the same input as well as the tasks that contribute to the same output. Input $i_{j} \in \mathcal{I}$ is required by a subset of tasks, denoted by $\operatorname{tasks}\left(i_{j}\right) \subseteq \mathcal{T}$. A subset of tasks produce intermediate results for output $o_{j} \in \mathcal{O}$, again denoted by $\operatorname{tasks}\left(o_{j}\right) \subseteq \mathcal{T}$. size $\left(t_{i}\right)$ denotes the amount of time required to complete task t_{i} and $\operatorname{size}\left(i_{j}\right)\left(\operatorname{size}\left(o_{j}\right)\right)$ denotes the storage size of item $i_{j}\left(o_{j}\right)$. The tasks are atomic, i.e., each task is processed exactly by one processor. In a parallel setting, tasks and items are distributed among a number of processors.

We focus on applications in which either the intermediate results for o_{j} are produced by a single task for each $o_{j} \in \mathcal{O}\left(\left|\operatorname{tasks}\left(o_{j}\right)\right|=1\right)$ or i_{j} is required by a single task for each $i_{j} \in \mathcal{I}\left(\left|\operatorname{tasks}\left(i_{j}\right)\right|=1\right)$. In a distributed setting, there is

Fig. 3. Two 3-way partitionings of the same hypergraph $A_{P R E}$. Only the parts of v_{3}, v_{6} and v_{7} differ in Π_{A} and Π_{B}. Π_{A} incurs less volume but more messages while Π_{B} incurs more volume but less messages. Note that v_{j} represents both task t_{j} and input i_{j}.
with possibly multiple input-output pairs $\left(i_{j}, o_{j}\right)$ such that $\operatorname{tasks}\left(o_{j}\right)=\left\{t_{i}\right\}$ for $A_{P R E}$ and $\operatorname{tasks}\left(i_{j}\right)=\left\{t_{i}\right\}$ for $A_{P O S T}$. The weight of a vertex $w\left(v_{i}\right)$ in both \mathcal{H}_{E} and \mathcal{H}_{F} is assigned the amount of time required to execute t_{i}, i.e., $w\left(v_{i}\right)=\operatorname{size}\left(t_{i}\right)$. Both net sets \mathcal{N}_{E} and \mathcal{N}_{F} consist of $I=O$ nets, $\mathcal{N}_{E}=\mathcal{N}_{F}=\left\{n_{1}, \ldots, n_{I=O}\right\}$. The nets in \mathcal{N}_{E} capture the interactions between tasks and inputs: For each input i_{j}, there exists an expand net n_{j} to represent the expand operation on i_{j} with $\operatorname{Pins}\left(n_{j}\right)=\left\{v_{i}: t_{i} \in \operatorname{tasks}\left(i_{j}\right)\right\}$. The nets in \mathcal{N}_{F} capture the interactions between tasks and outputs: For each output o_{j}, there exists a fold net n_{j} to represent the fold operation on o_{j} with $\operatorname{Pins}\left(n_{j}\right)=\left\{v_{i}: t_{i} \in \operatorname{tasks}\left(o_{j}\right)\right\}$. The cost of an expand net $n_{j} \in \mathcal{N}_{E}$ is assigned the size of the respective input i_{j} multiplied with t_{w}, i.e., $c\left(n_{j}\right)=\operatorname{size}\left(i_{j}\right) t_{w}$. In a similar manner, the cost of a fold net $n_{j} \in \mathcal{N}_{F}$ is assigned the size of the respective output o_{j} multiplied with t_{w}, i.e., $c\left(n_{j}\right)=\operatorname{size}\left(o_{j}\right) t_{w}$. Here, t_{w} is the time required to transfer a single unit of data item. Figs. 1b and $2 b$ display the hypergraphs \mathcal{H}_{E} and \mathcal{H}_{F} that respectively represent the example applications in Figs. 1a and 2a.

A K-way partition of $\mathcal{H}_{E} / \mathcal{H}_{F}$ is decoded to obtain a distribution of tasks and data items among K processors. The responsibility of executing tasks and storing items in the subdomain represented by part \mathcal{V}_{k} is, without loss of generality, assigned to processor P_{k}. A cut-net n_{j} in the partition of \mathcal{H}_{E} necessitates an expand operation on input i_{j} from the processor that stores i_{j} to $\lambda\left(n_{j}\right)-1$ processors, whereas a cut-net n_{j} in the partition of \mathcal{H}_{F} necessitates a fold operation on the intermediate results for output o_{j} from $\lambda\left(n_{j}\right)-1$ processors to the processor that stores o_{j}. These operations respectively amount to $\operatorname{size}\left(i_{j}\right)\left(\lambda\left(n_{j}\right)-1\right)$ and $\operatorname{size}\left(o_{j}\right)$ $\left(\lambda\left(n_{j}\right)-1\right)$ volume of communication units. The partitioning constraint of maintaining balance on part weights (2) in both \mathcal{H}_{E} and \mathcal{H}_{F} corresponds to maintaining balance on the processors' expected execution time. The partitioning objective of minimizing cutsize (1) in both \mathcal{H}_{E} and \mathcal{H}_{F} corresponds to minimizing the total communication volume incurred in pre-/post-communication phases.

2.3.3 Examples for $A_{P R E}$ and $A_{P O S T}$

We consider parallel sparse matrix vector multiplication (SpMV) $y \leftarrow A x$ performed in a repeated manner (such as
in iterative solvers) which is a common kernel in scientific computing. Here, A is an $n \times n$ matrix, and x and y are vectors of size n. In SpMV, the inputs are x-vector elements, i.e., $\mathcal{I}=\left\{x_{1}, \ldots, x_{n}\right\}$, and the outputs are y-vector elements, i.e., $\mathcal{O}=\left\{y_{1}, \ldots, y_{n}\right\}$, where x_{j} and y_{i} respectively denote the j th x-vector element and i th y-vector element. A conformal partition on input and output vectors is usually preferred in order to avoid redundant communication.

1D row-parallel SpMV and 1D column-parallel SpMV are examples for $A_{P R E}$ and $A_{P O S T}$. In 1D row-parallel SpMV, task t_{j} stands for the inner product $\left\langle a_{j *}, x\right\rangle$, while in 1D col-umn-parallel SpMV, t_{j} stands for the scalar multiplication $x_{j} a_{* j}$, where $a_{j *}$ and $a_{* j}$ respectively denote the j th row and j th column of A, for $1 \leq j \leq n$. The size of t_{j} is equal to the number of nonzeros in j th row and j th column of A, respectively in $A_{P R E}$ and $A_{P O S T}$, i.e., the number of multiply-andadd operations in $\left\langle a_{j *}, x\right\rangle$ and $x_{j} a_{* j}$. In both, there exist a total of n inputs, n tasks and n outputs. In 1D row-parallel SpMV, input x_{j} is required by each inner product $\left\langle a_{i *}, x\right\rangle$ such that $a_{i *}$ contains a nonzero in j th column, that is, $\operatorname{tasks}\left(x_{j}\right)=\left\{t_{i}: a_{i j} \neq 0\right\}$. The intermediate results for each output y_{j} are produced only by the task $\left\langle a_{j *}, x\right\rangle$, i.e., $\operatorname{tasks}\left(y_{j}\right)=\left\{t_{j}\right\}$. In 1D column-parallel SpMV, input x_{j} is required only by the task $x_{j} a_{* j}$, i.e., $\operatorname{tasks}\left(x_{j}\right)=\left\{t_{j}\right\}$. Each task $x_{i} a_{* i}$ produces an intermediate result for output y_{j} such that $a_{* i}$ contains a nonzero in its j th row, that is, $\operatorname{tasks}\left(y_{j}\right)=\left\{t_{i}: a_{j i} \neq 0\right\}$. We represent 1D row-parallel and 1D column-parallel SpMVs respectively with $\mathcal{H}_{E}=$ $\left(\mathcal{V}_{E}, \mathcal{N}_{E}\right)$ and $\mathcal{H}_{F}=\left(\mathcal{V}_{F}, \mathcal{N}_{F}\right)$. The cost of net n_{j} in both \mathcal{H}_{E} and \mathcal{H}_{F} is assigned t_{w} since it incurs the communication of a single item if it is cut. \mathcal{H}_{E} and \mathcal{H}_{F} are respectively called the column-net and row-net hypergraph models and they are proposed in [1].

The objective of partitioning $\mathcal{H}_{E} / \mathcal{H}_{F}$ correctly captures the total volume while disregarding the message count (Section 2.3.2). To illustrate the aspects of different partitions on these two metrics, we present a motivating example in Fig. 3, where the same \mathcal{H}_{E} is three-way partitioned in two different ways. The arrows represent the messages between processors that are associated with the parts in the figure. For example, in Fig. 3a, $i_{2}\left(=v_{2}\right)$ needs to be sent from \mathcal{P}_{1} to \mathcal{P}_{2} since it is stored by \mathcal{P}_{1} and the tasks $t_{4}\left(=v_{4}\right)$ and $t_{5}\left(=v_{5}\right)$
in \mathcal{P}_{2} need it (n_{2} captures this dependency). The contents of the messages are indicated next to the arrows. In the first partition Π_{A} in Fig. 3a, there are five messages and six communicated items, making up a total of $5 t_{s}+6 t_{w}$ communication cost. In the second partition Π_{B} in Fig. 3b, there are three messages and seven communicated items, making up a total of $3 t_{s}+7 t_{w}$ communication cost. Partitioning \mathcal{H}_{E} is more likely to produce Π_{A} since total volume is lower in Π_{A} as nets of \mathcal{H}_{E} encode volume. However, Π_{B} is more desirable since $3 t_{s}+7 t_{w}$ is less than $5 t_{s}+6 t_{w}$ as t_{s} is usually much larger than t_{w}.

