
Improving Medium-Grain Partitioning for
Scalable Sparse Tensor Decomposition

Seher Acer , Tugba Torun, and Cevdet Aykanat

Abstract—Tensor decomposition is widely used in the analysis of multi-dimensional data. The canonical polyadic decomposition

(CPD) is one of the most popular decomposition methods and commonly found by the CPD-ALS algorithm. High computational and

memory costs of CPD-ALS necessitate the use of a distributed-memory-parallel algorithm for efficiency. The medium-grain CPD-ALS

algorithm, which adopts multi-dimensional cartesian tensor partitioning, is one of the most successful distributed CPD-ALS algorithms

for sparse tensors. This is because cartesian partitioning imposes nice upper bounds on communication overheads. However, this

model does not utilize the sparsity pattern of the tensor to reduce the total communication volume. The objective of this work is to fill this

literature gap. We propose a novel hypergraph-partitioning model, CartHP, whose partitioning objective correctly encapsulates the

minimization of total communication volume of multi-dimensional cartesian tensor partitioning. Experiments on twelve real-world

tensors using up to 1024 processors validate the effectiveness of the proposed CartHP model. Compared to the baseline medium-

grain model, CartHP achieves average reductions of 52, 43 and 24 percent in total communication volume, communication time and

overall runtime of CPD-ALS, respectively.

Index Terms—Sparse tensor, canonical polyadic decomposition, cartesian partitioning, load balancing, communication volume,

hypergraph partitioning

Ç

1 INTRODUCTION

TENSORS are multi-dimensional arrays consisting of zero
or more dimensions (modes). The applications that

make use of tensors often benefit from tensor decomposi-
tion to discover the latent features of the modes. The most
popular tensor decomposition method achieving this feat is
the canonical polyadic decomposition (CPD) [1], [2], [3].
CPD is an extension of singular value decomposition for
tensors and approximates a given tensor as a sum of rank-
one tensors. CPD is successfully utilized in a large variety of
applications from different domains, such as chemomet-
rics [4], telecommunications [5], medical imaging [6], [7],
image compression and analysis [8], text mining [9], [10],
knowledge bases [11] and recommendation systems [12].
Kolda and Bader [3] provide an extensive survey on tensor
decomposition methods and their applications.

One commonmethod for computing CPD is the CPD-ALS
algorithm, which exploits the alternating least squares
method [13]. CPD-ALS includes a bottleneck operation called
Matricized Tensor Times Khatri-Rao Product (MTTKRP),
which requires significantly large amounts of computation
and memory. This necessitates an efficient distributed-
memory implementation for the CPD-ALS algorithm.

Recently, Smith and Karypis [14] have proposed a suc-
cessful distributed-memory implementation of CPD-ALS
algorithm. Their algorithm adopts a medium-grain model,
in which a cartesian partition of the input tensor is utilized.
Cartesian partitioning has the nice property of confining the
communications to the layers of a virtual multi-dimensional
processor mesh, thus providing upper bounds on commu-
nication overheads. Hence, this algorithm outperforms the
earlier CPD-ALS implementations by achieving smaller
parallel runtimes and better scalability.

In order to obtain a cartesian partition of the tensor, the
medium-grain algorithm applies block partitioning on each
mode, which is randomly permuted beforehand to maintain
balance on the number of tensor nonzeros assigned to pro-
cessors, hence their computational loads. However, this
algorithm does not utilize the sparsity pattern of the tensor
to minimize the total communication volume. The objective
of this work is to fill this literature gap by proposing an
intelligent partitioning algorithm that utilizes the sparsity
pattern for minimizing the total communication volume of
the medium-grain model. For this purpose, we exploit the
conceptual similarity between MTTKRP and sparse matrix
vector multiplication (SpMV), for which many partitioning
models and methods with different granularities are well-
studied [15], [16], [17], [18]. The 2D cartesian partitioning
for parallel SpMV, which is known as checkerboard parti-
tioning, was first introduced by Hendrickson et al. [19]
and its total communication volume is minimized by a
hypergraph partitioning (HP) model, CBHP, proposed by
Çataly€urek and Aykanat [16], [20]. Relying on the similarity
between MTTKRP and SpMV, extending CBHP for carte-
sian partitioning of tensors with more than two dimensions

� The authors are with the Computer Engineering Department, Bilkent
University, Ankara 06800, Turkey.
E-mail: {acer, tugba.uzluer}@bilkent.edu.tr, aykanat@cs.bilkent.edu.tr.

Manuscript received 26 Aug. 2017; revised 21 May 2018; accepted 23 May
2018. Date of publication 29 May 2018; date of current version 9 Nov. 2018.
(Corresponding author: Cevdet Aykanat.)
Recommended for acceptance by A. Kalyanaraman.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2841843

2814 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3951-3930
https://orcid.org/0000-0003-3951-3930
https://orcid.org/0000-0003-3951-3930
https://orcid.org/0000-0003-3951-3930
https://orcid.org/0000-0003-3951-3930
https://orcid.org/0000-0002-4559-1321
https://orcid.org/0000-0002-4559-1321
https://orcid.org/0000-0002-4559-1321
https://orcid.org/0000-0002-4559-1321
https://orcid.org/0000-0002-4559-1321
mailto:
mailto:

seems promising for minimizing the total communication
volume of the medium-grain CPD-ALS.

CBHP is a two-phase HP model, where row and column
partitions are respectively obtained in the first and second
phases. The row partition obtained in the first phase implies
a division information in each column. However, this col-
umn division information is not utilized in the topology of
the hypergraph formed in the second phase. On the con-
trary, in the case of more than two dimensions, a slice’s divi-
sion information obtained in a phase needs to be utilized in
each of the subsequent phases which further divide that
slice. Note that this need does not arise for the two-dimen-
sional case since each row/column is divided in exactly one
phase. Since the direct extension of the CBHP model for ten-
sor partitioning does not keep division history, it fails to cor-
rectly encapsulate the objective of minimizing the total
communication volume.

In order to overcome the above-mentioned problem on
extending the CBHP model for more than two dimensions,
we propose a new hypergraph partitioning model in which
hypergraph topologies contain the priori division informa-
tion of slices. The partitioning objective of our model
encapsulates the minimization of the total communication
volume of the medium-grain CPD-ALS. To validate the pro-
posed model, we conduct parallel experiments on 12 real-
world tensors for up to 1,024 processors. Compared to the
baseline medium-grain model [14], the proposed model
achieves average reductions of 52, 43 and 24 percent in total
communication volume, communication time and overall
runtime of CPD-ALS, respectively.

The rest of the paper is organized as follows. Sections 2
and 3 provide the background information and related work,
respectively. In Section 4, we propose a novel HP model,
CartHP, for minimizing the total communication volume of
medium-grain CPD-ALS. Section 5 provides the experimental
results and Section 6 concludes. A discussion on the direct
extension of CBHP for tensors and detailed performance
results are given in the supplemental material as appendices,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2018.2841843.

2 BACKGROUND

We denote tensors, matrices and vectors respectively by cal-
ligraphic (X), bold capital (A) and bold lowercase (a) letters.
To denote indices, we use lowercase letters ranging from 1
to their capital version, e.g., q ¼ 1; . . . ; Q. To refer to a vary-
ing index, we use a semicolon as in Matlab notation, e.g.,
Aði; :Þ.
2.1 Tensors

A tensor with M dimensions is called an M-mode tensor
and mode m refers to the mth dimension. Unless specified,
X is assumed to be a three-mode tensor of size I�J�K.
The tensor element with indices i; j; k is denoted by Xði;j;kÞ.
Slices and fibers are defined as the subtensors obtained by
holding one and two indices constant, respectively. Xði;:;:Þ,
Xð:;j;:Þ and Xð:;:;kÞ respectively denote the ith horizontal
(mode-1), jth lateral (mode-2) and kth frontal (mode-3) sli-
ces. The intersection of two slices along different modes
(e.g., Xði;:;:Þ and Xð:;j;:Þ) constitutes a fiber (e.g., Xði;j;:Þ).

An M-mode tensor is called rank-one if it can be written as
an outer product of M vectors. For instance, ða � b � cÞ is a
rank-one tensor. The matricization of X in mode m is
denoted by XðmÞ.

2.2 Canonical Polyadic Decomposition

Canonical polyadic decomposition (CPD) with F compo-
nents factorizes a given tensor X as a sum of F rank-one ten-
sors: X �PF

f¼1ðaf � bf � cfÞ; where af , bf and cf are
column vectors of size I, J and K, respectively. Then, the
factor matrices are defined as A ¼ ½a1 . . . aF �, B ¼ ½b1 . . .bF �
and C ¼ ½c1 . . . cF �. The columns of the factor matrices are
stored as normalized to length one, where the actual lengths
are stored in vector �. Then, CPD of X is written in short as
X � ½½�;A;B;C��.

CPD-ALS, which is given in Algorithm 1, is an iterative
algorithm. At each iteration, it solves a linear least squares
problem to find a factor matrix, by fixing the other two fac-
tor matrices. For example in order to find A, CPD-ALS
solves minAjjXð1Þ �AðC� BÞT jj2F for fixed B and C by com-
puting Xð1ÞðC� BÞðCTC 	 BTBÞ�1: Here, � and 	 denote
Khatri-Rao and Hadamard products, respectively. MTTKRP
operations Â ¼ Xð1ÞðC� BÞ, B̂ ¼ Xð2ÞðC�AÞ and Ĉ ¼ Xð3Þ
ðB�AÞ constitute the bottleneck operations of CPD-ALS
due to large sizes of matrices involved. In MTTKRP opera-
tion Â ¼ Xð1ÞðC� BÞ, each row Âði; :Þ can be computed as

Âði; :Þ ¼
X

Xði;j;kÞ6¼0
Xði; j; kÞðBðj; :Þ 	 Cðk; :ÞÞ: (1)

The computation of Âði; :Þ only involves the nonzeros in
slice Xði; :; :Þ and for each nonzero Xði; j; kÞ in that slice, it
requires rows Bðj; :Þ and Cðk; :Þ.

Algorithm 1. CPD-ALS(X)
1: Initialize matrices A, B and C randomly
2: while not converged do
3: A Xð1ÞðC� BÞðCTC 	 BTBÞ�1
4: Normalize columns of A into �
5: B Xð2ÞðC�AÞðCTC 	ATAÞ�1
6: Normalize columns of B into �
7: C Xð3ÞðB�AÞðBTB 	ATAÞ�1
8: Normalize columns of C into �
9: return ½½�;A;B;C��

2.3 Medium-Grain CPD-ALS Algorithm

The medium-grain CPD-ALS algorithm [14] is based on a
3D cartesian partition of a given tensor X for a virtual 3D
mesh of P ¼ Q�R� S processors. In this partition, hori-
zontal, lateral and frontal slices of X are partitioned among
Q, R and S parts, respectively. These partitions are used for
reordering the slices into Q horizontal, R lateral and S fron-
tal chunks in such a way that the slices belonging to the
same part are ordered consecutively (in any order) to form
a chunk. The qth horizontal, rth lateral and sth frontal
chunks are respectively denoted by X q;:;:, X :;r;: and X :;:;s. The
intersection of X q;:;:, X :;r;: and X :;:;s forms subtensor X q;r;s.
Similarly, the qth horizontal, rth lateral and sth frontal
layers of the virtual processor mesh are respectively
denoted by pq;:;:, p:;r;: and p:;:;s. Chunks X q;:;:, X :;r;: and X :;:;s

are respectively distributed among the processors of layers

ACER ETAL.: IMPROVING MEDIUM-GRAIN PARTITIONING FOR SCALABLE SPARSE TENSOR DECOMPOSITION 2815

http://doi.ieeecomputersociety.org/10.1109/TPDS.2018.2841843
http://doi.ieeecomputersociety.org/10.1109/TPDS.2018.2841843

pq;:;:, p:;r;: and p:;:;s in such a way that subtensor X q;r;s is
assigned to pq;r;s.

A cartesian tensor partition induces a conformal partition
of the rows of each factor matrix into chunks, e.g.,
A1; . . . ;AQ. The rows in the chunks Aq, Br and Cs are exclu-
sively needed and updated by the processors in layers pq;:;:,
p:;r;: and p:;:;s, respectively. The factor-matrix rows owned by
processor pq;r;s are assumed to be contiguous and denoted
by Aq;r;s, Bq;r;s and Cq;r;s.

Fig. 1 displays an example medium-grain partition with
3 horizontal, 3 lateral and 2 frontal chunks. Subtensor X2;3;1

as well as factor-matrix rows in A2;3;1, B2;3;1 and C2;3;1, which
are all assigned to processor p2;3;1, are highlighted with a
darker shade. Note that p2;3;1 may need to use the rest of the
rows in A2, B3 and C1 during the MTTKRP operations.

The parallel medium-grain CPD-ALS algorithm consists
of three phases at each iteration. The mth phase involves
the computations and communications performed for com-
puting the factor matrix along modem. We only summarize
the first phase since the other phases are similar. First, the
MTTKRP operation is performed in a distributed fashion
where each processor multiplies its nonzeros with the
corresponding B- and C-matrix rows and produces partial
results for the corresponding Â-matrix rows as given in
Equation (1). Here, Â and A have conformal partitions.

After performing the local MTTKRP operation, each pro-
cessor pq;r;s sends its partial results for non-local Â-matrix
rows to their owner processors, which reside in layer pq;:;:.
In a dual manner, pq;r;s receives the partial results for its
local Â-matrix rows (Âq;r;s) from the processors in the same
layer and sums them to finalize Âq;r;s. We refer to this com-
munication step as the fold step. Then, pq;r;s multiplies Âq;r;s

with ðCTC 	 BTBÞ�1 and obtains Aq;r;s. A is finalized by nor-
malizing its columns using an all-to-all reduction on local
norms. Then, ATA is obtained by another all-to-all reduc-
tion on locally computed ATAmatrices.

Finally, each processor pq;r;s sends the updated rows in
Aq;r;s to the processors that need these rows in the following
two phases where B and C are computed. These processors
are the ones that pq;r;s receives partial results from in the fold
step. In a dual manner, pq;r;s receives the updated A-matrix
rows that it needs in the following two phases from their
owner processors. These processors are the ones that pq;r;s
sends partial results to in the fold step. We refer to this com-
munication step as the expand step. At the end of each itera-
tion, a residual is computed to test the convergence.

The communications in the fold and expand steps are
confined to the processor layers. In the first, second and

third phases, pq;r;s communicates with at most R� S � 1,
Q� S � 1 and Q�R� 1 processors residing in layers pq;:;:,
p:;r;: and p:;:;s, respectively.

2.4 Hypergraph Partitioning Problem

A hypergraph H ¼ ðV;NÞ is defined as a set of vertices V
and a set of nets N . Each net n connects a subset of vertices,
which is denoted by PinsðnÞ. Each vertex v is assigned a
weight of wðvÞ, whereas each net is assigned a cost of cðnÞ.
P ¼ fV1; . . . ;VKg is a K-way partition of H if parts are
mutually disjoint and exhaustive. The cutsize of a given P
is defined as

P
n2N ð�ðnÞ � 1ÞcðnÞ; where �ðnÞ denotes the

number of parts connected by n.
The hypergraph partitioning (HP) problem is defined as

finding a K-way partition P of a given hypergraph H with
the objective of minimizing the cutsize and the constraint of
maintaining balance on the weights of the parts. In the case of
multi-constraint hypergraph partitioning with C constraints,
the cth constraint for c ¼ 1; 2; . . . ; C is formulated asWcðVkÞ

Wtot

c ð1þ �Þ=K: Here, WcðVkÞ and Wtot
c denote the sums of the

cthweights of the vertices in Vk and V, respectively, whereas �
denotes amaximumallowable imbalance ratio.

3 RELATED WORK

There are several distributed-memory CPD-ALS paralleliza-
tion approaches for sparse tensors, varying on how theydefine
anddistribute atomic tasks. DFacTo [21] obtains a coarse-grain
partition of the tensor by performing an independent one-
dimensional block partitioning along each mode and is
reported to be significantly faster than two earlier alternatives,
Tensor Toolbox [22] andGigaTensor [23], when compared in a
sequential setting. However, DFacTo is not memory scalable
since it needs to store the matricized tensor along each mode
aswell as all factormatrices at each processor.

Kaya and Uçar [24] propose HP models that exploit the
sparsity pattern of the tensor to minimize the total commu-
nication volumes of coarse- and fine-grain tensor partition-
ings. The coarse-grain HP model does not lead to a
significant reduction in the total communication volume
compared to block partitioning. This is due to the inherent
limitation of coarse-grain partitioning, where each proces-
sor may need all factor-matrix rows in the non-partitioned
modes. The fine-grain HP model overcomes this problem
by distributing the tensor nonzeros individually, obtaining
a multi-dimensional partition. The major drawback of the
fine-grain model is the overhead of partitioning a large
hypergraph containing vertices at least as many as the num-
ber of tensor nonzeros. The fine-grain HP model also suffers
from inducing high number of messages, which is a conse-
quence of disturbing the slice coherences.

To overcome these performance bottlenecks of coarse-
and fine-grain models, Smith and Karypis [14] propose a
successful medium-grain model which is based on multi-
dimensional cartesian tensor partitioning. This cartesian
tensor partitioning is also used by Austin et al. [25] for par-
allel Tucker decomposition.

4 OPTIMIZING MEDIUM-GRAIN CPD-ALS

Here, we first describe the communication volume require-
ment of a given cartesian partition of a three-mode tensor.

Fig. 1. A medium-grain partition for a 3� 3� 2 virtual mesh of
processors.