3 Simultaneous Reduction of Bandwidth and Latency Costs

We consider parallelizations of $A_{P R E}$ and $A_{P O S T}$ via K-way partitions on \mathcal{H}_{E} and \mathcal{H}_{F}. We describe our model first for $A_{P R E}$ in detail (Section 3.1) and then show how to apply it to $A_{P O S T}$ (Section 3.2.1), as they are dual of each other. Hereinafter, we refer to \mathcal{H}_{E} as \mathcal{H} and Π_{E} as Π. We first assume that $I=O=T$ and describe the model for this case and then extend it to the more general case $I=O \geq T$ (Section 3.2.2).

3.1 Encoding Messages in Recursive Hypergraph Bipartitioning

Consider a recursive bipartitioning tree being produced in a breadth-first manner to obtain a K-way partition of $\mathcal{H}=(\mathcal{V}, \mathcal{N})$. Let the RB process be currently at the ℓ th level, prior to bipartitioning hypergraph \mathcal{H}_{i}^{ℓ} in this level. There are currently $2^{\ell}+i$ hypergraphs, enumerated from left to right, $\mathcal{H}_{i}^{\ell}, \ldots, \mathcal{H}_{2^{\ell}-1}^{\ell}, \mathcal{H}_{0}^{\ell+1}, \ldots, \mathcal{H}_{2 i-1}^{\ell+1}$, at the leaf nodes of the RB tree: $2^{\ell}-i$ of them at level ℓ and $2 i$ of them at level $\ell+1$. The vertex sets of these hypergraphs induce a $\left(2^{\ell}+i\right)$-way vertex partition

$$
\Pi_{\mathrm{cur}}(\mathcal{H})=\left\{\mathcal{V}_{i}^{\ell}, \ldots, \mathcal{V}_{2^{\ell}-1}^{\ell}, \mathcal{V}_{0}^{\ell+1}, \ldots, \mathcal{V}_{2 i-1}^{\ell+1}\right\}
$$

This vertex partition is also assumed to induce a $\left(2^{\ell}+i\right)$-way processor partition $\mathbb{P}_{\text {cur }}=\left\{\mathcal{P}_{i}^{\ell}, \ldots, \mathcal{P}_{2^{\ell}-1}^{\ell}, \mathcal{P}_{0}^{\ell+1}, \ldots, \mathcal{P}_{2 i-1}^{\ell+1}\right\}$, where processor group \mathcal{P}_{i}^{ℓ} is held responsible for the items/ tasks that are in the subdomain represented by \mathcal{V}_{i}^{ℓ}. An example $\Pi_{\text {cur }}$ is seen in the upper RB tree in Fig. 4.

We refer to the current hypergraph to be bipartitioned \mathcal{H}_{i}^{ℓ} as $\mathcal{H}_{\text {cur }}=\left(\mathcal{V}_{\text {cur }}=\mathcal{V}_{i}^{\ell}, \mathcal{N}_{\text {cur }}=\mathcal{N}_{i}^{\ell}\right)$. This bipartitioning generates $\Pi\left(\mathcal{H}_{\text {cur }}\right)=\left\{\mathcal{V}_{L}, \mathcal{V}_{R}\right\}$ and forms two new hypergraphs $\mathcal{H}_{L}=\left(\mathcal{V}_{L}, \mathcal{N}_{L}\right)$ and $\mathcal{H}_{R}=\left(\mathcal{V}_{R}, \mathcal{N}_{R}\right)$. Note that $\mathcal{H}_{L}=\mathcal{H}_{2 i}^{\ell+1}$ and $\mathcal{H}_{R}=\mathcal{H}_{2 i+1}^{\ell+1}$. After bipartitioning, there now exist $2^{\ell}+i+1$ hypergraphs at the leaf nodes and their vertex sets induce a $\left(2^{\ell}+i+1\right)$-way partition:

$$
\Pi_{\text {new }}(\mathcal{H})=\Pi_{\text {cur }}(\mathcal{H})-\left\{\mathcal{V}_{\text {cur }}\right\} \cup\left\{\mathcal{V}_{L}, \mathcal{V}_{R}\right\}
$$

Bipartitioning $\mathcal{V}_{\text {cur }}$ into \mathcal{V}_{L} and \mathcal{V}_{R} is assumed to also bipartition the processor group $\mathcal{P}_{\text {cur }}$ into two processor groups \mathcal{P}_{L} and \mathcal{P}_{R}. In accordance, $\mathbb{P}_{\text {new }}=\mathbb{P}_{\text {cur }}-\left\{\mathcal{P}_{\text {cur }}\right\} \cup\left\{\mathcal{P}_{L}, \mathcal{P}_{R}\right\}$.

Fig. 4 displays the two states of the RB tree before and after bipartitioning $\mathcal{H}_{\text {cur }}$ and highlights the messages communicated. Let $M_{\text {cur }}$ be the number of messages between $\mathcal{P}_{\text {cur }}$ and $\mathbb{P}_{\text {cur }}-\left\{\mathcal{P}_{\text {cur }}\right\}$ and $M_{\text {new }} \geq M_{\text {cur }}$ be the number of messages between $\left\{\mathcal{P}_{L}, \mathcal{P}_{R}\right\}$ and $\mathbb{P}_{\text {new }}-\left\{\mathcal{P}_{L}, \mathcal{P}_{R}\right\} . M_{\text {new }}$ can be at

Fig. 4. The state of the RB tree and the number of messages from/to $\mathcal{P}_{\text {cur }}$ and $\left\{\mathcal{P}_{L}, \mathcal{P}_{R}\right\}$ to/from the other processor groups before and after bipartitioning $\mathcal{H}_{\text {cur }}$. The processor groups corresponding to the vertex sets of the hypergraphs are shown in the box.
most $2 M_{\text {cur }}$ which occurs when both \mathcal{P}_{L} and \mathcal{P}_{R} communicate with every \mathcal{P}_{k} that $\mathcal{P}_{\text {cur }}$ communicates with. A new message is incurred when items/tasks that necessitate a message between $\mathcal{P}_{\text {cur }}$ and \mathcal{P}_{k} get scattered across \mathcal{P}_{L} and \mathcal{P}_{R}. Consequently, after bipartitioning, both \mathcal{P}_{L} and \mathcal{P}_{R} communicate with \mathcal{P}_{k}. Here, the idea is to find a way for items/tasks which as a whole necessitate a message between $\mathcal{P}_{\text {cur }}$ and \mathcal{P}_{k} to be assigned together to either \mathcal{P}_{L} or \mathcal{P}_{R} so that only one of them communicates with \mathcal{P}_{k}. By doing so, the goal is to keep the number of messages between $\left\{\mathcal{P}_{L}, \mathcal{P}_{R}\right\}$ and the remaining processor groups in $\mathbb{P}_{\text {new }}$ as small as possible.

To this end, we define new nets, referred to as message nets, to keep the vertices corresponding to items/tasks that necessitate messages altogether. We extend $\mathcal{H}_{\text {cur }}=\left(\mathcal{V}_{\text {cur }}\right.$, $\left.\mathcal{N}_{\text {cur }}\right)$ to $\mathcal{H}_{\text {cur }}^{M}=\left(\mathcal{V}_{\text {cur }}, \mathcal{N}_{\text {cur }}^{M}\right)$ by adding message nets and keeping the expand nets as is, referred to as volume nets. We include both volume and message nets in $\mathcal{H}_{\text {cur }}^{M}$ in order to reduce the total volume and the total message count simultaneously. The following sections define message nets and present an algorithm for forming them.

3.1.1 Message Nets

Recall that a vertex v_{j} in \mathcal{V} represents input i_{j} besides task t_{j} and output o_{j}, and the processor that stores i_{j} is also held responsible for the possible expand operation on i_{j}. Since net n_{j} represents this expand operation, for convenience, we define a function src: $\mathcal{N} \rightarrow \mathcal{V}$, that maps each original net $n_{j} \in \mathcal{N}$ to its source vertex $\operatorname{src}\left(n_{j}\right) \in \mathcal{V}$, where $\operatorname{src}\left(n_{j}\right)=v_{j}$.

Fig. 5. The illustration of formation and addition of message nets to $\mathcal{H}_{\text {cur }}$ and bipartitioning of $\mathcal{H}_{\text {curr }}^{M}$. Initially, there are four hypergraphs in the leaf nodes of the RB tree: $\mathcal{H}_{\text {cur }}, \mathcal{H}_{a}, \mathcal{H}_{b}$ and \mathcal{H}_{c}. Two send (s_{a} and s_{b}) and two receive (r_{b} and r_{c}) message nets are added to form $\mathcal{H}_{\text {cur }}^{M}$. Then, $\mathcal{H}_{\text {cur }}^{M}$ is bipartitioned to obtain \mathcal{H}_{L} and \mathcal{H}_{R}. The split nets are shown in a table where a shaded entry indicates the existence of the split net in the respective hypergraph. The messages communicated among the respective processor groups are illustrated in the frame at the right bottom corner, where $\mathcal{P}_{\text {cur }}$, $\mathcal{P}_{a}, \mathcal{P}_{b}$ and \mathcal{P}_{c} are respectively associated with $\mathcal{H}_{\text {cur }}, \mathcal{H}_{a}, \mathcal{H}_{b}$ and \mathcal{H}_{c}. The colors of the message nets indicate the processor groups that the respective messages are sent to or received from. The dashed line separates the hypergraphs/processor groups before and after bipartitioning. The volume nets in $\mathcal{H}_{c u r}^{M}, \mathcal{H}_{L}$ and \mathcal{H}_{R} are faded out to attract the focus on the message nets.