2816 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018

Then, we propose an HP model, referred to as CartHP, for
obtaining a 3D cartesian partition of the tensor with mini-
mum communication volume. Finally, we briefly discuss the
extension of the proposedmodel tomore than threemodes.

4.1 Communication Volume Requirement

A given cartesian partition of the tensor divides each slice/
fiber into subslices/subfibers, each of which is owned by a
different processor. We denote any (sub)tensor g owned by a
set a of processor(s) by ga. For instance, Xði; :; :Þq;r;s and

Xði; j; :Þq;r;s respectively denote the subslice of Xði; :; :Þ and
the subfiber of Xði; j; :Þ which are owned by processor pq;r;s.
Similarly, Xði; :; :Þ:;r;: denotes the subslice of Xði; :; :Þ owned
by processor layer p:;r;:. To differentiate the subslices owned
by a single processor from those owned by multiple process-
ors, we refer to the former ones as unshared subslices. A (sub)
slice/(sub)fiber containing at least one nonzero element is
called a nonzero (sub)slice/(sub)fiber. Fig. 2 displays a carte-
sian partition of a 3� 4� 3 tensor for a 2� 3� 2 virtual pro-
cessor mesh and the respective divisions of slices into
subslices induced by this partition. In this figure, each tensor
nonzero is denoted by a different symbol and each nonzero
subslice is highlighted. For example, slice Xð1; :; :Þ contains 4
nonzero elements and 3 nonzero unshared subslices.

Let ZA
i , Z

B
j and ZC

k respectively denote the sets of non-
zero unshared subslices of Xði; :; :Þ, Xð:; j; :Þ and Xð:; :; kÞ.
For the example given in Fig. 2, ZA

1 ¼ fXð1; :; :Þ1;2;1;
Xð1; :; :Þ1;2;2; Xð1; :; :Þ1;3;1g. We assume that each slice con-
tains at least one nonzero, hence, these sets are nonempty.
In the first phase of medium-grain CPD-ALS, only the pro-
cessors that own a subslice in ZA

i produce partial results for
Âði; :Þ. Similarly in the second and third phases, only the

processors that own a subslice in ZB
j and ZC

k produce partial
results for B̂ðj; :Þ and Ĉðk; :Þ, respectively.

We assume that each factor-matrix row is assigned to a
processor which owns a nonzero subslice in the correspond-
ing slice. We refer to this assumption as the consistency con-
dition for the correctness of our hypergraph model to be
proposed in Section 4.2. Let Âði; :Þ be assigned to a proces-
sor, say p, that owns a nonzero subslice in ZA

i . Each of the
other processors that own a nonzero subslice in ZA

i sends a
partial result for Âði; :Þ to p in the fold step. Then, the com-
munication volume regarding the fold operation on Âði; :Þ
amounts to ðjZA

i j�1ÞF . In a dual manner, p sends the

updated row Aði; :Þ to these processors in the expand step,
incurring a communication of volume ðjZA

i j � 1ÞF again.
Since the same volume of communication is incurred
regarding the expand operation on Aði; :Þ and the fold oper-
ation on Âði; :Þ, we only consider the one regarding Âði; :Þ
and formulate it as

volAi ¼ ðjZA
i j � 1ÞF: (2)

Then, the total volume in the first phase is the sum of the
volumes regarding the rows of Â, that is

volA ¼
XI
i¼1

volAi ¼
XI
i¼1
jZA

i j � 1
� � !

F:

With similar discussions for the second and third
phases, we obtain volB ¼ ðPJ

j¼1ðjZB
j j � 1ÞÞF and volC ¼

ðPK
k¼1ðjZC

k j � 1ÞÞF . Then, volA þ volB þ volC gives the over-
all total volume per iteration.

In Fig. 2, the volume of communication regarding Âð1; :Þ
is volA1 ¼ ðjZA

1 j � 1ÞF ¼ 2F . The total volume in the first
phase is volA ¼ ð2þ 1þ 3ÞF ¼ 6F and the overall total vol-
ume is ð6þ 5þ 7ÞF ¼ 18F .

4.2 CartHP: Proposed HP Model

For a given tensor X and aQ�R�S virtual mesh of process-
ors, CartHP contains partitioning phases f1, f2 and f3, in
which hypergraphs HA, HB and HC are constructed with
vertex sets representing the horizontal, lateral and frontal sli-
ces of X , respectively. In f1, CartHP obtains a Q-way parti-
tion of HA and uses this partition to reorder the horizontal
slices to form Q horizontal chunks. These horizontal chunks
divide each lateral and frontal slice into Q subslices along
mode 1. Similarly in f2, CartHP obtains an R-way partition
of HB and uses this partition to reorder the lateral slices to
form R lateral chunks. These lateral chunks divide each hori-
zontal slice into R subslices along mode 2 and each frontal
subslice into R subsubslices along mode 2. Note that each
frontal slice hasQ�R subsubslices at the end of f2. Finally in
f3, CartHP obtains an S-way partition of HC and uses this
partition to reorder the frontal slices to form S frontal chunks.
These frontal chunks divide each horizontal and lateral sub-
slice into S subsubslices along mode 3. Note that each hori-
zontal and lateral slice have R� S and Q� S subsubslices at
the end of f3, respectively. Fig. 3 illustrates a tensor which is
partitioned by CartHP for a 3� 4� 2 virtual processor mesh
and three sample slices along differentmodes.

Algorithm 2. CartHP

Require: tensor X , 3D processor mesh size Q�R�S, imbalance
ratios �1; �2; �3

1: f1ðX ; Q; �1Þ obtains Q horizontal chunks
2: f2ðX ; R; �2Þ obtains R lateral chunks
3: f3ðX ; S; �3Þ obtains S frontal chunks
4: for each subtensor X q;r;s do
5: Assign X q;r;s to processor pq;r;s

Algorithm 2 displays the basic layout of CartHP. Here,
we abuse the notation for simplicity and use the same sym-
bol X for the original tensor (line 1) and the reordered ten-
sors (lines 2-3). Consequently, each subtensor X q;r;s (line 4)

Fig. 2. A 3D cartesian partition of a 3� 4� 3 tensor for a 2� 3� 2 virtual
processor mesh.

ACER ETAL.: IMPROVING MEDIUM-GRAIN PARTITIONING FOR SCALABLE SPARSE TENSOR DECOMPOSITION 2817

is the intersection of the respective chunks of the reordered
tensor.

Algorithm 3 displays phase f1, in which we construct
(lines 1-13) and partition (line 14) HA ¼ ðVA;N B [N CÞ to
obtain Q horizontal chunks (lines 15-17). In HA, VA ¼
fvA1 ; . . . ; vAI g contains a vertex vAi for each horizontal slice

Xði; :; :Þ. N B contains a net nB
j for each nonzero lateral slice

Xð:; j; :Þ, whereas N C contains a net nC
k for each nonzero

frontal slice Xð:; :; kÞ. Since all slices are assumed to have at
least one nonzero element, N B ¼ fnB

1 ; . . . ; n
B
J g and N C ¼

fnC
1 ; . . . ; n

C
Kg. Net nB

j connects vertex vAi if the intersection
of Xði; :; :Þ and Xð:; j; :Þ contains at least one nonzero
(lines 7-8). Similarly, nC

k connects vAi if the intersection of
Xði; :; :Þ and Xð:; :; kÞ has at least one nonzero (lines 11-12).
Each vertex vAi is assigned a single weight wðvAi Þ ¼ nnz
ðXði; :; :ÞÞ (lines 2-3). Here, nnzð�Þ denotes the number of
nonzeros of the given (sub)tensor. Then, a Q-way partition
PA ofHA is obtained (line 14).

Algorithm 3. f1ðX ; Q; �1Þ
1: VA fvA1 ; . . . ; vAI g
2: for each horizontal slice Xði; :; :Þ do
3: wðvAi Þ nnzðXði; :; :ÞÞ
4: N B N C ;
5: for each lateral slice Xð:; j; :Þ do
6: N B N B [fnB

j gwith PinsðnB
j Þ ¼ ;

7: for each nonzero fiber Xði; j; :Þ do
8: PinsðnB

j Þ PinsðnB
j Þ [fvAi g

9: for each frontal slice Xð:; :; kÞ do
10: N C N C [fnC

k gwith PinsðnC
k Þ ¼ ;

11: for each nonzero fiber Xði; :; kÞ do
12: PinsðnC

k Þ PinsðnC
k Þ [fvAi g

13: HA ðVA;N B [N CÞ
14: PA ¼ fVA1 ; . . . ;VAQg HPðHA;Q; �1Þ
15: for q 1 to Q do
16: for each vAi 2 VAq do
17: Assign slice Xði; :; :Þ to chunk X q;:;:

Algorithm 4 displays phase f2, in which we construct
(lines 1-13) and partition (line 14) HB ¼ ðVB;N A [N CÞ to
obtain R lateral chunks (lines 15-17). In HB, VB ¼ fvB1 ; . . . ;
vBJ g contains a vertex vBj for each lateral slice Xð:; j; :Þ. N A

contains a net nA
i for each nonzero horizontal slice Xði; :; :Þ,

that is, N A ¼ fnA
i ; . . . ; n

A
I g. Net nA

i connects vertex vBj if the

intersection of Xð:; j; :Þ and Xði; :; :Þ contains at least one
nonzero (lines 7-8). The nets in N A are similar to those in f1
since horizontal slices are not yet divided into subslices.
Frontal slices, on the other hand, have been divided into Q
subslices along mode 1 by the horizontal chunks formed in
f1. Instead of a single net, each frontal slice Xð:; :; kÞ is repre-
sented by a number of nets as many as the number of its
nonzero subslices. N C contains a net nC

kðqÞ for each nonzero
subslice Xð:; :; kÞq;:;: (lines 9-10). We only include nets for
nonzero subslices as the zero subslices do not incur any
increase in the number of nonzero unshared subslices. Net
nC
kðqÞ connects vertex vBj if the intersection of Xð:; j; :Þ and
Xð:; :; kÞq;:;: contains at least one nonzero (lines 11-12). Since
each slice Xð:; j; :Þ contains Q subslices, each vertex vBj is
assigned Q weights wqðvBj Þ ¼ nnzðXð:; j; :Þq;:;:Þ for q ¼ 1; . . . ;

Q (lines 2-3). Then, an R-way partition PB ofHB is obtained
by multi-constraint HP (MC-HP) (line 14).

Algorithm 4. f2ðX ; R; �2Þ
1: VB fvB1 ; . . . ; vBJ g
2: for each lateral subslice Xð:; j; :Þq;:;: do
3: wqðvBj Þ nnzðXð:; j; :Þq;:;:Þ
4: N A N C ;
5: for each horizontal slice Xði; :; :Þ do
6: N A N A [fnA

i gwith PinsðnA
i Þ ¼ ;

7: for each nonzero fiber Xði; j; :Þ do
8: PinsðnA

i Þ PinsðnA
i Þ [fvBj g

9: for each nonzero frontal subslice Xð:; :; kÞq;:;: do
10: N C N C [fnC

kðqÞgwith PinsðnC
kðqÞÞ ¼ ;

11: for each nonzero subfiber Xð:; j; kÞq;:;: do
12: PinsðnC

kðqÞÞ PinsðnC
kðqÞÞ [fvBj g

13: HB ðVB;N A [N CÞ
14: PB ¼ fVB1 ; . . . ;VBRg MC-HPðHB;R; �2Þ
15: for r 1 to R do
16: for each vBj 2 VBr do
17: Assign slice Xð:; j; :Þ to chunk X :;r;:

Algorithm 5. f3ðX ; S; �3Þ
1: VC fvC1 ; . . . ; vCKg
2: for each frontal subslice Xð:; :; kÞq;r;: do
3: wq;rðvCk Þ nnzðXð:; :; kÞq;r;:Þ
4: N A N B ;
5: for eachnonzerohorizontalsubsliceXði;:;:Þ:;r;: do
6: N A N A [fnA

iðrÞgwith PinsðnA
iðrÞÞ ¼ ;

7: for each nonzero subfiber Xði; :; kÞ:;r;: do
8: PinsðnA

iðrÞÞ PinsðnA
iðrÞÞ [fvCk g

9: for each nonzero lateral subslice Xð:; j; :Þq;:;: do
10: N B N B [fnC

jðqÞgwith PinsðnC
jðqÞÞ ¼ ;

11: for each nonzero subfiber Xð:; j; kÞq;:;: do
12: PinsðnB

jðqÞÞ PinsðnB
jðqÞÞ [fvCk g

13: HC ðVC;N A [N BÞ
14: PC ¼ fVC1 ; . . . ;VCS g MC-HPðHC; S; �3Þ
15: for s 1 to S do
16: for each vCk 2 VCs do
17: Assign slice Xð:; :; kÞ to chunk X :;:;s

Algorithm 5 displays phase f3, in which we construct
(lines 1-13) and partition (line 14) HC ¼ ðVC;N A [N BÞ to
obtain S frontal chunks (lines 15-17). In HC , VC ¼

Fig. 3. Slice chunks obtained in phases f1, f2 and f3 and (sub)subslices
of Xði; :; :Þ, Xð:; j; :Þ and Xð:; :; kÞ divided by these chunks.

2818 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018

fvC1 ; . . . ; vCKg contains a vertex vCk for each frontal slice
Xð:; :; kÞ. As in f2, each divided slice is represented by a
number of nets as many as the number of its nonzero subsli-
ces. Note that each horizontal slice has been divided into R
subslices along mode 2 in f2, whereas each lateral slice has
been divided into Q subslices along mode 1 in f1. N A con-
tains a net nA

iðrÞ for each nonzero subslice Xði; :; :Þ:;r;:,
whereas N B contains a net nB

jðqÞ for each nonzero subslice

Xð:; j; :Þq;:;: (lines 5-6 and 9-10). Net nA
iðrÞ connects vertex vCk if

the intersection of Xð:; :; kÞ and Xði; :; :Þ:;r;: contains at least
one nonzero (lines 7-8). Similarly, nB

jðqÞ connects vCk if the
intersection of Xð:; :; kÞ and Xð:; j; :Þq;:;: contains at least one
nonzero (lines 11-12). Since each slice Xð:; :; kÞ contains
Q�R subsubslices, each vertex vCk is assigned Q�R
weights wq;rðvCk Þ ¼ nnzðXð:; :; kÞq;r;:Þ for q¼1; . . . ; Q and
r¼1; . . . ; R (lines 2-3). Then, an S-way partition PC of HC is
obtained by MC-HP (line 14).

All nets in the hypergraphs constructed in our model are
assigned a cost of F . That is, cðnÞ ¼ F for each net n in HA,
HB andHC .

In partitioning HA, HB and HC , the maximum allowed
imbalance ratios are set to �1, �2 and �3, respectively. It can
be shown that at the end of three partitoning phases, the
number of nonzeros assigned to a processor is bounded
above by

ð1=P ÞnnzðXÞð1þ �1Þð1þ �2Þð1þ �3Þ: (3)

The derivation of Equation (3) is given in Appendix B, avail-
able in the online supplemental material.

Fig. 4 illustrates an example for CartHP applied on a
4� 4� 3 tensor X for a 2� 2� 2 virtual mesh of processors.
The vertices that represent horizontal, lateral and frontal sli-
ces are colored with purple, green and red, respectively.
The same color encoding also applies to the nets in each
phase. In fm, the tensor is displayed in terms of mode-m sli-
ces. For each hypergraph, the array of weights associated to
each vertex/part is displayed next to the corresponding ver-
tex/part. For example, consider vB3 in f2. Vertex vB3 is con-
nected by nets nA

2 and nA
4 due to nonzero fibers Xð2; 3; :Þ

and Xð4; 3; :Þ, respectively, and by nets nC
1ð2Þ, n

C
2ð1Þ and nC

3ð2Þ
due to nonzero subfibers Xð:; 3; 1Þ2;:;:, Xð:; 3; 2Þ1;:;: and Xð:;
3; 3Þ2;:;:, respectively. Since nnzðXð:; 3; :Þ1;:;:Þ¼1 and nnzðXð:;
3; :Þ2;:;:Þ¼2, w1ðvB3 Þ¼1 and w2ðvB3 Þ¼2. Since vB3 2 VB1 in PB,

slice Xð:; 3; :Þ is reordered in chunk X :;1;:.

4.3 Correctness of CartHP

In this section, we show the correctness of the proposed
CartHP model in minimizing the total communication vol-
ume of medium-grain CPD-ALS.

Suppose that we have a cartesian partition of X obtained
by CartHP and consider a horizontal slice Xði; :; :Þ. Note
that Xði; :; :Þ is not divided into any subslices in f1. In f2,
Xði; :; :Þ is divided into R subslices Xði; :; :Þ:;r;: for r ¼ 1; . . . ;
R along mode 2. Let ZBði; :; :Þ denote the set of mode-2 indi-
ces of the nonzero subslices among these R subslices, i.e.,

ZBði; :; :Þ ¼ fr j Xði; :; :Þ:;r;: is a nonzero subsliceg:

Note that ZBði; :; :Þ � f1; . . . ; Rg. For example in Fig. 4,
ZBð1; :; :Þ ¼ f1; 2g and ZBð2; :; :Þ ¼ f1g. In f3, each subslice

Xði; :; :Þ:;r;: is divided into S subsubslices Xði; :; :Þ:;r;s for
s ¼ 1; . . . ; S along mode 3. Let ZCði; :; :Þ:;r;: denote the set of
mode-3 indices of the nonzero subslices among these S sub-
subslices, that is

ZCði; :; :Þ:;r;: ¼ fs j Xði; :; :Þ:;r;s is a nonzero subsliceg:
Note that ZCði; :; :Þ:;r;: � f1; . . . ; Sg. For example in Fig. 4,
ZCð1; :; :Þ:;1;: ¼ f1g and ZCð1; :; :Þ:;2;: ¼ f2g.
Xði; :; :Þ is represented by a single net nA

i in f2 and by at
mostR nets nA

iðrÞ in f3, but not represented by any nets in f1.
Let csAi ðfÞ denote the total cutsize incurred by the nets repre-
senting Xði; :; :Þ in a phase f. Since �ðnA

i Þ in f2 amounts to
the number of Xði; :; :Þ’s nonzero subslices along mode 2,
which is jZBði; :; :Þj, the cutsize incurred by nA

i in f2 is

csAi ðf2Þ ¼ ð�ðnA
i Þ � 1ÞcðnA

i Þ ¼ ðjZBði; :; :Þj � 1ÞF:
�ðnA

iðrÞÞ in f3 amounts to the number of Xði; :; :Þ:;r;:’s nonzero
unshared subslices, which is jZCði; :; :Þ:;r;:j. Then, the total

cutsize incurred by the nets representing Xði; :; :Þ in f3 is

csAi ðf3Þ¼
X

r2ZBði;:;:Þð�ðn
A
iðrÞÞ � 1ÞcðnA

iðrÞÞ
¼
X

r2ZBði;:;:ÞðjZ
Cði; :; :Þ:;r;:j � 1ÞF

¼
X

r2ZBði;:;:ÞjZ
Cði; :; :Þ:;r;:j�jZBði; :; :Þj

� �
F:

Let csAi denote the total cutsize incurred by the nets rep-
resenting Xði; :; :Þ in all phases. Since csAi ¼ csAi ðf2Þþ
csAi ðf3Þ and the term jZBði; :; :ÞjF is cancelled out in this
summation, we obtain

csAi ¼
X

r2ZBði;:;:Þ
jZCði; :; :Þ:;r;:j � 1

0
@

1
AF:

Note that the sum of the number of nonzero subsubslices in
ZCði; :; :Þ:;r;: for all r 2 ZBði; :; :Þ gives the total number of
unshared subslices in Xði; :; :Þ. Then

csAi ¼ ðjZA
i j � 1ÞF: (4)

By Equations (2) and (4), we obtain

csAi ¼ volAi :

These findings apply to mode-2 and mode-3 slices as fol-

lows: csBj ¼csBj ðf1ÞþcsBj ðf3Þ and csCk ¼csCk ðf1ÞþcsCk ðf2Þ,
where csBj and csCk denote total cutsizes incurred by the nets
representing Xð:; j; :Þ and Xð:; :; kÞ in all phases, respec-
tively. Then, csBj ¼ ðjZB

j j � 1ÞF ¼ volBj and csCk ¼ ðjZC
k j�

1ÞF ¼ volCk . That is, the total cutsizes incurred by the nets
representing Xði; :; :Þ, Xð:; j; :Þ and Xð:; :; kÞ are equal to the
communication volumes regarding factor-matrix rows
Âði; :Þ, B̂ðj; :Þ and Ĉðk; :Þ, respectively. Since the overall cut-
size of CartHP is equal to the sum of the cutsizes of the nets
representing individual slices in all phases, minimizing the
overall cutsize corresponds to minimizing the total commu-
nication volume.

In Fig. 4, consider slice Xð:; :; 2Þ and the nets that repre-
sent this slice. In f1, the cutsize incurred by nC

2 is
csC2 ðf1Þ¼ð2�1ÞF ¼F . In f2, the total cutsize incurred by

ACER ETAL.: IMPROVING MEDIUM-GRAIN PARTITIONING FOR SCALABLE SPARSE TENSOR DECOMPOSITION 2819

nets nC
2ð1Þ and nC

2ð2Þ is cs
C
2 ðf2Þ¼ð2�1ÞFþð2�1ÞF ¼2F . Then,

the total cutsize of csC2 ¼3F incurred by the nets represent-
ing Xð:; :; 2Þ is equal to the communication volume regard-
ing Ĉð2; :Þ, which is given by volC2 ¼ðjZC

2 j�1ÞF ¼3F .
Similarly, csC1 ¼volC1 ¼F and csC3 ¼volC3 ¼F . Then, the total
cutsize incurred by the nets representing the frontal slices is
5F , which is equal to the total communication volume in
the third phase of medium-grain CPD-ALS , i.e., volC¼5F .

With similar discussions for the first and second phases, the
total cutsize of 12F in CartHP is equal to the total communi-
cation volume.

4.4 1D Factor Matrix Partitioning

Recall that the correctness of CartHP in encapsulating total
communication volume depends on the consistency condi-
tion. In order to satisfy this condition, we assign each factor-

Fig. 4. CartHP on a 4�4�3 tensor X for a 2�2�2 virtual mesh of processors. f1: Horizontal slices of the original tensor, hypergraphHA and a 2-way
partition PA of HA. f2: Lateral slices of the tensor with reordered mode-1 indices, hypergraph HB and a 2-way partition PB of HB. f3: Frontal slices
of the tensor with reordered mode-1 and mode-2 indices, hypergraphHC and a 2-way partition PC ofHC. Bottom: Slices of the final tensor reordered
along all modes.

2820 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018

matrix row to one of the processors that own a nonzero sub-
slice in the corresponding slice.

The rows of a factor matrix are partitioned among pro-
cessors, independently for each factor matrix. Note that the
communications regarding each row chunk (e.g., Aq) are
confined to a distinct processor layer (e.g., pq;:;:). Hence,
the rows in a chunk are partitioned among the processors in
the corresponding layer, independently for each chunk. For
partitioning the rows in a chunk, we adopt the best-fit-
decreasing heuristic used for solving the P -feasible bin-
packing problem [26]. The rows are considered in decreas-
ing order of the number of their nonzero unshared subsli-
ces. That is, Aði; :Þ is processed earlier than Aði0; :Þ if
jZA

i j jZA
i0 j. The best-fit criterion corresponds to assigning a

row to a processor that currently has the minimum commu-
nication volume among the processors that own a nonzero
subslice in the corresponding slice. After assigning a row to
a processor, the volumes of the respective processors are
increased accordingly.

4.5 Mode Processing Order

In our model, we determine the number of chunks along
each mode, i.e., Q, R and S values, to be proportional to the
tensor dimension in that mode, i.e., I, J andK values, as pro-
posed in [14]. Recall that CartHP introduces the number of
chunks along amode as amultiplicative factor to the number
of constraints in each further partitioning phase. For exam-
ple,Q chunks obtained in f1 lead toQ andQ�R constraints
in f2 and f3, respectively. However, the performance of the
multi-constraint partitioning tools is known to degrade with
increasing number of constraints [27]. In order to have fewer
constraints, the modes with fewer chunks should be proc-
essed earlier. For this purpose, CartHP processes the modes
in increasing order of the number of chunks.

4.6 Extension to More Than Three Modes

For an M-mode tensor X and an P1�� � ��PM virtual mesh
of processors, CartHP consists of M partitioning phases. In

phase fm, hypergraph Hm¼ðVm; S 1
k
M;k6¼mN kÞ is con-

structed and partitioned into Pm parts. In Hm, each mode-m
slice is represented by a vertex with Pm

i¼1Pi�1 weights (with
P0¼1) in Vm, whereas each nonzero mode-k (sub)slice is
represented by a net in N k for k¼1; . . . ;m�1;mþ1; . . . ;M.
Net n connects vertex v if the intersection of the (sub)slices
represented by v and n contains at least one nonzero. Here,
the slices are M�1 dimensional, hence the intersection of
two slices along different modes isM�2 dimensional.

A Pm-way partition of Hm induces Pm slice chunks along
mode m. As a result, each slice along a mode different than
mode m is divided into Pm subslices along mode m. In Hm,
each nonzero mode-k subslice is represented by a net in N k

in order to correctly encapsulate the communication volume.
Here, these nonzero subslices are the smallest possible subsli-
ces divided by the chunks. Similarly, the number of nonzeros
in each subslice of a mode-m slice constitutes a different
weight to the vertex representing that slice for achieving
computational load balance viamulti-constraint partitioning.

5 EXPERIMENTS

Weevaluate the performance of the proposedCartHPmethod
against the baseline multi-dimensional cartesian partitioning

method [14]. For obtaining balance on the number of tensor
nonzeros, this method randomly permutes the slices at each
mode before obtaining respective slice chunks. We refer to
this baseline method as CartR, with “R” standing for
“random”. The performance comparison is conducted in
terms of partition statistics and parallel CPD-ALS runtimes
for 12 tensors on 64, 128, 256, 512 and 1024 processors. Finally,
we discuss the amortization of the partitioning overhead
introduced byCartHP in terms of CPD-ALS solutions.