To aid the discussions in this section, we present an example RB tree in Fig. 5 that currently consists of four leaf hypergraphs $\mathcal{H}_{\text {cur }}, \mathcal{H}_{a}, \mathcal{H}_{b}$ and \mathcal{H}_{c}, whose vertex sets form four-way partition $\Pi_{\text {cur }}$. We refer to the nets in given $\mathcal{H}=\mathcal{H}_{0}^{0}$ as original nets and use these nets in describing the algorithm for forming the message nets. An original net may split several times during RB or it may not split by being uncut in the bipartitionings it takes part in. For example in Fig. 5, the original net n_{3} has split three times, producing n_{3}^{\prime}, $n_{3}^{\prime \prime}$ and $n_{3}^{\prime \prime \prime}$ in $\mathcal{H}_{\text {cur }}, \mathcal{H}_{a}$ and \mathcal{H}_{b}, respectively. Observe that the vertices connected by n_{3} in \mathcal{H} are equal to the union of the vertices connected by $n_{3}^{\prime}, n_{3}^{\prime \prime}$ and $n_{3}^{\prime \prime \prime}$ in the hypergraphs at the leaf nodes. On the other hand, the original net n_{5} is never split and currently in $\mathcal{H}_{\text {cur }}$. In the figure, without loss of generality, a split net with a single prime in the superscript (e.g., n_{3}^{\prime}) connects the source vertex of the respective original net (n_{3}), while split nets with two or more primes (e.g., $n_{3}^{\prime \prime}, n_{3}^{\prime \prime \prime}$) do not.

In the formation of the message nets, we make use of the most recent $\left(2^{\ell}+i\right)$-way partition information $\Pi_{\text {cur }}$. The message nets are categorized into two as send message nets and receive message nets, or simply send nets and receive nets.

We form a send net s_{k} for each $\mathcal{P}_{k} \neq \mathcal{P}_{\text {cur }}$ to which $\mathcal{P}_{\text {cur }}$ sends a message. s_{k} connects the vertices corresponding to the items sent to \mathcal{P}_{k} :

$$
\begin{align*}
\operatorname{Pins}\left(s_{k}\right)=\left\{v_{j} \in \mathcal{V}_{\text {cur }}:\right. & \operatorname{src}\left(n_{j}\right)=v_{j} \text { and } \tag{3}\\
& \left.\operatorname{Pins}\left(n_{j}\right) \cap \mathcal{V}_{k \neq \text { cur }} \neq \emptyset\right\} .
\end{align*}
$$

In other words, s_{k} connects source vertex v_{j} of each original net n_{j} that represents the expand operation which necessitates sending i_{j} to \mathcal{P}_{k}. Algorithm 1 shows the formation of the set of send nets $\mathcal{N}_{\text {SND }}$, which is initially empty (line 1). For each vertex $v_{j} \in \mathcal{V}_{\text {cur }}$, we first retrieve net n_{j} such that $\operatorname{src}\left(n_{j}\right)=v_{j}$ (line 4). Then, the vertices which are connected by n_{j} and not in $\mathcal{V}_{\text {cur }}$ are traversed (line 5). Let v be such a vertex, currently in part \mathcal{V}_{k}. Since \mathcal{P}_{k} needs i_{j} due to the task
represented by v, i_{j} is sent from $\mathcal{P}_{\text {cur }}$ to \mathcal{P}_{k}. Hence, the vertices connected by send net s_{k} representing this message are updated (lines 7-12): If s_{k} is processed for the first time, $\operatorname{Pin} s\left(s_{k}\right)$ is initialized with $\left\{v_{j}\right\}$ and s_{k} is added to $\mathcal{N}_{\text {SND }}$ (lines 8 and 10), otherwise, $\operatorname{Pins}\left(s_{k}\right)$ is updated to include v_{j} (line 12). Since $\mathcal{P}_{\text {cur }}$ can send at most one message to each of $2^{\ell}+i-1$ processor groups, the number of send nets included in $\mathcal{H}_{\text {cur }}^{M}$ is at most $2^{\ell}+i-1$, i.e., $0 \leq\left|\mathcal{N}_{\text {SND }}\right| \leq$ $2^{\ell}+i-1$. In Fig. 5, the send nets s_{a} and s_{b} are formed and included in $\mathcal{H}_{\text {cur }}^{M}$ to represent the messages from $\mathcal{P}_{\text {cur }}$ to \mathcal{P}_{a} and \mathcal{P}_{b}. sannects the respective source vertices v_{1}, v_{2} and v_{3} of the original nets n_{1}, n_{2} and n_{3} since \mathcal{H}_{a} contains vertices that are also connected by these nets (indicated by the split nets $n_{1}^{\prime \prime}, n_{2}^{\prime \prime}$ and $n_{3}^{\prime \prime}$). Similarly, s_{b} connects v_{3} and v_{4} due to the vertices connected by n_{3} and n_{4} in \mathcal{H}_{b}.

```
Algorithm 1. FORM-MESSAGE-NETS
Require: \(\mathcal{H}=(\mathcal{V}, \mathcal{N}), \mathcal{V}_{\text {cur }}, t_{s}\)
    \(\mathcal{N}_{\text {SND }}=\emptyset \quad \triangleright\) The set of send nets
    \(\mathcal{N}_{\mathrm{RCV}}=\emptyset \quad \triangleright\) The set of receive nets
    for \(v_{j} \in \mathcal{V}_{\text {cur }}\) do
        Let \(\operatorname{src}\left(n_{j}\right)=v_{j}\)
        \(\triangleright\) Add send nets
        for \(v \in \operatorname{Pins}\left(n_{j}\right)\) and \(v \notin \mathcal{V}_{\text {cur }}\) do
            Let \(\mathcal{V}_{k}\) be the part \(v\) is currently in
            if \(s_{k} \notin \mathcal{N}_{\text {SND }}\) then
                \(\operatorname{Pins}\left(s_{k}\right)=\left\{v_{j}\right\}\)
                \(c\left(s_{k}\right)=t_{s}\)
                \(\mathcal{N}_{\mathrm{SND}}=\mathcal{N}_{\mathrm{SND}} \cup\left\{s_{k}\right\}\)
            else
                \(\operatorname{Pins}\left(s_{k}\right)=\operatorname{Pins}\left(s_{k}\right) \cup\left\{v_{j}\right\}\)
        \(\triangle\) Add receive nets
        for \(n \in \operatorname{Nets}\left(v_{j}\right)\) and \(n \neq n_{j}\) and \(\operatorname{src}(n) \notin \mathcal{V}_{\text {cur }}\) do
            \(v=\operatorname{src}(n)\)
            Let \(\mathcal{V}_{k}\) be the part \(v\) is currently in
            if \(r_{k} \notin \mathcal{N}_{\mathrm{RCV}}\) then
                \(\operatorname{Pins}\left(r_{k}\right)=\left\{v_{j}\right\}\)
            \(c\left(r_{k}\right)=t_{s}\)
            \(\mathcal{N}_{\mathrm{RCV}}=\mathcal{N}_{\mathrm{RCV}} \cup\left\{r_{k}\right\}\)
        else
            \(\operatorname{Pins}\left(r_{k}\right)=\operatorname{Pins}\left(r_{k}\right) \cup\left\{v_{j}\right\}\)
        return \(\mathcal{N}_{\mathrm{SND}}, \mathcal{N}_{\mathrm{RCV}}\)
```

We form a receive net r_{k} for each $\mathcal{P}_{k} \neq \mathcal{P}_{\text {cur }}$ from which $\mathcal{P}_{\text {cur }}$ receives a message. r_{k} connects the vertices corresponding to the tasks that need items from \mathcal{P}_{k} :

$$
\begin{array}{r}
\operatorname{Pins}\left(r_{k}\right)=\left\{v_{j} \in \mathcal{V}_{\text {cur }}: v_{j} \in \operatorname{Pins}(n)\right. \text { and } \tag{4}\\
\left.\operatorname{src}(n) \in \mathcal{V}_{k \neq \text { cur }}\right\} .
\end{array}
$$

In other words, r_{k} connects vertex v_{j} which is connected by each original net n representing the expand operation that necessitates to receive the respective item from \mathcal{P}_{k}. Algorithm 1 shows the formation of the set of receive nets $\mathcal{N}_{\text {RCV }}$, which is initially empty (line 2). For each vertex $v_{j} \in \mathcal{V}_{\text {cur }}$, we traverse the nets that connect v_{j} other than n_{j} whose source vertices are not in $\mathcal{V}_{\text {cur }}$ (line 13). Let n be such a net and v be its source vertex, currently in \mathcal{V}_{k} (lines 14-15). Since $\mathcal{P}_{\text {cur }}$ needs the item corresponding to v due to task t_{j} represented
by v_{j}, this item is received by $\mathcal{P}_{\text {cur }}$ from \mathcal{P}_{k}. Hence, the vertices connected by receive net r_{k} representing this message are updated (lines 16-21): If r_{k} is processed for the first time, $\operatorname{Pins}\left(r_{k}\right)$ is initialized with $\left\{v_{j}\right\}$ and r_{k} is added to $\mathcal{N}_{\mathrm{RCV}}$ (lines 17 and 19), otherwise, $\operatorname{Pins}\left(r_{k}\right)$ is updated to include v_{j} (line 21). Since $\mathcal{P}_{\text {cur }}$ can receive at most one message from each of the $2^{\ell}+i-1$ processor groups, the number of receive nets included in $\mathcal{H}_{\text {cur }}^{M}$ is at most $2^{\ell}+i-1$, i.e., $0 \leq\left|\mathcal{N}_{\mathrm{RCV}}\right| \leq$ $2^{\ell}+i-1$. In Fig. 5, the receive nets r_{b} and r_{c} are formed and included in $\mathcal{H}_{\text {cur }}^{M}$ to represent the messages from \mathcal{P}_{b} and \mathcal{P}_{c} to $\mathcal{P}_{\text {cur }} . r_{b}$ connects v_{1} and v_{2}, which are connected by n_{6} (indicated by the split net $n_{6}^{\prime \prime}$), since \mathcal{H}_{b} contains the source vertex of n_{6}. Similarly, r_{c} connects v_{2}, v_{4} and v_{5} due to the nets n_{7} and n_{8}, both of which have their source vertices in \mathcal{H}_{c}.