5.1 Setting

For partitioning hypergraphs in CartHP (line 14 in
Algorithms 3, 4 and 5), we use PaToH [15] (version 3.2) in
speed mode with maximum allowable imbalance ratio set
to 0.04, i.e., �m ¼ 0:04. In PaToH, we set the refinement algo-
rithm to FM with tight balance. Since PaToH contains ran-
domized algorithms, we ran CartHP five times for each
instance and report the geometric average of the results.

For conducting the parallel CPD-ALS experiments, we
implemented the medium-grain CPD-ALS algorithm in C
using MPI for interprocess communication. The source code
is compiled with Cray C compiler (version 2.5.9) using the
optimization level three. For the fold and expand operations
on factor-matrix rows, personalized all-to-all collective
operations are used. For storing the subtensors in process-
ors, an extension of the compressed row storage (CRS)
scheme for tensors [28] is utilized. MTTKRP operation is
performed in a fiber-centric manner to reduce the FLOP
counts, as described in [28]. For the rest of the computations,
efficient CBLAS routines provided by Intel MKL library
(version 2017) are used whenever needed. Our parallel
implementation is orthogonal to the data partitioning
method, hence it can take any medium-grain partition as
input. For a fair comparison, we use the same parallel
implementation for evaluating the partitions obtained by
CartR. In our experiments, we set the number of compo-
nents in CPD-ALS to 16, i.e., F ¼ 16. For each instance, the
runtime of one CPD-ALS iteration is reported by taking the
average of the total runtime of 1,000 iterations.

We conducted our parallel experiments on a Cray XC40
machine. A node of this machine consists of 24 cores (two
12-core Intel Haswell Xeon processors) with 2.5 GHz clock
frequency and 128 GB memory. The nodes are connected
with CRAY Aries, which is a high speed network with
Dragonfly topology.

5.2 Dataset

In our experiments, we use 12 sparse tensors whose proper-
ties are given in Table 1. All of these tensors are obtained
from the datasets arising in real-world applications. First
nine of them have three modes, whereas the remaining
three have four modes. Columns 2–5 and 6 respectively dis-
play the dimensions and the number of nonzeros in the
respective tensor.

Facebook consists of the wall-posting information in the
form of owner-poster-date triplets from the Facebook New
Orleans networks[29]. NELL-b and NELL-c consist of the
beliefs in the form of entity-relation-entity triplets discovered
by the Never Ending Language Learning (NELL) project [30].
NELL-b contains the relations that NELL believes to be
true, whereas NELL-c contains only the candidate beliefs.

ACER ETAL.: IMPROVING MEDIUM-GRAIN PARTITIONING FOR SCALABLE SPARSE TENSOR DECOMPOSITION 2821

Brightkite and Gowalla consist of checkin information in
the form of user-date-location triplets obtained from location-
based social networks [31]. Finefoods and MovieAmazon

consist of user-product-word triplets obtained from food and
movie reviews inAmazon, respectively [32].Netflix consists
of user-item-time triplets obtained from the ratings in
Netflix Prize competition [33]. Similar to Finefoods, Yelp
consists of user-business-word triplets obtained from busi-
ness reviews in Yelp academic dataset1. MovieLens consists
of user-movie-tag-time quadruplets obtained from free-text
taggings in MovieLens 20M dataset [34]. Flickr and
Delicious consist of user-resource-tag-time quadruplets
which were first crawled by G€orlitz et al. [35] respectively
from flickr.com and delicious.com.

5.3 Parallel CPD-ALS Results

Table 2 presents the average results obtained by CartHP
normalized with respect to those obtained by CartR. Each
row displays the geometric average of the results on 12 ten-
sors for the respective number of processors. The detailed
results for each tensor are given in Appendix C, available in
the online supplemental material. Column “imb” denotes
load imbalance, which we compute as the ratio of the maxi-
mum to the average number of nonzeros assigned to a pro-
cessor. Columns under “number of messages” and “comm
volume” denote the number of messages sent and received
by a processor regarding the expand and fold steps through
all phases and the volume of data communicated along
these messages, respectively. Under both, “max” and “avg”
denote the maximum and average amount of the corre-
sponding metric over all processors, respectively. Under
“parallel runtime”, columns “comm” and “total” respec-
tively denote the communication time and total runtime of
a single iteration in medium-grain-parallel CPD-ALS.

As seen in Table 2, CartHP drastically reduces average
communication volume compared to CartR. Note that the
reduction in average communication volume also refers
to the reduction in total communication volume. CartHP
reduces average (total) volume by 58, 55, 51, 49 and
47 percent for 64, 128, 256, 512 and 1024 processors,
respectively. These improvements are expected since
CartHP minimizes this metric while CartR only provides
a loose upper bound on it. The reduction in average

volume leads to a similar reduction in maximum volume,
by 39, 40, 40, 47 and 47 percent for 64, 128, 256, 512 and
1024 processors, respectively. The reduction in average
volume also leads to a significant reduction in average
(total) number of messages. CartHP reduces average num-
ber of messages by 7, 7, 9, 10 and 15 percent for 64, 128,
256, 512 and 1024 processors, respectively. The reduction
in average number of messages leads to a slight reduction
of 2-3 percent in maximum number of messages.

The drastic reductions in communication cost metrics
lead to a drastic reduction in the communication time of
CPD-ALS by 50, 44, 41, 39 and 39 percent for 64, 128, 256,
512 and 1024 processors, respectively. Although CartHP
causes an increase in load imbalance by at most 5 percent
on the average, the reduction obtained in communication
time conceals this increase and leads to a significant reduc-
tion in total CPD-ALS runtime. CartHP reduces total run-
time by 28, 32, 36, 38 and 38 percent for 64, 128, 256, 512 and
1024 processors, respectively.

Table 3 presents the detailed results obtained by CartR
and CartHP on 512 processors for each tensor. The values
given for maximum and average communication volumes
are in terms of words. For each tensor, the best result
attained for each metric is given in boldface.

As seen in Table 3, CartHP attains a better result in aver-
age communication volume for all tensors and in maximum
communication volume for 9 out of 12 tensors. In communi-
cation time and total CPD-ALS runtime, it achieves a better
result for 11 and 10 tensors, respectively. For the rest of the
metrics, CartHP and CartR have comparable performances
since each achieves a better result for half of the tensors.
The highest reduction rates in total runtime are observed
for Gowalla, Flickr and Delicious. This can be
explained by the drastic amounts of decrease achieved in
both maximum volume and total volume for these tensors.
CartHP performs comparable to CartR for Netflix since the
reduction in the communication time and the increase in
the imbalance compensate each other. For MovieAmazon,
CartHP performs worse than CartR due to the increase in
the communication time stemming from the increase in
maximum volume despite the decrease in total volume.
Note that a similar increase is also observed for Netflix,
but it does not degrade the communication time much due
to a higher decrease in total volume.

Fig. 5 displays the strong scaling curves for all tensors in
terms of total CPD-ALS runtime. For 9 out of 12 tensors,
CartHP achieves better CPD-ALS scalability compared to

TABLE 1
Properties of the Test Tensors

name I J K L nnz

Facebook 42.4 K 40.0 K 1.5 K – 738.1 K
NELL-b 2.4 M 428 344.6 K – 3.0 M
Brightkite 51.4 K 942 773.0 K – 2.7 M
Finefoods 67.1 K 11.8 K 82.3 K – 5.6 M
Gowalla 107.1 K 597 1.3 M – 6.3 M
MovieAmazon 87.9 K 4.4 K 226.5 K – 15.0 M
NELL-c 5.1 M 435 716.3 K – 96.7 M
Netflix 17.8 K 480.2 K 2.2 K – 100.5 M
Yelp 686.6 K 85.5 K 773.3 K – 185.6 M
MovieLens 7.8 K 19.5 K 38.6 K 3.4 K 465.6 K
Flickr 319.7 K 28.2 M 1.6 M 730 112.9 M
Delicious 532.9 K 17.3 M 2.5 M 1.4 K 140.1 M

TABLE 2
Average Results Obtained by CartHP Normalized

with Respect to Those Obtained by CartR

number
of procs

number of
messages

comm
volume

parallel
runtime

imb max avg max avg comm total

64 1.01 0.97 0.93 0.61 0.42 0.50 0.82
128 1.01 0.97 0.93 0.60 0.45 0.56 0.78
256 1.05 0.97 0.91 0.60 0.49 0.59 0.74
512 1.05 0.98 0.90 0.53 0.51 0.61 0.72
1024 1.05 0.97 0.85 0.53 0.53 0.61 0.72

average 1.03 0.97 0.90 0.57 0.48 0.57 0.76

1. https://www.yelp.com/dataset_challenge/dataset

2822 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018

https://www.yelp.com/dataset_challenge/dataset

CartR. This is because CartHP obtains drastic reductions in
both maximum and average communication volume met-
rics for these tensors. CartHP performs comparable to CartR
for Netflix and Yelp and slightly worse than CartR for
MovieAmazon since CartHP increases maximum volume
while decreasing average volume for these tensors on all
processor counts. For Facebook and MovieLens, although
CartHP performs better than CartR, both methods display
poor scalability for these tensor since they are small.

5.4 Partitioning Overhead and Amortization

Table 4 reports the partitioning time of CartHP in seconds
as well as the ratio of this partitioning time to the factoriza-
tion time for each tensor. Here, each factorization involves a
number of CPD-ALS iterations required to converge with
tolerance 10�5 (as computed in [28]), where the number of
iterations typically increases with increasing F . Both parti-
tioning and factorization are performed in a sequential set-
ting. As seen in the table, for Netflix, partitioning takes

TABLE 3
Partition Statistics and Parallel Runtime Results Obtained by CartR and CartHP for one CPD-ALS Iteration on 512 Processors

CartR CartHP

number of
messages

comm
volume

parallel
runtime (ms)

number of
messages

comm
volume

parallel
runtime (ms)

tensor imb max avg max avg comm total imb max avg max avg comm total

Facebook 1.32 2,162 1,956 114 K 83 K 2.7 3.4 1.01 2,043 1,901 67 K 58 K 1.9 2.8
NELL-b 1.06 1,400 534 158 K 75 K 4.4 7.5 1.01 1,262 224 38 K 11 K 2.1 4.5
Brightkite 1.73 2,323 2,306 231 K 142 K 5.1 8.8 4.25 2,300 2,155 85 K 64 K 3.3 6.0
Finefoods 1.08 1,259 1,225 356 K 257 K 7.4 11.1 1.05 1,263 1,191 308 K 203 K 5.1 9.4
Gowalla 1.08 2,136 1,866 687 K 443 K 7.6 13.2 1.01 2,182 1,757 186 K 133 K 4.0 7.0
MovieAmazon 1.09 2,209 2,154 607 K 474 K 8.3 13.9 1.10 2,228 2,209 1.1 M 423 K 8.5 16.3
NELL-c 1.01 1,941 1,504 2.5 M 1.4 M 34.5 72.6 1.07 1,845 1,254 943 K 491 K 15.4 44.5
Netflix 1.01 2,564 2,562 594 K 551 K 9.9 35.5 1.14 2,564 2,564 729 K 471 K 9.3 35.7
Yelp 1.06 1,267 1,267 4.1 M 3.3 M 62.5 126.7 1.07 1,268 1,268 5.7 M 2.3 M 47.9 113.4
MovieLens 1.30 2,464 2,043 198 K 85 K 2.9 4.3 1.08 2,219 1,969 77 K 65 K 2.4 3.9
Flickr 1.01 4,603 4,595 17.7 M 10.6 M 327.0 505.2 1.14 4,608 4,597 4.0 M 3.4 M 108.0 216.3
Delicious 1.06 4,367 4,367 24.0M 11.3 M 398.2 649.7 1.05 4,368 4,368 8.8 M 6.1 M 171.6 355.9

Fig. 5. Strong scaling curves for medium-grain-parallel CPD-ALS obtained by CartR and CartHP.

ACER ETAL.: IMPROVING MEDIUM-GRAIN PARTITIONING FOR SCALABLE SPARSE TENSOR DECOMPOSITION 2823

0.39 and 0.08 factorizations for F ¼ 16 and F ¼ 64, respec-
tively. On average, it takes 2.60 and 0.41 factorizations for
F ¼ 16 and F ¼ 64, respectively.

Table 5 displays the average number of CPD solutions
that amortize the sequential partitioning time of CartHP for
each processor count, i.e., P value. Here, each CPD solution
refers to running the parallel CPD-ALS algorithm for com-
puting a factorization for ten different F values [36] starting
from three different sets of initial factor matrices [37]. For
each F value and initial factor matrix set, a factorization is
assumed to require 25 iterations, so, each CPD solution is
assumed to involve 10�3�25¼750 iterations. As seen in the
table, on the average, the partitioning time of CartHP amor-
tizes in only 3.39, 3.91, 4.92, 8.02, and 14.18 CPD solutions for
64, 128, 256, 512, and 1,024 processors, respectively, where
the overall average is computed as 5.94 CPD solutions.

6 CONCLUSION

We investigated the utilization of the sparsity pattern of a
given tensor for minimizing the total communication volume
in medium-grain CPD-ALS algorithm which adopts multi-
dimensional cartesian tensor partitioning. We proposed a
novel hypergraph-partitioning model that correctly encapsu-
lates the total communication volume of medium-grain-paral-
lel CPD-ALS. We demonstrated the effectiveness of the
proposed model by conducting experiments on 12 tensors for
up to 1,024 processors. Ourmodel drastically reduces the com-
munication volume and the communication time of medium-
grain-parallel CPD-ALS, hence the total parallel runtime.

ACKNOWLEDGMENTS

This work is supported by the Scientific and Technological
Research Council of Turkey (TUBITAK) under project
EEEAG-116E043. We acknowledge PRACE for awarding us

access to resource Hazel Hen (Cray XC40) based in Ger-
many at HLRS.

REFERENCES

[1] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an N-way generalization of “Eckart-
Young” decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319,
1970. [Online]. Available: http://dx.doi.org/10.1007/BF02310791

[2] R. A. Harshman, Foundations of the PARAFAC Procedure: Mod-
els and Conditions for An “Explanatory” Multi-Modal Factor
Analysis. Los Angeles, USA: Univ. California, 1970.

[3] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.
[Online]. Available: http://dx.doi.org/10.1137/07070111X

[4] C. M. Andersen and R. Bro, “Practical aspects of PARAFAC
modeling of fluorescence excitation-emission data,” J. Chemomet-
rics, vol. 17, no. 4, pp. 200–215, 2003. [Online]. Available: http://
dx.doi.org/10.1002/cem.790

[5] N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, “Parallel factor
analysis in sensor array processing,” IEEE Trans. Signal Process.,
vol. 48, no. 8, pp. 2377–2388, Aug. 2000.

[6] A. H. Andersen and W. S. Rayens, “Structure-seeking multilinear
methods for the analysis of fMRI data,” NeuroImage, vol. 22, no. 2,
pp. 728–739, 2004. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1053811904001181

[7] E.Martinez-Montes, P. A. Valdes-Sosa, F. Miwakeichi, R. I. Goldman,
and M. S. Cohen, “Concurrent EEG/fMRI analysis by multiway par-
tial least squares,” NeuroImage, vol. 22, no. 3, pp. 1023–1034, 2004.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1053811904001946

[8] A. Shashua and A. Levin, “Linear image coding for regression and
classification using the tensor-rank principle,” in Proc. IEEE Com-
put. Soc. Conf. Comput. Vis. Pattern Recognit., 2001, pp. I-42–I-49.

[9] E. Acar, S. A. Çamtepe, M. S. Krishnamoorthy, and B. Yener,
Modeling and Multiway Analysis of Chatroom Tensors. Berlin,
Germany: Springer, 2005, pp. 256–268. [Online]. Available:
http://dx.doi.org/10.1007/11427995_21

[10] B. W. Bader, M. W. Berry, and M. Browne, Discussion Tracking in
Enron Email Using PARAFAC. London, U.K.: Springer, 2008, pp.
147–163. [Online]. Available: http://dx.doi.org/10.1007/978–1-
84800-046-98

[11] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, and
T. M. Mitchell, “Toward an architecture for never-ending lan-
guage learning,” in Proc. 24th AAAI Conf. Artif. Intell., 2010,
pp. 1306–1313.

[12] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, A. Hanjalic, and
N. Oliver, “TFMAP: Optimizing map for top-N context-aware rec-
ommendation,” in Proc. 35th Int. ACM SIGIR Conf. Res. Develop.
Inf. Retrieval, 2012, pp. 155–164. [Online]. Available: http://doi.
acm.org/10.1145/2348283.2348308

[13] N. K. M. Faber, R. Bro, and P. K. Hopke, “Recent developments
in CANDECOMP/PARAFAC algorithms: A critical review,”
Chemometrics Intell. Laboratory Syst., vol. 65, no. 1, pp. 119–137,
2003. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0169743902000898

[14] S. Smith and G. Karypis, “A medium-grained algorithm for dis-
tributed sparse tensor factorization,” in Proc. 30th IEEE Int. Parallel
Distrib. Process. Symp., 2016, pp. 902–911.

[15] U. V. Çataly€urek and C. Aykanat, “Hypergraph-partitioning-
based decomposition for parallel sparse-matrix vector multi-
plication,” IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 7, pp. 673–
693, Jul. 1999.

[16] U. V. Çataly€urek, C. Aykanat, and B. Uçar, “On two-dimensional
sparse matrix partitioning: Models, methods, and a recipe,” SIAM
J. Sci. Comput., vol. 32, no. 2, pp. 656–683, Feb. 2010. [Online].
Available: http://dx.doi.org/10.1137/080737770

[17] B. Uçar and C. Aykanat, “Revisiting hypergraph models for
sparse matrix partitioning,” SIAM Rev., vol. 49, no. 4, pp. 595–603,
2007.