Recall that the cost of a volume net in $\mathcal{H}_{\text {cur }}$ is $\operatorname{size}\left(i_{j}\right) t_{w}$ and captures the bandwidth cost. To capture the latency cost via message nets, the costs of these nets are assigned the startup latency:

$$
\begin{equation*}
c\left(s_{k}\right)=c\left(r_{k}\right)=t_{s}, \quad \text { for } s_{k} \in \mathcal{N}_{\mathrm{SND}} \text { and } r_{k} \in \mathcal{N}_{\mathrm{RCV}} \tag{5}
\end{equation*}
$$

in lines 9 and 18 of Algorithm 1. Note that the cost of a volume net is the size of the corresponding item in terms of t_{w}, whereas the cost of a message net is unit in terms of t_{s} since it encapsulates exactly one message. The message nets have a higher cost than the volume nets since the startup time of a message is significantly higher than the time required to transmit a word. Finally, the message nets in $\mathcal{N}_{\text {SND }}$ and $\mathcal{N}_{\text {RCV }}$ are returned (line 22).

3.1.2 Partitioning and Correctness

The newly formed hypergraph $\mathcal{H}_{\text {cur }}^{M}$ is then bipartitioned to obtain $\Pi\left(\mathcal{H}_{\text {cur }}^{M}\right)=\left\{\mathcal{V}_{L}, \mathcal{V}_{R}\right\}$. Maintaining balance in partitioning $\mathcal{H}_{\text {cur }}^{M}$ is the same with that of $\mathcal{H}_{\text {cur }}$ since vertices and their weights are the same in both hypergraphs. With the newly introduced message nets, the cutsize of Π is given by

$$
\begin{align*}
c u t(\Pi) & =\sum_{n_{j} \in \mathcal{N}_{\mathrm{cur}}^{\text {cut }}} c\left(n_{j}\right)+\sum_{s_{k} \in \mathcal{N}_{\mathrm{SND}}^{\text {cut }}} c\left(s_{k}\right)+\sum_{r_{k} \in \mathcal{N}_{\mathrm{RCV}}^{\text {cut }}} c\left(r_{k}\right) \tag{6}\\
& =\sum_{n_{j} \in \mathcal{N}_{\mathrm{cur}}^{\mathrm{cut}}} s i z e\left(i_{j}\right) t_{w}+\left|\mathcal{N}_{\mathrm{SND}}^{\text {cut }}\right| t_{s}+\left|\mathcal{N}_{\mathrm{RCV}}^{\text {cut }}\right| t_{s},
\end{align*}
$$

where $\mathcal{N}_{\text {cur }}^{\text {cut }}, \mathcal{N}_{\text {SND }}^{\text {cut }}$ and $\mathcal{N}_{\text {RCV }}^{\text {cut }}$ respectively denote the sets of cut volume nets, cut send nets and cut receive nets in $\Pi\left(\mathcal{H}_{\text {cur }}^{M}\right)$.

Let $m s g(\mathbb{P})$ denote the total number of messages communicated among the processor groups in \mathbb{P}.
Theorem 1. Consider an $R B$ tree prior to bipartitioning the i th hypergraph $\mathcal{H}_{\mathrm{cur}}^{M}=\left(\mathcal{V}_{\mathrm{cur}}, \mathcal{N}_{\mathrm{cur}}^{M}\right)$ in the tth level with message nets added. The vertex sets of the leaf hypergraphs of the $R B$ tree are assumed to induce a $\left(2^{\ell}+i\right)$-way processor partition $\mathbb{P}_{\text {cur }}$. Suppose that the bipartition $\Pi\left(\mathcal{H}_{\text {cur }}^{M}\right)=\left\{\mathcal{V}_{L}, \mathcal{V}_{R}\right\}$ generates two new leaf hypergraphs \mathcal{H}_{L} and \mathcal{H}_{R}, where processor groups \mathcal{P}_{L} and \mathcal{P}_{R} are associated with \mathcal{V}_{L} and \mathcal{V}_{R}. After bipartitioning, the vertex sets of the hypergraphs are assumed to induce a $\left(2^{\ell}+i+1\right)$-way processor partition $\mathbb{P}_{\text {new }}=\mathbb{P}_{\text {cur }}-$ $\left\{\mathcal{P}_{\text {cur }}\right\} \cup\left\{\mathcal{P}_{L}, \mathcal{P}_{R}\right\}$. Minimizing the number of cut message nets
in $\Pi\left(\mathcal{H}_{\mathrm{cur}}^{M}\right)$ minimizes the increase ΔM in the number of messages between $\mathcal{P}_{\text {cur }}$ and $\mathbb{P}_{\text {cur }}-\left\{\mathcal{P}_{\text {cur }}\right\}$, which is given by

$$
\begin{equation*}
\Delta M=m s g\left(\mathbb{P}_{\text {new }}\right)-m s g\left(\mathbb{P}_{\text {cur }}\right)-m s g\left(\left\{\mathcal{P}_{L}, \mathcal{P}_{R}\right\}\right) \tag{7}
\end{equation*}
$$

where $\operatorname{msg}\left(\left\{\mathcal{P}_{L}, \mathcal{P}_{R}\right\}\right) \in\{0,1,2\}$.
Proof. A send net s_{k} in $\mathcal{H}_{\text {cur }}^{M}$ signifies a message from $\mathcal{P}_{\text {cur }}$ to $\mathcal{P}_{k} \in \mathbb{P}_{\text {cur }}-\left\{\mathcal{P}_{\text {cur }}\right\}$. If s_{k} is a cut-net in $\Pi\left(\mathcal{H}_{\text {cur }}^{M}\right)$, then both \mathcal{P}_{L} and \mathcal{P}_{R} send a message to \mathcal{P}_{k}. The message from \mathcal{P}_{L} to \mathcal{P}_{k} and the message from P_{R} to P_{k} respectively contain the items corresponding to the vertices in $\operatorname{Pins}\left(s_{k}\right) \cap \mathcal{V}_{L}$ and $\operatorname{Pins}\left(s_{k}\right) \cap \mathcal{V}_{R}$. Hence, a cut send net contributes one to ΔM. If s_{k} is uncut being in either \mathcal{V}_{L} or \mathcal{V}_{R}, then only the respective processor group sends a message to \mathcal{P}_{k}, whose content is exactly the same with the message from $\mathcal{P}_{\text {cur }}$ to \mathcal{P}_{k}. Hence, an uncut send net does not contribute to ΔM.

In a dual manner, a receive net r_{k} in $\mathcal{H}_{\text {cur }}^{M}$ signifies a message from $\mathcal{P}_{k} \in \mathbb{P}_{\text {cur }}-\left\{\mathcal{P}_{\text {cur }}\right\}$ to $\mathcal{P}_{\text {cur }}$. If r_{k} is a cut-net in $\Pi\left(\mathcal{H}_{\text {cur }}^{M}\right)$, then both \mathcal{P}_{L} and \mathcal{P}_{R} receive a message from \mathcal{P}_{k}. The message from \mathcal{P}_{k} to \mathcal{P}_{L} and the message from \mathcal{P}_{k} to \mathcal{P}_{R} respectively contain the items required by the tasks corresponding to the vertices in $\operatorname{Pins}\left(r_{k}\right) \cap \mathcal{V}_{L}$ and $\operatorname{Pins}\left(r_{k}\right) \cap \mathcal{V}_{R}$. Hence, a cut receive net also contributes one to ΔM. If r_{k} is uncut being in either \mathcal{V}_{L} or \mathcal{V}_{R}, then only the respective processor group receives a message from \mathcal{P}_{k}, whose content is exactly the same with the message from \mathcal{P}_{k} to $\mathcal{P}_{\text {cur }}$. Hence, an uncut receive net does not contribute to ΔM.

The message nets are oblivious to the messages between \mathcal{P}_{L} and \mathcal{P}_{R} since our approach introduces these message nets for the processor groups in $\mathbb{P}_{\text {cur }}$. For this reason, $\operatorname{msg}\left(\left\{\mathcal{P}_{L}, \mathcal{P}_{R}\right\}\right)$ is not taken into account. Therefore, ΔM is equal to the number of cut message nets.

By Theorem 1, the number of cut message nets in $\Pi\left(\mathcal{H}_{\text {cur }}^{M}\right),\left|\mathcal{N}_{\mathrm{SND}}^{\text {cut }}\right|+\left|\mathcal{N}_{\mathrm{RCV}}^{\text {cut }}\right|$, is equal to the increase in the message count, where the new messages between \mathcal{P}_{L} and \mathcal{P}_{R} are excluded. In other words, the number of cut message nets corresponds to the increase in the number of messages between $\mathcal{P}_{\text {cur }}$ and $\mathbb{P}_{\text {cur }}-\left\{\mathcal{P}_{\text {cur }}\right\}$ with $\mathcal{P}_{\text {cur }}$ bipartitioned into $\left\{\mathcal{P}_{L}, \mathcal{P}_{R}\right\}$ in $\mathbb{P}_{\text {new }}$. Observe that each cut message net contributes its associated cost $c\left(s_{k}\right)$ or $c\left(r_{k}\right)$ to the cutsize (6). For this reason as well as because of the presence of volume nets in (6), minimizing the cutsize does not exactly correspond to but relates to minimizing the number of cut message nets. Considering both the volume and the message nets, minimizing the cutsize corresponds to reducing both the total volume and the total message count.

Partitioning $\mathcal{H}_{\text {cur }}^{M}$ is oblivious to the messages between \mathcal{P}_{L} and \mathcal{P}_{R}. However, $\operatorname{msg}\left(\left\{\mathcal{P}_{L}, \mathcal{P}_{R}\right\}\right)$ is negligible compared to $m s g\left(\mathbb{P}_{\text {new }}\right)-m s g\left(\mathbb{P}_{\text {cur }}\right)$ since it is upper bounded by two. Moreover, $\operatorname{msg}\left(\left\{\mathcal{P}_{L}, \mathcal{P}_{R}\right\}\right)$ is empirically found to be almost constant as 2 , being 0 or 1 in only 0.1 percent of 1 M bipartitions. Note that $0 \leq \Delta M \leq 2\left(2^{\ell}+i-1\right)$. The worst case for ΔM occurs when $\mathcal{H}_{\text {cur }}^{M}$ contains a send and a receive net for each other processor group in $\mathbb{P}_{\text {cur }}$ and they all become cut in $\Pi\left(\mathcal{H}_{\mathrm{cur}}^{M}\right)$.

In Fig. 5, there are two send nets s_{a} and s_{b} and two receive nets r_{b} and r_{c} in $\mathcal{H}_{\text {cur }}^{M}$. Among the send nets, s_{a} is a cut-net whereas s_{b} is an uncut net in \mathcal{H}_{R} after bipartitioning.
s_{a} necessitates both \mathcal{P}_{L} and \mathcal{P}_{R} to send a message to \mathcal{P}_{a} due to the items $\left\{i_{1}, i_{2}\right\}$ and $\left\{i_{3}\right\}$, respectively. Since s_{a} is a cutnet, it increases the total message count by one as $\mathcal{P}_{\text {cur }}$ was sending a message to \mathcal{P}_{a}. s_{b} necessitates only \mathcal{P}_{R} to send a message to \mathcal{P}_{b} due to the items $\left\{i_{3}, i_{4}\right\}$. Since s_{b} is an uncut net, it does not change the total message count as $\mathcal{P}_{\text {cur }}$ was already sending a message to \mathcal{P}_{b}. Among the receive nets, r_{c} is a cut-net whereas r_{b} is an uncut net in \mathcal{H}_{L} after bipartitioning. r_{c} necessitates both \mathcal{P}_{L} and \mathcal{P}_{R} to receive a message from \mathcal{P}_{c} due to the tasks $\left\{t_{2}\right\}$ and $\left\{t_{4}, t_{5}\right\}$, respectively. Since r_{c} is a cut-net, it increases the total message count by one as $\mathcal{P}_{\text {cur }}$ was receiving a message from \mathcal{P}_{c}. r_{b} necessitates only \mathcal{P}_{L} to receive a message from \mathcal{P}_{b} due to the tasks $\left\{t_{1}, t_{2}\right\}$. Since r_{b} is an uncut net, it does not change the total message count as $\mathcal{P}_{\text {cur }}$ was already receiving a message from \mathcal{P}_{b}. Hence, two cut message nets cause an increase of two in the number of messages between $\mathcal{P}_{\text {cur }}$ and the other processor groups.

```
Algorithm 2. RB-BANDWIDTH-LATENCY
Require: \(\mathcal{H}=(\mathcal{V}, \mathcal{N}), K, t_{s}\)
    : \(\mathcal{H}_{0}^{0}=\mathcal{H}\)
    \(\triangle\) RB in breadth-first order
    for \(\ell=0\) to \(\log _{2} K-1\) do
        for \(i=0\) to \(2^{\ell}-1\) do
            Let \(\mathcal{H}_{\text {cur }}=\left(\mathcal{V}_{\text {cur }}, \mathcal{N}_{\text {cur }}\right)\) denote \(\mathcal{H}_{i}^{\ell}=\left(\mathcal{V}_{i}^{\ell}, \mathcal{N}_{i}^{\ell}\right)\)
            if \(\ell>0\) then
                \(\mathcal{N}_{\text {SND }}, \mathcal{N}_{\text {RCV }}=\) FORM-MESSAGE-NETS \(\left(\mathcal{H}, \mathcal{V}_{\text {cur }}, t_{s}\right)\)
                \(\mathcal{N}_{\text {cur }}^{M}=\mathcal{N}_{\text {cur }} \cup \mathcal{N}_{\text {SND }} \cup \mathcal{N}_{\text {RCV }}\)
                \(\mathcal{H}_{\text {cur }}^{M}=\left(\mathcal{V}_{\text {cur }}, \mathcal{N}_{\text {cur }}^{M}\right)\)
                \(\Pi=\operatorname{BIPARTITION}\left(\mathcal{H}_{\text {cur }}^{M}\right) \quad \triangleright \Pi=\left\{\mathcal{V}_{L}, \mathcal{V}_{R}\right\}\)
            else
                \(\Pi=\operatorname{BIPARTITION}\left(\mathcal{H}_{\text {cur }}\right) \quad \triangleright \Pi=\left\{\mathcal{V}_{L}, \mathcal{V}_{R}\right\}\)
        \(\triangleright\) Subhypergraphs \(\mathcal{H}_{L}\) and \(\mathcal{H}_{R}\) contain only volume nets
        Form \(\mathcal{H}_{L}=\mathcal{H}_{2 i}^{\ell+1}=\left(\mathcal{V}_{L}, \mathcal{N}_{L}\right)\) of \(\mathcal{H}_{\text {cur }}\) induced by \(\mathcal{V}_{L}\)
        Form \(\mathcal{H}_{R}=\mathcal{H}_{2 i+1}^{\ell+1}=\left(\mathcal{V}_{R}, \mathcal{N}_{R}\right)\) of \(\mathcal{H}_{\text {cur }}\) induced by \(\mathcal{V}_{R}\)
```

Algorithm 2 displays the overall RB process in which both the bandwidth and the latency costs are reduced. As inputs, the algorithm takes a hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{N}), K$ (the number of parts to be obtained), and t_{s} as the cost of the message nets. The partitioning proceeds in a breadth-first manner (lines 2-3). Each hypergraph $\mathcal{H}_{\text {cur }}$ to be bipartitioned does not contain message nets initially (line 4). The sets of send and receive nets $\mathcal{N}_{\text {SND }}$ and $\mathcal{N}_{\text {RCV }}$ are formed via FORM-MESSAGE-NETS (Algorithm 1) (line 6). Then, these message nets are added to $\mathcal{N}_{\text {cur }}$ to obtain $\mathcal{N}_{\text {cur }}^{M}$ (line 7) and consequently $\mathcal{H}_{\text {cur }}^{M}$ (line 8). Note that if $\mathcal{H}_{\text {cur }}$ is the root hypergraph \mathcal{H}_{0}^{0} of the RB tree, no message nets can be added since there is only a single processor group at this point (line 10). The current hypergraph is bipartitioned with the BIPARTITION function to obtain the vertex parts \mathcal{V}_{L} and \mathcal{V}_{R} (lines 9 and 11). The call to BIPARTITION can be realized with any hypergraph partitioning tool; it is a call to obtain only a two-way partition. New hypergraphs $\mathcal{H}_{L}=\mathcal{H}_{2 i}^{\ell+1}$ and $\mathcal{H}_{R}=\mathcal{H}_{2 i+1}^{\ell+1}$ are formed as described in Section 2.2 (lines 1213). \mathcal{N}_{L} and \mathcal{N}_{R} do not contain any message nets since these nets rely on the most recent partitioning information and thus need to be introduced from scratch just prior to bipartitioning $\mathcal{H}_{2 i}^{\ell+1}$ and $\mathcal{H}_{2 i+1}^{\ell+1}$. Notice that at any step of the RB,
among all the leaf hypergraphs, only the current $\mathcal{H}_{\text {cur }}$ is subject to the addition of the message nets, whereas other hypergraphs remain intact.

3.1.3 Running Time Analysis

We consider the cost of adding message nets in the ℓ th level of the RB tree produced in partitioning \mathcal{H} into K parts, $0<\ell<\log _{2} K$. Recall that Algorithm 1 utilizes $\operatorname{Pins}(\cdot)$ and $\operatorname{Nets}(\cdot)$ functions on the original hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{N})$.

In the addition of the send nets, for each vertex v_{j} in the ℓ th level, $\operatorname{Pins}\left(n_{j}\right)$ is visited once, where $\operatorname{src}\left(n_{j}\right)=v_{j}$ (line 5 in Algorithm 1). Observe that each net in \mathcal{N} is visited only once since n_{j} is retrieved only for v_{j}. Updates related to a send net (lines 7-12) can be performed in $O(1)$ time. Hence, each pin of \mathcal{H} is processed exactly once, making the cost of formation and addition of send nets $O(p)$ in the ℓ th level, where p is the number of pins in \mathcal{H}.

In the addition of the receive nets, for each vertex v_{j} in the ℓ th level, $\operatorname{Nets}\left(v_{j}\right)$ is visited once (line 13 in Algorithm 1). Updates related to a receive net (lines 16-21) can also be performed in $O(1)$ time. Hence, each pin of \mathcal{H} is again processed exactly once, making the cost of formation and addition of receive nets $O(p)$ in the ℓ th level.

Therefore, the cost of adding message nets in a single level of RB is $O(p)$, which results in the overall cost of $O\left(p \log _{2} K\right)$ for adding message nets. The solution of the partitioning problem with the addition of message nets is likely to be more expensive compared to partitioning of the original hypergraph.