[18] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to
Parallel Computing: Design and Analysis of Algorithms. Redwood
City, CA, USA: Benjamin/Cummings, 1994.

[19] B. Hendrickson, R. Leland, and S. Plimpton, “An efficient parallel
algorithm for matrix-vector multiplication,” Int. J. High Speed Com-
put., vol. 07, no. 01, pp. 73–88, 1995. [Online]. Available: http://
www.worldscientific.com/doi/abs/10.1142/S0129053395000051

TABLE 4
Comparison of Partitioning Overhead of CartHP

Against Factorization in Terms of Sequential Runtime

CartHP CartHP/factorization

tensor time (s) F ¼ 16 F ¼ 64

Facebook 5.8 4.68 0.82
NELL-b 9.8 0.53 0.10
Brightkite 9.2 1.73 0.18
Finefoods 22.3 2.32 0.32
Gowalla 31.5 3.93 0.47
MovieAmazon 35.0 1.17 0.12
NELL-c 62.3 0.50 0.08
Netflix 36.2 0.39 0.08
Yelp 380.6 6.28 1.10
MovieLens 4.6 9.22 1.38
Flickr 569.6 7.97 1.69
Delicious 1693.0 23.10 5.06

average - 2.60 0.41

TABLE 5
Average Number of CPD Solutions that Amortize

the Sequential Partitioning Time of CartHP

P ¼64 P ¼128 P ¼256 P ¼512 P ¼1024 avg

3.39 3.91 4.92 8.02 14.18 5.94

2824 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018

http://dx.doi.org/10.1007/BF02310791
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1002/cem.790
http://dx.doi.org/10.1002/cem.790
http://www.sciencedirect.com/science/article/pii/S1053811904001181
http://www.sciencedirect.com/science/article/pii/S1053811904001181
http://www.sciencedirect.com/science/article/pii/S1053811904001946
http://www.sciencedirect.com/science/article/pii/S1053811904001946
http://dx.doi.org/10.1007/11427995_21
http://dx.doi.org/10.1007/978--1-84800-046-98
http://dx.doi.org/10.1007/978--1-84800-046-98
http://doi.acm.org/10.1145/2348283.2348308
http://doi.acm.org/10.1145/2348283.2348308
http://www.sciencedirect.com/science/article/pii/S0169743902000898
http://www.sciencedirect.com/science/article/pii/S0169743902000898
http://dx.doi.org/10.1137/080737770
http://www.worldscientific.com/doi/abs/10.1142/S0129053395000051
http://www.worldscientific.com/doi/abs/10.1142/S0129053395000051

[20] U. V. Catalyurek and C. Aykanat, “A hypergraph-partitioning
approach for coarse-grain decomposition,” in Proc. ACM/IEEE
Conf. Supercomput., Nov. 2001, pp. 42–42.

[21] J. H. Choi and S. Vishwanathan, “DFacTo: Distributed factoriza-
tion of tensors,” in Proc. 27th Int. Conf. Neural Inf. Process. Syst.,
2014, pp. 1296–1304. [Online]. Available: http://papers.nips.cc/
paper/5395-dfacto-distributed-factorization-of-te nsors.pdf

[22] B. W. Bader and T. G. Kolda, “Efficient MATLAB computations
with sparse and factored tensors,” SIAM J. Sci. Comput., vol. 30,
no. 1, pp. 205–231, Dec. 2007.

[23] U. Kang, E. Papalexakis, A.Harpale, and C. Faloutsos, “GigaTensor:
Scaling tensor analysis up by 100 times - algorithms and discov-
eries,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2012, pp. 316–324. [Online]. Available: http://doi.acm.org/
10.1145/2339530.2339583

[24] O. Kaya and B. Uçar, “Scalable sparse tensor decompositions in
distributed memory systems,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2015, pp. 77:1–77:11. [Online]. Avail-
able: http://doi.acm.org/10.1145/2807591.2807624

[25] W. Austin, G. Ballard, and T. G. Kolda, “Parallel tensor compres-
sion for large-scale scientific data,” in Proc. IEEE Int. Parallel Dis-
trib. Process. Symp., May 2016, pp. 912–922.

[26] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
Rockville, MD, USA: Computer Science, 1978.

[27] C. Aykanat, B. B. Cambazoglu, and B. Uçar, “Multi-level direct k-
way hypergraph partitioning with multiple constraints and fixed
vertices,” J. Parallel Distrib. Comput., vol. 68, no. 5, pp. 609–625,
2008.

[28] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis,
“SPLATT: Efficient and parallel sparse tensor-matrix multi-
plication,” in Proc. IEEE Int. Parallel Distrib. Processing Symp.,
May 2015, pp. 61–70.

[29] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
evolution of user interaction in Facebook,” in Proc. 2nd ACM SIG-
COMMWorkshop Social Netw., Aug. 2009, pp. 37–42 .

[30] A. Carlson, J. Betteridge, B. Kisiel, and B. Settles, “Toward an
architecture for never-ending language learning,” in Proc. 24th
AAAI Conf. Art. Intell., 2010, pp. 1306–1313.

[31] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility:
User movement in location-based social networks,” in Proc. 17th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2011,
pp. 1082–1090. [Online]. Available: http://doi.acm.org/10.1145/
2020408.2020579

[32] J. J. McAuley and J. Leskovec, “From amateurs to connoisseurs:
Modeling the evolution of user expertise through online reviews,”
in Proc. 22nd Int. Conf. World Wide Web, 2013, pp. 897–908.
[Online]. Available: http://doi.acm.org/10.1145/2488388.2488466

[33] J. Bennett, S. Lanning, and N. Netflix, “The netflix prize,” in Proc.
KDD Cup Workshop Conjunction KDD, 2007, pp. 3–6.

[34] F. M. Harper and J. A. Konstan, “The movielens datasets: History
and context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4,
pp. 19:1–19:19, Dec. 2015. [Online]. Available: http://doi.acm.
org/10.1145/2827872

[35] O. G€orlitz, S. Sizov, and S. Staab, “PINTS: Peer-to-peer infrastruc-
ture for tagging systems,” in Proc. 7th Int. Conf. Peer-to-Peer Syst.,
2008, pp. 19–19. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1855641.1855660

[36] N. Zheng, Q. Li, S. Liao, and L. Zhang, “Flickr group recommen-
dation based on tensor decomposition,” in Proc. 33rd Int. ACM
SIGIR Conf. Res. Develop. Inf. Retrieval, 2010, pp. 737–738. [Online].
Available: http://doi.acm.org/10.1145/1835449.1835591

[37] R. A. Harshman and M. E. Lundy, “The PARAFAC model for
three-way factor analysis and multidimensional scaling, ” in,
Research Methods for Multi-Mode Data Analysis. New York, NY,
USA: Praeger, 1984.

Seher Acer received the BS, MS and PhD
degrees in computer engineering from Bilkent
University, Turkey, where she is currently a
postdoctoral researcher. Her research interests
include combinatorial scientific computing, graph
and hypergraph partitioning for sparse matrix and
tensor computations, and parallel computing.

Tugba Torun received the BS degree in mathe-
matics and the MS degree in computer engineer-
ing both from Bilkent University. She is currently
working toward the PhD degree at Bilkent Univer-
sity. Her research interests include combinatorial
scientific computing, graph and hypergraph parti-
tioning, and tensor computations.

Cevdet Aykanat received the BS and MS
degrees from Middle East Technical University,
Ankara, Turkey, both in electrical engineering, and
the PhD degree from Ohio State University,
Columbus, in electrical and computer engineering.
Since 1989, he has been affiliated with Computer
Engineering Department, Bilkent University,
Ankara, Turkey, where he is currently a professor.
His research interestsmainly include parallel com-
puting and its combinatorial aspects. He is the
recipient of the 1995 Investigator Award of The

Scientific and Technological Research Council of Turkey and 2007 Parlar
Science Award. He has served as an associate editor of the IEEE Trans-
actions of Parallel and Distributed Systems between 2008 and 2012.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ACER ETAL.: IMPROVING MEDIUM-GRAIN PARTITIONING FOR SCALABLE SPARSE TENSOR DECOMPOSITION 2825

http://papers.nips.cc/paper/5395-dfacto-distributed-factorization-of-te nsors.pdf
http://papers.nips.cc/paper/5395-dfacto-distributed-factorization-of-te nsors.pdf
http://doi.acm.org/10.1145/2339530.2339583
http://doi.acm.org/10.1145/2339530.2339583
http://doi.acm.org/10.1145/2807591.2807624
http://doi.acm.org/10.1145/2020408.2020579
http://doi.acm.org/10.1145/2020408.2020579
http://doi.acm.org/10.1145/2488388.2488466
http://doi.acm.org/10.1145/2827872
http://doi.acm.org/10.1145/2827872
http://dl.acm.org/citation.cfm?id=1855641.1855660
http://dl.acm.org/citation.cfm?id=1855641.1855660
http://doi.acm.org/10.1145/1835449.1835591

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