3.2 Extensions

3.2.1 Encoding Messages for $A_{P O S T}$

We now describe how to apply the proposed model to $A_{\text {POST }}$. In \mathcal{H}_{F}, we define a function dest: $\mathcal{N} \rightarrow \mathcal{V}$ to determine the responsibility of the fold operation on each o_{j}, similar to the definition of $s r c$ for expand operations in \mathcal{H}_{E}. In partitioning \mathcal{H}_{F}, a send net s_{k} connects the vertices corresponding to the tasks that produce intermediate results to be sent to \mathcal{P}_{k} :

$$
\begin{align*}
\operatorname{Pins}\left(s_{k}\right)=\left\{v_{j} \in \mathcal{V}_{\text {cur }}:\right. & v_{j} \in \operatorname{Pins}(n) \text { and } \tag{8}\\
& \left.\operatorname{dest}(n) \in \mathcal{V}_{k \neq \mathrm{cur}}\right\} .
\end{align*}
$$

A receive net r_{k} connects the vertices corresponding to the output items for which the intermediate results need to be received from \mathcal{P}_{k} :

$$
\begin{align*}
\operatorname{Pins}\left(r_{k}\right)=\left\{v_{j} \in \mathcal{V}_{\text {cur }}:\right. & \operatorname{dest}\left(n_{j}\right)=v_{j} \text { and } \tag{9}\\
& \left.\operatorname{Pins}\left(n_{j}\right) \cap \mathcal{V}_{k \neq \mathrm{cur}} \neq \emptyset\right\} .
\end{align*}
$$

Observe that the formation of a send net for $\mathcal{H}_{F}(8)$ is the same as that of a receive net for $\mathcal{H}_{E}(4)$ and the formation of a receive net for $\mathcal{H}_{F}(9)$ is the same as that of a send net for \mathcal{H}_{E} (3). So, the message nets in \mathcal{H}_{E} are the dual of the message nets in \mathcal{H}_{F}. Therefore, the correctness and complexity analysis carried out for $A_{P R E}$ are also valid for $A_{P O S T}$.

3.2.2 Encoding Messages for $I=O \geq T$

To extend the proposed model to the case $I=O \geq T$ for $A_{\text {PRE, }}$ we need a minor change in the formation of the

TABLE 1
Properties of Test Matrices

name	kind	\#rows/cols	\#nonzeros
d_pretok	2D/3D	182,730	$1,641,672$
turon_m	2D/3D	189,924	$1,690,876$
cop20k_A	2D/3D	121,192	$2,624,331$
torso3	2D/3D	259,156	$4,429,042$
mono_500Hz	acoustics	169,410	$5,036,288$
memchip	circuit sim.	$2,707,524$	$14,810,202$
Freescale1	circuit sim.	$3,428,755$	$18,920,347$
circuit5M_dc	circuit sim.	$3,523,317$	$19,194,193$
rajat31	circuit sim.	$4,690,002$	$20,316,253$
laminar_duct3D	comp. fluid dyn.	67,173	$3,833,077$
StocF-1465	comp. fluid dyn.	$1,465,137$	$21,005,389$
web-Google	directed graph	916,428	$5,105,039$
in-2004	directed graph	$1,382,908$	$16,917,053$
eu-2005	directed graph	862,664	$19,235,140$
cage14	directed graph	$1,505,785$	$27,130,349$
mac_econ_fwd500	economic	206,500	$1,273,389$
gsm_106857	electromagnetics	589,446	$21,758,924$
pre2	freq.-dom. circuit sim.	659,033	$5,959,282$
kkt_power	optimization	$2,063,494$	$14,612,663$
bcsstk31	structural	35,588	$1,181,416$
engine	structural	143,571	$4,706,073$
shipsec8	structural	114,919	$6,653,399$
Transport	structural	$1,602,111$	$23,500,731$
CO	theor./quant. chem.	221,119	$7,666,057$
598a	undirected graph	110,971	$1,483,868$
m14b	undirected graph	214,765	$3,358,036$
roadNet-CA	undirected graph	$1,971,281$	$5,533,214$
great-britain_osm	undirected graph	$7,733,822$	$16,313,034$
germany_osm	undirected graph	$11,548,845$	$24,738,362$
debr	undirected graph seq.	$1,048,576$	$4,194,298$

message nets. In this case, a net n_{j} might be held responsible for multiple expand operations (see src definition). To reflect this change, line 4 of Algorithm 1 needs to be executed for each net n_{j} such that $\operatorname{src}\left(n_{j}\right)=v_{j}$. The meaning of a message net does not change. The complexity of adding message nets is still $O\left(p \log _{2} K\right)$ since each net n_{j} is again retrieved exactly once, uniquely by v_{j}. A similar discussion holds for $A_{P O S T}$ by extending the definition of dest.

4 Experiments

4.1 Setup

For evaluation, we target the parallelization of an $A_{P R E}$ application: 1D row-parallel SpMV. We model this application with hypergraph \mathcal{H}_{E} as described in Section 2.3. We compare two schemes for the partitioning of \mathcal{H}_{E} :

- HP: The standard hypergraph partitioning model in which only the bandwidth cost is minimized (Section 2.3). In this scheme, \mathcal{H}_{E} contains only the volume nets.
- HP-L: The proposed hypergraph partitioning model in which the bandwidth and the latency costs are reduced simultaneously (Section 3). In this scheme, \mathcal{H}_{E} contains both the volume and the message nets.
Both HP and HP-L utilize recursive bipartitioning. We tested these schemes for $K \in\{128,256,512,1024,2048\}$ processors.

The two schemes are evaluated on 30 square matrices from the UFL Sparse Matrix Collection [31]. Table 1 displays the properties of these matrices. We consider square
matrices since the proposed scheme aims at obtaining a conformal partition on the input and output items. The numbers of nonzeros in the test matrices range from 1.2 M to 27.1 M . This dataset contains small matrices (e.g., bcsstk31, mac_econ_fwd500, etc.) for which the latency cost is expected to be more important.

The partitionings for both HP and HP-L are performed with the hypergraph partitioner PaToH [1]. Specifically, for each bipartitioning, we call PaToH_Part function of PaToH (lines 7 and 9 of Algorithm 2). The partitioning imbalance is set to 10 percent. Since PaToH contains randomized algorithms, we run each partitioning instance five times and report the average results of these runs.

We present the communication statistics for partitionings obtained via HP and HP-L and the corresponding parallel SpMV times. We used parallel SpMV of PETSc toolkit [32] on a Blue Gene/Q system. A node on this system consists of 16 PowerPC A2 processors with 1.6 GHz clock frequency and 16 GB memory. The nodes are connected by a 5 D torus chip-to-chip network.

4.2 Message Net Costs

Recall that in our model, the volume nets are assigned the cost of t_{w} (transfer time of a single word) and the message nets are assigned the cost of t_{s} (startup time). Hereinafter, both the bandwidth and the latency costs are expressed in terms of t_{w} for the sake of presentation. Hence, the costs of volume nets are unit whereas the costs of message nets are t_{s} / t_{w}. The message net costs are denoted with $m n c$ to simplify the notation. We conducted ping-pong experiments on BlueGene/Q with varying message sizes and the average t_{s} / t_{w} ratio was found to be around 200 for the matrices in our dataset.

Compared to HP, HP-L is expected to obtain a higher total volume since HP-L addresses two communication components simultaneously while HP solely optimizes a single component, which is determined by the total volume. We found out that the cost assignment of message nets in HP-L has a crucial impact on the parallel performance. The t_{s} / t_{w} ratio varies in practice for different message sizes and depends on the protocol used for transmitting messages as well as the characteristics of the target application which is likely to incur a higher t_{w}, hence a lower t_{s} / t_{w}, than that was found. For this reason, as well as to control the balance between the increase in the volume and the decrease in the message count compared to HP, we tried out different values for $m n c$ in HP-L. The tested $m n c$ values are 10,50, 100 and 200. The reason for including smaller $m n c$ values is that when the communication cost is dominated by the bandwidth component, utilizing a high $m n c$ value has an adverse affect on the parallel performance compared to HP as the volume increase caused by HP-L is more apparent. Hence, small $m n c$ values become more preferable in such cases.

4.3 Results

Table 2 presents the average communication statistics and the parallel SpMV running times of HP-L normalized with respect to those of HP for four $m n c$ values and five K values. Each entry at a specific K value is the geometric mean of the normalized results obtained at that K value. The communication statistics are grouped under "volume" and

TABLE 2
Communication Statistics, PaToH Partitioning Times and Parallel SpMV Running Times for HP-L Normalized with Respect to those for HP Averaged over 30 Matrices

message net cost	K	volume		\#messages		PaToH part. time	paralle SpMV time
		tot	max	tot	max		
10	128	1.08	1.11	0.82	0.87	1.07	0.956
	256	1.10	1.16	0.78	0.83	1.13	0.904
	512	1.12	1.22	0.75	0.83	1.13	0.838
	1024	1.16	1.29	0.73	0.84	1.25	0.792
	2048	1.20	1.37	0.71	0.88	1.28	0.774
50	128	1.17	1.25	0.65	0.76	1.08	0.924
	256	1.25	1.44	0.59	0.70	1.14	0.846
	512	1.33	1.57	0.56	0.69	1.21	0.760
	1024	1.41	1.69	0.57	0.74	1.24	0.715
	2048	1.48	1.85	0.59	0.80	1.33	0.708
100	128	1.24	1.43	0.59	0.73	1.09	0.954
	256	1.35	1.66	0.53	0.68	1.17	0.858
	512	1.45	1.86	0.51	0.68	1.19	0.768
	1024	1.54	1.92	0.53	0.71	1.31	0.706
	2048	1.61	2.06	0.57	0.80	1.41	0.707
200	128	1.33	1.60	0.54	0.72	1.15	1.031
	256	1.46	1.87	0.48	0.67	1.19	0.872
	512	1.57	2.02	0.49	0.67	1.25	0.778
	1024	1.65	2.09	0.52	0.72	1.37	0.722
	2048	1.70	2.17	0.57	0.79	1.48	0.712

"\#messages". Under the "volume" grouping, the column "tot" denotes the total volume of communication and the column "max" denotes the maximum send volume of processors. Under the "\#messages" grouping, the column "tot" denotes the total number of messages and the column "max" denotes the maximum number of messages that a processor sends. The PaToH partitioning times and parallel SpMV running times are respectively given under the columns "PaToH part. time" and "parallel SpMV time".

As seen in Table 2, HP-L achieves a significant reduction in the latency overhead. HP-L reduces the total number of messages by 18-29 percent, 35-44 percent, 41-49 percent and $43-52$ percent for $m n c$ values of $10,50,100$ and 200 , respectively, compared to HP. This substantial improvement comes at the expense of increased volume as expected. Compared to HP, HP-L increases the total volume by 8-20 percent, 17-48 percent, 24-61 percent and 33-70 percent for $m n c$ values of $10,50,100$ and 200, respectively. In other words, HP-L achieves a factor of 1.22-1.41, 1.54-1.79, 1.69-1.96 and 1.75-2.08 reductions in the total number of messages while causing a factor of 1.08-1.20, 1.17-1.48, 1.24-1.61 and 1.33-1.70 increase in the total volume, over HP for $m n c$ values of 10,50, 100 and 200, respectively.

The proposed HP-L scheme achieves significantly lower parallel SpMV running times compared to the HP scheme. As seen in Table 2, HP-L achieves 4-23 percent, 8-29 percent, 5-29 percent and -3-29 percent lower running times for mnc values of $10,50,100$ and 200, respectively, compared to HP. The lowest average running times for K values of 128, 256, 512,1024 and 2048 are obtained with $m n c$ values of 50,50 , 50, 100 and 100, respectively. Since using a low mnc (e.g., 10) does not attribute enough importance to the reduction of the latency cost, the parallel running times attained by

TABLE 3
Communication Statistics and Parallel SpMV Times/Speedups for HP and HP-L for $K=512$ and $m n c=50$

name	tot vol		max vol		tot msg		max msg		running time		speedup	
	HP	HP-L										
d_pretok	108k	141k	302	451	5.3k	2.8k	19	11	312	232	66	88
turon_m	106k	127k	296	434	4.8 k	2.5 k	16	9	268	210	79	100
cop20k_A	142k	167k	411	482	5.2 k	3.6k	20	15	542	466	82	95
torso3	197k	227k	550	825	4.9k	3.2 k	21	15	411	348	112	132
mono_500Hz	226k	255k	703	812	6.0k	4.7 k	26	26	492	498	158	157
memchip	102k	149k	679	705	3.9k	2.2 k	51	16	1,224	714	188	322
Freescale1	85k	151k	473	972	5.4k	2.4 k	68	28	1,697	1,105	176	271
circuit5M_dc	84k	145k	386	939	5.5k	2.3 k	64	24	1,554	1,030	196	295
rajat31	139k	184k	403	786	2.9k	2.0k	23	20	1,010	983	325	334
laminar_duct3D	186k	211k	538	694	7.4k	5.9k	26	21	445	387	74	85
StocF-1465	581k	613k	1650	2109	6.8 k	5.5k	31	29	1,062	1,048	229	233
web-Google	126k	266k	872	2971	37.2k	11.9k	281	231	17,385	3,492	12	61
in-2004	122k	169k	1,933	2,641	12.8k	6.4 k	137	181	15,690	4,164	17	64
eu-2005	338k	408k	4,207	6,934	18.9k	9.9 k	305	351	8,375	4,849	26	44
cage14	3,184k	3,291k	10,528	10,922	27.4k	19.7k	125	100	5,757	4,587	57	71
mac_econ_fwd500	124k	160k	335	490	5.6 k	3.1 k	16	11	252	231	80	88
gsm_106857	338k	371k	1,161	1,400	3.8k	3.1 k	16	16	710	748	521	495
pre2	245k	261k	1143	1,332	6.5k	3.8 k	33	26	787	646	100	122
kkt_power	662k	684k	2,930	3459	7.2k	4.2 k	50	29	2,072	1,554	197	262
bcsstk31	62k	76k	223	297	4.3k	3.2 k	19	17	283	253	45	50
engine	117k	144k	477	671	4.6k	3.1 k	32	27	525	496	96	102
shipsec8	139k	159k	471	606	4.2k	3.2 k	16	15	353	337	170	178
Transport	582k	645k	1487	1700	5.3k	3.2 k	16	10	782	1230	313	199
CO	1,044k	1,070k	2,710	2,792	13.4k	10.1k	45	35	906	783	85	99
598a	104k	131k	341	529	5.6k	3.6k	29	24	435	382	103	117
m14b	158k	190k	596	804	5.3k	3.5 k	38	31	630	547	123	142
roadNet-CA	35k	67k	138	496	3.1k	1.3 k	15	8	848	753	178	200
great-britain_osm	26k	59k	168	640	4.1k	1.4 k	29	11	1,202	1,151	509	532
germany_osm	33k	74k	242	772	4.2 k	1.5k	31	13	1,759	1,719	603	617
debr	505k	899k	1,268	2,793	68.3k	16.9k	185	74	6047	1,747	11	37

Running time is in microseconds
this value are generally higher than those of other $m n c$ values. Observe that for a specific K value, increasing the $m n c$ leads to a decrease in the total message count and an increase in the total volume.

The performance improvement of HP-L over HP increases in terms of parallel SpMV time with increasing K for almost all $m n c$ values. For example, for $m n c=100$, HPL only achieves a 5 percent improvement in running time over HP at $K=128$, whereas at $K=2048$ this improvement becomes 29 percent. The effect of reducing total message count becomes more apparent in parallel running time with increasing K since the latency component gets more important at high K values.

When we compare HP and HP-L in terms of partitioning times in Table 2, we see that HP-L has higher partitioning overhead as expected. HP-L incurs 7-28 percent, 8-33 percent, 9-41 percent and 15-48 percent slower partitionings for $m n c$ values of 10,50, 100 and 200, respectively. Although the formation of message nets is not expensive $\left(O\left(p \log _{2} K\right)\right)$, note that the partitioning with HP-L includes the message nets in addition to volume nets, which leads to increased bipartitioning times compared to HP. As K increases, HP-L's partitioning time also increases compared to HP since the number of message nets increases as well.

In Table 3, we present the detailed communication statistics and the parallel SpMV running times and speedups of 30 matrices for $K=512$ and $m n c=50$. In this table, the
actual results of HP and HP-L are presented. The unit of the total volume is one kilo-item whereas the unit of the total number of messages is one kilo-message. The columns under "running time" denote the parallel SpMV running time in microseconds and the columns under "speedup" denote the speedups.

In 27 out of 30 matrices, HP-L obtains better speedup values than HP. As also observed and discussed for Table 2, reducing both the total volume and total message count significantly improves the parallel performance. For example, for memchip, HP-L increases the speedup by 71 percent (from 188 to 322) by reducing the total message count by 45 percent (from 3.9 k to 2.2 k). On the other hand, for gsm_106857, having a reduction of 18 percent in the total message count (from 3.8 k to 3.1 k) by HP-L does not lead to an improved parallel running time.

The reduction in the total number of messages leads to a reduction in the maximum number messages, as observed in Tables 2 and 3. In a similar manner, the increase in the total volume leads to an increase in the maximum volume. The models that provide an upper bound on the maximum message count usually have two communication phases, in each of which the maximum message count is $\sqrt{K}-1$. Compared to these models, apart from the scale-free matrices, although our model does not provide such an upper bound, it usually obtains values below this bound, which is approximately $2(\sqrt{512}-1) \approx 43$ for $K=512$.

Fig. 6. Speedup values for 16 matrices.

As seen in Table 3, a significant reduction in the total message count generally leads to a better performance. There are a couple of basic factors that can be argued to
determine whether improving latency cost at the expense of bandwidth cost will result in a better parallel performance. For a partitioning instance, in general, if the average
message size is relatively high and/or the maximum message count is relatively low, then it can be said that the bandwidth component dominates the latency component. For example, for gsm_106857, the average message size is high and the maximum message count is low compared to the other matrices. Hence, reducing the total message count by 18 percent does not pay off as the latency component is not worth exploiting.

Fig. 6 displays the speevalues of 10,50, 100 and 200. For certain matrices, HP-L drastically changes the scalability by scaling up the parallel SpMV while HP scales down. This is observed for the matrices in the circuit simulation category, and the matrices pre 2 and kkt_power. For these matrices, reducing the latency overhead seems to be more important than reducing the bandwidth overhead. HP already exhibits good scalability for the matrices such as m14b, greatbritain_osm and Transport. Reducing latency cost for these matrices pays off as HP-L further improves their scalability. HP and HP-L attain comparable scalability for gsm_106857, StocF-1465 and shipsec8. The latency costs for these matrices are a minor component of their overall communication cost. Among the HP-L schemes, the scalability of HP-L-10 resembles that of HP the most since HP-L-10 attributes less importance to reducing the latency overhead compared to the other HP-L schemes. For CO and mono_ 500 Hz , both HP and HP-L scale down after a certain number of processors. Nonetheless, HP-L still improves the parallel SpMV running time.

The HP-L schemes with the four different mnc values generally exhibit different parallel performance, as seen in Fig. 6. For any K value, increasing the $m n c$ further decreases the message count and further increases the total volume (see Table 2). How this affects the parallel SpMV running time depends on the communication requirements of the respective partitioning instance. It may pay off to use a high $m n c$ value to further reduce the latency overhead (as is the case for rajat31) or doing so may worsen the parallel running time (as is the case for StocF-1465).

5 Conclusion

We have proposed a hypergraph partitioning model in order to parallelize certain types of applications with the objective of reducing the total volume and the total number of messages simultaneously. Our model exploits the recursive bipartitioning paradigm and hence provides the flexibility of using any available hypergraph partitioner. The proposed approach provides a better way for capturing the communication requirements of the target parallel applications. The experimental results showed that the better representation of the communication costs in the proposed hypergraph partitioning model led to a reduction of up to 29 percent in the parallel running time on the average.

As future work, we plan to develop heuristics to dynamically find the best message net cost for each bipartitioning by evaluating the relative importance of the components in the communication cost. We also wish to incorporate the other latency-based communication metrics such as the maximum number of messages communicated by a processor into our model.

Acknowledgments

This work is partially supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under project EEEAG-114E545. This article is based upon work from COST Action CA 15109 (COSTNET). We acknowledge PRACE for awarding us access to resources Juqueen (Blue Gene/Q) based in Germany at Jülich Supercomputing Centre.

References

[1] U. V. Çatalyürek and C. Aykanat, "Hypergraph-partitioningbased decomposition for parallel sparse-matrix vector multiplication," IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 7, pp. 673693, Jul. 1999.
[2] B. Hendrickson, "Graph partitioning and parallel solvers: Has the emperor no clothes? (extended abstract)," in Proc. 5th Int. Symp. Solving Irregularly Struct. Probl. Parallel, 1998, pp. 218-225. [Online]. Available: http://dl.acm.org/citation.cfm?id=646012.677019
[3] B. Hendrickson and T. G. Kolda, "Graph partitioning models for parallel computing," Parallel Comput., vol. 26, no. 12, pp. 15191534, Nov. 2000. [Online]. Available: http://dx.doi.org/10.1016/ S0167-8191(00)00048-X
[4] B. Hendrickson and T. G. Kolda, "Partitioning rectangular and structurally unsymmetric sparse matrices for parallel processing," SIAM J. Sci. Comput., vol. 21, no. 6, pp. 2048-2072, Dec. 1999. [Online]. Available: http:/ /dx.doi.org/10.1137/S1064827598341475
[5] G. Karypis and V. Kumar, "A fast and high quality multilevel scheme for partitioning irregular graphs," SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359-392, Dec. 1998. [Online]. Available: http:// dx.doi.org/10.1137/S1064827595287997
[6] K. Schloegel, G. Karypis, and V. Kumar, "Parallel multilevel algorithms for multi-constraint graph partitioning," in Proc. 6th Int. Euro-ParConf. Parallel Process., vol. 1900, 2000, pp. 296-310. [Online]. Available: http:/ /dx.doi.org/10.1007/3-540-44520-X_39
[7] B. Vastenhouw and R. H. Bisseling, "A two-dimensional data distribution method for parallel sparse matrix-vector multiplication," SIAM Rev., vol. 47, no. 1 pp. 67-95, Jan. 2005. [Online]. Available: http:/ / portal.acm.org/citation.cfm?id=1055334.1055397
[8] U. Çatalyürek and C. Aykanat, "A hypergraph-partitioning approach for coarse-grain decomposition," in Proc. ACM/IEEE Conf. Supercomputing, 2001, pp. 28-28. [Online]. Available: http:/ / doi.acm.org/10.1145/582034.582062
[9] B. Uçar and C. Aykanat, "Revisiting hypergraph models for sparse matrix partitioning," SIAM Rev., vol. 49, pp. 595-603, Nov. 2007. [Online]. Available: http://portal.acm.org/citation. cfm? $\mathrm{id}=1330215.1330219$
[10] D. Pelt and R. Bisseling, "A medium-grain method for fast 2D bipartitioning of sparse matrices," in Proc. IEEE 28th Int. Parallel Distrib. Process. Symp., May 2014, pp. 529-539.
[11] E. Kayaaslan, B. Ucar, and C. Aykanat, "Semi-two-dimensional partitioning for parallel sparse matrix-vector multiplication," in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshop, May 2015, pp. 1125-1134.
[12] B. Uçar and C. Aykanat, "Encapsulating multiple communicationcost metrics in partitioning sparse rectangular matrices for parallel matrix-vector multiplies," SIAM J. Sci. Comput., vol. 25, no. 6, pp. 1837-1859, 2004.
[13] M. Deveci, K. Kaya, B. Uçar, and Ümit Çatalyürek, "Hypergraph partitioning for multiple communication cost metrics: Model and methods," J. Parallel Distrib. Comput., vol. 77, pp. 69-83, 2015. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S0743731514002275
[14] O. Fortmeier, H. Backer, B. F. Auer, and R. Bisseling, "A new metric enabling an exact hypergraph model for the communication volume in distributed-memory parallel applications," Parallel Comput., vol. 39, no. 8, pp. 319-335, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0167819113000690
[15] B. Hendrickson, R. Leland, and S. Plimpton, "An efficient parallel algorithm for matrix-vector multiplication," Int. J. High Speed Comput., vol. 7, pp. 73-88, 1995.
[16] J. Lewis, D. Payne, and R. van de Geijn, "Matrix-vector multiplication and conjugate gradient algorithms on distributed memory computers," in Proc. Scalable High-Perform. Comput. Conf., May 1994, pp. 542-550.
[17] J. G. Lewis and R. A. van de Geijn, "Distributed memory matrixvector multiplication and conjugate gradient algorithms," in Proc. ACM/IEEE Conf. Supercomputing, 1993, pp. 484-492. [Online]. Available: http: / /doi.acm.org/10.1145/169627.169788
[18] A. Ogielski and W. Aiello, "Sparse matrix computations on parallel processor arrays," SIAM J. Sci. Comput., vol. 14, no. 3, pp. 519530, 1993. [Online]. Available: http://dx.doi.org/10.1137/0914033
[19] A. Buluç and J. Gilbert, "Challenges and advances in parallel sparse matrix-matrix multiplication," in Proc. 37 th Int. Conf. Parallel Process, Sep. 2008, pp. 503-510.
[20] A. Buluç and K. Madduri, "Parallel breadth-first search on distributed memory systems," in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2011, pp. 65:1-65:12. [Online]. Available: http://doi.acm.org/10.1145/2063384.2063471
[21] A. Yoo, A. H. Baker, R. Pearce, and V. E. Henson, "A scalable eigensolver for large scale-free graphs using 2D graph partitioning," in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2011, pp. 63:1-63:11. [Online]. Available: http://doi.acm. org/10.1145/2063384.2063469
[22] U. V. Çatalyürek, C. Aykanat, and B. Uçar, "On two-dimensional sparse matrix partitioning: Models, methods, and a recipe," SIAM J. Sci. Comput., vol. 32, no. 2, pp. 656-683, Feb. 2010. [Online]. Available: http:/ /dx.doi.org/10.1137/080737770
[23] E. G. Boman, K. D. Devine, and S. Rajamanickam, "Scalable matrix computations on large scale-free graphs using 2D graph partitioning," in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2013, pp. 50:1-50:12. [Online]. Available: http://doi.acm. org/10.1145/2503210.2503293
[24] R. O. Selvitopi, M. Ozdal, and C. Aykanat, "A novel method for scaling iterative solvers: Avoiding latency overhead of parallel sparse-matrix vector multiplies," IEEE Trans. Parallel Distrib, Syst., vol. 26, no. 3, pp. 632-645, Mar. 2015.
[25] O. Selvitopi and C. Aykanat, "Reducing latency cost in 2D sparse matrix partitioning models," Parallel Comput., vol. 57, pp. 1-24, Sep. 2016. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S0167819116300138
[26] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, "Multilevel hypergraph partitioning: Applications in VLSI domain," IEEE Trans. Very Large Scale Integr. Syst., vol. 7, no. 1. pp. 69-79, Mar. 1999. [Online]. Available: http://dx.doi.org/10.1109/ 92.748202
[27] F. Pellegrini and J. Roman, "Scotch: A software package for static mapping by dual recursive bipartitioning of process and architecture graphs," in Proc. Int. Conf. Exhibition High-Perform. Comput. Netw. vol. 1067, 1996, pp. 493-498. [Online]. Available: http:/ /dx. doi.org/10.1007/3-540-61142-8_588
[28] M. Wang, S. Lim, J. Cong, and M. Sarrafzadeh, "Multi-way partitioning using bi-partition heuristics," in Proc. Asia South Pacific Des. Autom. Conf., 2000, pp. 1479-1487. [Online]. Available: http:/ /doi.acm.org/10.1145/368434.368865
[29] D. A. Padua, Ed., Encyclopedia of Parallel Computing. New York, NY, USA: Springer, 2011. [Online]. Available: http:/ /dx.doi.org/ 10.1007/978-0-387-09766-4
[30] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout. New York, NY, USA: Wiley, 1990.
[31] T. A. Davis and Y. Hu, "The University of Florida sparse matrix collection," ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1-1:25, Dec. 2011. [Online]. Available: http://doi.acm.org/10.1145/ 2049662.2049663
[32] S. Balay, et al., "PETSc users manual," Argonne National Laboratory, Lemont, IL, USA, Tech. Rep. ANL-95/11 - Revision 3.5, 2014. [Online]. Available: http://www.mcs.anl.gov/petsc

Oguz Selvitopi received the BS degree in computer engineering from Marmara University in 2008 and the MS degree in computer engineering from Bilkent University, Turkey in 2010. He is currently working toward the PhD degree. His research interests are parallel computing, scientific computing, and parallel and distributed systems.

Seher Acer received the BS and MS degrees in computer engineering from Bilkent University, Turkey, from 2009 and 2011, respectively, where she is working toward the PhD degree. Her research interests are combinatorial scientific computing, graph and hypergraph partitioning, and parallel computing.

Cevdet Aykanat received the BS and MS degrees from Middle East Technical University, Ankara, Turkey, both in electrical engineering, and the PhD degree from Ohio State University, Columbus, in electrical and computer engineering. He has served as a member of IFIP Working Group 10.3 (Concurrent System Technology) since 2004 and as an associate editor of IEEE Transactions of Parallel and Distributed Systems between 2008 and 2012. He worked at the Intel Supercomputer Systems Division, Beaverton, Oregon, as a research associate. Since 1989, he has been affiliated with the Department of Computer Engineering, Bilkent University, Ankara, Turkey, where he is currently a professor. His research interests mainly include parallel computing, parallel scientific computing and its combinatorial aspects. He has (co)authored about 90 technical papers published in academic journals indexed in ISI and his publications received about 1,000 citations in ISI indexes. He is the recipient of the 1995 Young Investigator Award of The Scientific and Technological Research Council of Turkey and 2007 Parlar Science Award.
\triangleright For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.

